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ABSTRACT. This paper applies methods from Andrews’s work on partitions to another com-
binatorial object: strongly unimodal sequences. Specifically, we define “k-marked unimodal
symbols" for unimodal sequences analogously to how Andrews defines k-marked Durfee
symbols for partitions. We establish a multivariate rank generating function Uy ((x;q) for
k-marked unimodal symbols, as well as SCU(q) for self-conjugate k-marked unimodal sym-
bols, which we also interpret combinatorially in terms of partitions. We then discuss po-
tential quantum modularity properties for U (x; q) for certain vectors of roots of unity (x,
including determining when Uy ((x; q) can be defined as a function on a subset of rationals.
We conclude with some further observations based on computational data and a congruence
conjecture about the full rank.

1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Background. A partition of an integer n is a non-increasing sequence of positive inte-
gers that sum to n, where each summand is called a part. Partitions have been of interest to
mathematicians for centuries, partly because of their mysterious, yet indelible, connection
to modular forms.

Namely, the partition generating function p(n) and Dedekind’s eta function n(7) (a weight
% modular form) share the following relationship:
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This link between partitions and modular forms also manifests when analyzing partition
ranks. Dyson [8] defines a partition’s rank as the largest part in the partition minus the total
number of parts. As defined in [8], the partition rank function N(m,n) counts the number
of partitions of n with rank equal to m; it is generated by:
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where N(m,0) = d,,0 and 0;; is the Kronecker delta function.
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This generating function provides more clues to how partitions and modular forms relate.
Setting w = 1, we recover the partition generating function (1); This can be seen from (2).
Setting w = —1 produces one of Ramanujan’s original third order mock theta functions, a
group of functions that, as described in [4], exhibit modular properties when they are “com-
pleted” by certain nonholomorphic functions.

As Andrews indicates in [1], partitions are represented visually using Ferrers diagrams,
where a row of dots in a diagram corresponds to a single part in a partition. Figure 1 shows
a Ferrers diagram for the partition 4 + 3 + 1 = 8. We call the largest square of dots within
the Ferrers diagram the Durfee square.

Ferrers diagrams are useful to illustrate the conjugate of a partition. The conjugate of a
partition is the partition that is obtained by reflecting the diagram across the line of slope
—1 that passes through the upper left corner of the diagram. A partition that is conjugate
to itself is called a self-conjugate partition.

Using Ferrers diagrams, we can represent partitions in yet another way, by creating Durfee
symbols. As defined by Andrews in [2], a Durfee symbol’s top row corresponds to the columns
on the right of the Durfee square in a partition’s Ferrers diagram; its bottom row corresponds
to the rows below the Durfee square. The Durfee symbol’s subscript indicates the Durfee
square’s side length. A Durfee symbol for the partition 4 + 3 + 1 is shown in Figure 1. As
with partitions, Durfee symbols have ranks as well. Andrews defines the rank of a Durfee
symbol to be the number of parts on the top row minus the number on the bottom row—this
definition is the same as the typical partition rank.

4+3+1

FIGURE 1. A Ferrers diagram and Durfee symbol for the partition 4+3+1.
This partition has rank 1.

Note that both the top and bottom rows of a Durfee symbol are themselves partitions,
and if a Durfee symbol represents a self-conjugate partition, then the top and bottom rows
of the Durfee symbol are identical. Clearly Durfee symbols with subscript s break partitions
into three components: the Durfee square, a partition below the square, and a conjugate
partition to the right of the square. Both of these smaller partitions have parts of size at
most s, the size of the Durfee square. Hence, we can write the partition generating function
like so:

0
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In 2], Andrews modifies the definition of a partition’s Durfee symbol to create a k-marked
Durfee symbol. Rather than having entries in N, k-marked Durfee symbols have entries in
k copies of N (i.e. positive integers with subscripts ranging from 1 to k) subject to the
conditions specified in Definition 2.1. Figure 2 shows an example of a k-marked Durfee

symbol.
45 43 21
D3 21 5

FIGURE 2. A k-marked Durfee symbol for the partition 9 + 9 + 8 + 8 + 7 +
T+0+0+3+2+2

32 32 2
32 29

Much like for Durfee symbols, one can define a rank statistic for k-marked Durfee symbols.
In fact, one can define k different rank statistics, as well as a “full” rank statistic. These defi-
nitions are given in [2]. In this same paper, Andrews unveils a k + 1-variable rank generating
function Ry for k-marked Durfee symbols. In 2010, Bringmann [6], and Ono showed that
the two-variable rank generating function R;(z1;¢) is mock modular when z; # 1 is a root
of unity. Furthermore, Bringmann [3] found that the function Rs(1,1;¢q) was a quasimock
modular form. Bringmann et al. expanded on this in [5] by showing that Ry (1,...,1;¢q) is
a quasimock modular form for n > 2. In 2013, Folsom and Kimport [10] then went on to
prove that, for more general roots of unity, Ry ({x;q) was essentially a mixed mock modular
form. Then, in 2018, Folsom et al. proved in [9] that Rx(Ck;¢) is a quantum modular (in
the sense of Definition 1.2) form for n > 2, given suitable vectors of roots of unity.

For our REU project, we investigate if these results for partitions extend to another
combinatorial object: a unimodal sequence.

Definition 1.1. A sequence of positive integers {ay,...,as} is a unimodal sequence of size
n if > . a; = n and the sequence satisfies

a1 S A2 < - S A = Ayl = 70 2 g
for some k. If the above inequalities are strict, then the sequence is strongly unimodal.

Just as Ferrers diagrams represent partitions, we define unimodal dot diagrams to represent
unimodal sequences. To construct a unimodal dot diagram, we represent each integer in a
unimodal sequence as dots in a column. The tallest column in the diagram is the peak.
Figure 3 shows a unimodal dot diagram for the strongly unimodal sequence {1,4,2,1}. The
rank of a strongly unimodal sequence is s — 2k + 1: the number of terms to the right of the
peak minus the number of terms to the left of the peak.

We may also define a notion of the conjugate for a unimodal sequence, which is obtained
this time by reflecting across a vertical axis that passes through and is parallel to the se-
quence’s peak. A self-conjugate strongly unimodal sequence is one that is conjugate to itself.

Just as Durfee symbols represent partitions, we define unimodal symbols to represent
strongly unimodal sequences. The top row of the symbol enumerates terms ag 1, agi2, ..., as,
while the bottom row enumerates terms ax_1, ag_o, ..., a;. The unimodal symbol’s subscript
indicates the length of the sequence’s peak (i.e. the value a;). As with a Durfee symbol, the
number of entries in the top row minus the number of entries in the bottom row gives the
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(1,4,2,1}

()

FIGURE 3. A unimodal dot diagram and unimodal symbol for the sequence
{1,4,2,1}.

typical sequence rank, as presented in [7]. And as with Durfee symbols, a unimodal symbol
for a self-conjugate sequence will have two identical rows.

We construct a natural analogue of k-marked Durfee symbols for strongly unimodal se-
quences by modifying unimodal symbols. Given a unimodal symbol, one may create a
k-marked unimodal symbol with entries originating from k copies of the integers in a way
consistent with Andrews’s original definition for k-marked Durfee symbols in [2]|. The formal
definition of a k-marked unimodal symbol is given in Definition 2.3. The introduction of the
subscripts allows for the definition of k different ranks on a k-marked Durfee symbol, as well
as a “full” rank, which are again analogous to Andrews’s k ranks and full rank of k-marked
Durfee symbols in |[2].

1.2. Quantum Modular Forms. Before stating our results, we review the definition of
quantum modular forms.

Classically, a modular form of weight k is a holomorphic function f : H — C satisfying
the transformation

P50 = e e

cz+d

a b

for all z € H and all matrices v = (c d)e SLo(Z), where k is a fixed integer and e(7) is

some appropriate root of unity.

Of course, there are many variants and generalizations of modular forms, e.g. we can
replace the weight to be a half integer or any rational, or we can replace SLy(Z) with a
different Lie group. However, one of the generalizations we are interested in are quantum
modular forms.

Roughly speaking, quantum modular forms, originally defined by Zagier [11] in 2010, are
complex-valued functions defined on QQ that exhibit modular-like transformation with respect
to the action of some appropriate subgroup of SLy(Z). More precisely:

Definition 1.2. A quantum modular form is a function f : Q — C such that for all

v = <Z 2) € I' < SLy(Z), the “error to modularity” function

hy(@) = F(@) — e()(ca+ d)*f ( i b) ,

cr +d
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where k € 37 and e(v) is a root of unity, is continuous or analytic.

Zagier purposefully left this definition a bit vague to encompass more examples of quantum
modular forms from different areas.

1.3. Statement of Results. As we’ve demonstrated, several combinatorial objects for par-
titions have analogous counterparts for unimodal sequences. Since Andrews developed a
k + 1 variable generating function for k-marked Durfee symbols in [2|, which was revealed
to have quantum modular properties by Folsom et al. in [9], it is natural to ask if such a
function with similar properties exists for k-marked unimodal symbols.

In this paper, we develop a k+ 1-variable generating function U (21, . . ., zx; ¢) for k-marked
unimodal symbols. In particular, we define

(3) Uplwy, s, ympsq) i= Y, qUmtmettmebme)dmubmat i) ot (a4 om)

mi,...,mep=1
-1 _m -1 _mi+m — F=lm,
X [(1"'5’31 fgm) (L ay g™t 2)"'(1"‘5’71@—11‘122:1 Z)]

X l(_xIQ; q)ml—l(_xl_1Q; Q)ml—l ’ (_x2qm1+1; Q)mz—l(_xglqm1+l; Q)mg—l

—1

k=1 1 (YR
s (mapg & O ) (g g e T Q)mk—1:|-
Then we obtain the following equality.

Theorem 1.3. Let Uy (nq,na, ..., n;n) be the number of k-marked unimodal symbols of size
n with ith rank n;. Then

. ni ,.n2 ng n __ .
Z Zuk(nl,ng,...,nk,n)xl 25?2, q" = Ug(x1, 22, ..., T3 q).
m;€Z n>0

We also define a notion of a self-conjugate k-marked unimodal symbol, which, in the 1-
marked case, recovers a third order mock theta function. In general, we let SCUy(q) be the
generating function that gives self-conjugate k-marked unimodal symbols. It turns out that
SCU(q) has another combinatorial interpretation that reflects a theorem from Andrews [2].
This relies on the quantities wy, ¢, which each count partitions with specific unmarked odd
parts and £ — 1-marked even parts. The generating functions are related in the following
theorem.

Theorem 1.4. For k > 2, it holds that
SCUK(9) = ) (=1)*(wr(n) — ex(n))q".
n=0

In addition to proving Uy’s combinatorial properties, we also investigate what Uy’s prop-
erties would be if it were quantum modular. To do so, fix some ¢ = ((g, - - ,Cg: ), with

each (5" = >3 . Without loss of generality we require ged (o, 5;) = 1. Next let
Sy = @ 2) , T = (é D,Where

0= 10(Ck) :=lem(pBy, ..., Br).
Further define
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(4) e, = (Se, T).
We prove the following;:
Theorem 1.5. Let h e Z,d € N,ged(h,d) = 1, and §; 1 d. Then, for 1 <j <

h
QCk = _e@

>%zfd 15 odd
i I

Qj o
—Ld—|-Ld
B; [5]

< = zfd 15 even

where [x] denotes the closest integer to x € Q, gives a quantum set for Uy(Cx; q) with respect
to the group I'e, .

Remark 1.6. As [9] notes, while sources differ on the treatment of [z] for z € § + Z, there
is no ambiguity in the definition of Q¢,. This is because |z — [z]| = 1 whether we define
1

[z] =z +3ior[z]=2-1.

We also show in Section 4 through a variety of lemmas that for many choices of (g, the
quantum set ()¢, is nonempty. Therefore, this construction frequently yields an interesting
and large set on which to look for quantum modularity properties. Then we explore quantum
modularity on a specific choice of Uy ({k, ¢) with respect to the group I, .

1.4. Outline. In Section 2, we introduce the background material necessary to derive our
generating functions in Theorem 1.3 and Theorem 1.4. In Section 3, we develop our rank
generating function for strongly unimodal sequences Uy as well as a generating function
for self-conjugate strongly unimodal sequences that generalizes a third-order mock theta
function. In Section 4, we prove that @, would be a suitable quantum set for U (g, (1)

TiT

if it were quantum modular, and that e~ 12 Uy({x; ¢) is quantum modular under the action

0 1
Section 5, we recount the process of graphically investigating Ux(—1, ..., —1;¢)’s potential
quantum modularity, as well as Ug(Cg, ()’s possible additional combinatorial analogues to
k-marked Durfee symbols.

of <T = (1 1> > In addition, we provide several lemmas detailing ()¢, ’s composition. In

2. PRELIMINARIES

Below we reproduce the definitions of a Durfee k-marked Durfee symbol, as well as its
rank, as presented in [2].

Definition 2.1. A k-marked Durfee symbol is a Durfee symbol composed of k copies of the
integers for parts in both rows. In addition, we require. that:

(1) The sequence of parts and the sequence of subscripts in each row be non-increasing

(2) Each of the subscripts 1,2,....k occur at least once in the top row.

(3) If My, M, ..., M}, are the largest parts with their respective subscripts in the top row,
then all parts in the bottom row with subscript 1 lie in [1, M;], with subscript 2 lie
in [My, Ms], ... with subscript k—1 lie in [Mjy_o, My_1], and with subscript & lie in
[My_1,S], where S is the side length of the Durfee square.
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Definition 2.2. Let D be a k-marked Durfee symbol and let 7% (resp. §°) denote the sequence
in the top row (resp. bottom row) with subscript ¢ in D. The jth rank of v, denoted p;(7y),
1s

(5) pi() = {length(ﬂ') length(8) — 1 j <k

length(77) — length(¢7) j=k.

We proceed to define a k-marked unimodal symbol, which bears clear resemblance to that
of Andrews given above in Defintion 2.1.

Definition 2.3. A k-marked unimodal symbol of n is a unimodal symbol corresponding to
a unimodal sequence of size n with entries in k copies of the integers that also satisfies the
following properties:

(1) The sequence of entries in both the top and bottom rows are each strictly decreasing,
while the sequence of subscripts for entries in both rows are each non-increasing.

(2) Each of 1,2,...,k — 1 appear as a subscript in the top row.

(3) Let d be the size of the sequence’s peak. For 1 < i < k—1, let m; be the largest part
in the top row with subscript ¢ and define my = 0, m; = d — 1. Then the parts in the
bottom row with subscript i lie in [m;_y + 1, m;].

The natural calculation of the rank for a k-marked unimodal symbol also exactly follow
from Andrews, given above in Definition 2.

Definition 2.4. Let v be a k-marked unimodal symbol and let 7¢ (resp. ¢°) denote the
sequence in the top row (resp. bottom row) with subscript ¢ in 7. The jth rank of =,
denoted p;(7), is

(6) pi(7) = {bngth(ﬂ ~length(6) =1 j <k

| length(77) — length(87) Jj=k.

The subtraction of 1 in Definition 2.4 compensates for the requirement (2) in Definition 2.3.
Notice that if v is 1-marked, then (6) in Definition 2.4 shows that p; () recovers the original
Dyson’s rank statistic. One consequence of defining £ ranks on a k-marked Durfee symbol
is that we may calculate the number of k-marked unimodal symbols with ith rank equal to
n; through a function in k+1 variables that generalizes U(z, q) studied by Bryson et al. in [7].

We define the full unimodal rank of a k-marked unimodal symbol analogous to Andrews’s
definition of the full unimodal rank of a k-marked Durfee symbol in [2].

Definition 2.5. For each k-marked unimodal symbol §, we define the full rank FRU(J) by
FRU(8) = p1(6) + 2p2(0) + 3p3(d) + ... + kpi(9),

and we let NFUg(m,n) denote the number of k-marked unimodal symbols of size n with
full rank m. Additionally, we let N F'Uy(m,Q,n) denote the number of k-marked unimodal
symbols of n with full rank congruent to m (mod Q).

3. SOME GENERATING FUNCTIONS

This section addresses two combinatorial results—first, the appropriateness of our multi-
rank generating function for k-marked unimodal symbols, and second the definition and
partition-theoretic interpretation of the generating function for self-conjugate k-marked uni-
modal symbols.
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3.1. Proof of Theorem 1.3. Recall from Theorem 1.3 that we defined

Uk(ﬁl,l‘g, T Q) _ Z q(m1+m2+~~-+m;€_1+mk)+(m1+m2+~~-+mk_1)+~--+(m2+m1)+(m1)

mi,...,mp=1
X [(1 a7l (1 + 2y tg™ ™) (1 + x};_lqufz—ll ml>]

) [(—:vlq; D127 G Qa1 - (—22¢™ Y Qa1 (=231 6™ @)y 1

— kflm.
s Qg1 (g gE I )|

Furthermore, Theorem 1.3 states gives that if Uy (n1,ns,...,ng;n) denotes the number of
strongly unimodal sequences of size n with the 7th rank equal to n;, then for £ > 1 we have
that

. ni,.n2 ng n __ .
2 Zuk(”hn%---,nk,”)%lxz et = Up(y, 22, .0, T35 Q).

m;€Z n>0

This follows from combinatorially analyzing the component pieces of the summands in
Uk(x17 L2y eeey Ty Q>

Proof. The proof is analogous to that of Theorem 10 in [2|. Consider an arbitrary k-marked
unimodal symbol D representing a strongly unimodal sequence U. Let m; be the largest
entry of D’s top row with subscript 1. By condition 1 in Definition 2.3, D’s largest entry
with subscript 2 must be greater than m;. Hence, this largest entry with subscript 2 is
my + mg, for some my > 0. Similarly, the largest entry with subscript 3 must be greater
than my; 4+ msy, and is therefore m; + my + ms, for some ms > 0. In general, the largest of
D’s entries with subscript [ < k —1 is Zlizl m;, where m; > 0. Since the underlying peak’s
length is larger than any of D’s entries, it equals Zle m;, where my > 0.

Consider the terms needed to generate 7! and §', the portion of the k-marked unimodal
symbol where the entries have subscript 1 in both rows. Since we are assuming that m;
exists by construction, a factor of ¢"* is needed. Now because U is strongly unimodal, all
entries in 7' must be distinct, as are the entries in §'. Since m; is the largest entry in
71, all other entries in 7! are at most m; — 1, giving us that the entries are generated by
(—=¢; @Q)m,—1. Conversely, the entries in §' are at most m; since they represent parts on the
opposite side of the peak and are not subject to the same strict bound. Thus 6 is generated
by (=¢; @)my = (1 + @™ ) (=G Qmy—1-

Let z; track the first rank. To track the first rank of the unimodal symbol, we use
(—21¢; Q)m,—1 to generate 7! and (—z71q; q)m, to generate §'. That is, the entries marked
with subscript 1 are generated by

0" (21 Qg -1 (27 G Oy = ¢ (1 + 27 0™ (—2105 Q)i —1 (=27 @ Oy —1-

Construction of the other terms proceeds analogously. The sequence of entries in the top
row with subscript 2 have maximal entry m; +ms, which is generated by ¢"**™2. The entries
in 72 are at most my +my — 1, while those in 62 are at most m; + ms. Entries in both 72 and
62 are at least m; + 1. The variables x5 and ! count the second rank. So the generators
for these two sequences of subscript 2 entries are (—x¢™ % q)m,—1 and (=27 1¢™*; @),
Hence, these entries have as a generator
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¢ (14 25 ) (~ 2™ Oy (<25 ¢ @)
We proceed in a similar fashion to generate the terms with subscript up through £ — 1.
Now, recall that there is no requirement to have any terms with subscript &£ on the top
row. As a result, no positive power of ¢ is required like the previous steps. There still may,
however, be sequences 7% and 6*. Thus, we generate both of these via
k=1 _ k=1,
(—arg ==t " ) (= g T )
Finally, we must generate the sequence’s peak. Since the peak length is Zle m;, it is
generated by

(m1+mao+--+my)

q

If all of these factors generate their respective parts of D, then their product will generate
the entirety of D. To account for all possible values for each m; and the size of U, we sum over
all m;’s with m; > 0 for 1 <i < k as well as over all n > 0. The result is Ug(z1,...,zx; q),
as defined in the theorem statement. ([l

3.2. Proof of Theorem 1.4. We next turn to self-conjugate unimodal symbols, which yield
results that are interesting both combinatorially and in terms of connections to modularity.

Definition 3.1. A self-conjugate k-marked unimodal symbol is one in which the two rows
in the k-marked unimodal symbol are identical, both in terms of the subscripts and the
underlying unimodal sequence itself.

Now if we let SCUyg(n) denote the number of self-conjugate k-marked unimodal symbols
of n, we can define the generating function

SCUK(q) == > SCUL(n)q".
n=0

Lemma 3.2. The number of self-conjugate k-marked unimodal symbols representing n s
giwen by the equation

Scuk(q> _ Z q2m1+2(m1+Tn2)+..-+2(m1+...mk71)+(m1+...mk)(_qg; q2)m171(—q2(m1+1); qz)mgil
mi,...,mp=1
. (_q2(m1+m2+1); q2)m3_1 . (_q2(m1+~-‘+mk,1+1); q2)mk_1
k
= Z q2m1+2(m1+mz)+-~+2(m1+-~~+mk_1)+(m1+~~+mk)H(_q2((23;11mj)+1);q2)mi_1
mi,...,mp=1 i=1
2(My+-+My_1)
q
(7) = " (=% ) a1 .
2 B, L ()

where M; = mq + - - - + m,;.

Proof. Applying a similar argument as in the proof of Theorem 1.3, consider a self-conjugate
k-marked unimodal symbol D. Let m; be the largest entry of D with subscript 1. By
Definition 2.3, it follows that the largest entry of D with subscript 2 is m+ms for some my >
1. Following this pattern, the largest entry of D with subscript ¢ is given by mq+mo+- - -+m;
where each m; > 1. Since the peak length is larger than any of the entries of D, we get that
the peak length is given by m; + - - - + my where each m; > 1.
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Since the two rows in the k-marked unimodal symbol are the same by assumption, we get
that each value must appear on top and bottom. Thus, we count each of the largest entries

of D with subscript [ < k — 1 twice, giving us the factors q2(25=1 ™;)  Furthermore, the peak
contributes a factor of ¢™ ™t in the generating function.

Consider the entries of D with subscript 1. Since every value appears twice in the unimodal
symbol, and since we are assuming that m; is the maximal entry of D with subscript 1, we
only need to consider the distinct even numbers less than 2m,, giving us that the entries of
D with subscript 1 are generated by (—¢%; ¢*)m, —1-

Construction of terms with different subscripts proceeds similarly. Consider the entries
with subscript 2. Since entries of D with subscript 2 are of size at most m; + my — 1
and are also at least m; + 1, we get that the entries of D with subscript 2 are generated
by (—¢*™*V;¢?),.,_1. Proceeding in a similar fashion to generate all terms of D for all
subscripts, we obtain a factor of

(8) (=% @D my—1(—* ™™D %)y 1 (=MD g2y (At t ) gy

Letting M; = my + - - - +m;, we form a strictly increasing sequence of numbers 1 < M; <
M, < --- < M. Furthermore, we can rewrite (7) as
k _ 2. 2
[~ @R mn, gy~ (=47 4w
T (L M) (14 M)

i=1
giving us (6). O

Remark 3.3. If we consider the generating function for unmarked self-conjugate strongly
unimodal sequences, i.e. if k = 1, we get that

SCU(q) = SCUx(q) = Y " (=¢* ¢*) -1 = ¥(g),

M=>=1

where 1(q) is one of the original third-order mock theta functions defined by Ramanujan
[7]. This connection indicates that SCU(q) could be a fruitful place to look for differeny
modular objects.

Theorem 14 by Andrews in [2| connects self-conjugate k-marked Durfee symbols of n to
partitions of n into distinct unmarked odd parts and k£ — 1-marked even parts under specific
conditions. It turns out that there is a combinatorial interpretation connecting SCU(q) to
partitions that mirrors this theorem of Andrews.

Definition 3.4. Let wi(n) count the number of partitions of n into at least & unmarked
odd parts such that every odd part less than the largest part appears at least once, as well
as k — 1 differently marked and distinct (k — 1)-marked even parts (which may repeat) such
that each even part is less than twice the number of odd parts and the total number of even
parts is odd. Similarly, let €,(n) count the same as above, except where the total number of
even parts is even.

We note that in Definition 3.4, the total number of even parts counted by wy. or € is not
necessarily k — 1, as the even parts themselves may repeat any number of times.
Recall Theorem 1.4 from Section 1.3 which says

SCUi(g) = Y, (=1)" ((wi(n) — ex(n)) a"

n=0
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Proof of Theorem 1.4. From Lemma 3.2, we have that SCU,, splits into nested sums. The
right side of (6) gives ¥ (¢) that begins indexing at some k > 1. The mock theta function
¥ (q) is well known to give the partitions of n into odd parts such that every odd smaller
than the largest part appears at least once. This can also be seen by constructing a bijection
between strongly unimodal sequences and partitions by reading across the rows starting from
the bottom in a diagram. In doing this, it becomes clear that M, originally thought of as
the peak of the sequence, gives the number of odd parts in this interpretation. Additionally,
k bounds the number of parts below, which gives the unmarked odds in the definition of wy,
and €.

All of the inner sums are finite after fixing M), in the outermost sum. Grouping ¢*:
with W, we can use the geometric series expansion to obtain factors of the form (g*"i —

G?PMi) 4 3Mi) .. ) for each i. Each 2(M;) is one of the even parts referred to in Definition
3.4, with the number of repetitions of this even part counted by its multiplier in the exponent.
Additionally, 2M,, gives an upper bound to each of the even parts as described in the sum
index, but recall from the first sum that this number is the number of odd parts. Finally, we
observe that by multiplying factors of the form (¢?M: —g??M:) 1 ¢32Mi) ...} in the summand
we always obtain either terms representing a total number of even parts with positive sign
and total number of odd parts with negative sign, or vice versa. This distinction is based on
the parity of £, which determines how many such factors exist. 0

4. A RATIONAL DOMAIN FOR U(k; q)

4.1. Proof of Theorem 1.5. First, we investigate what set U, must be defined on to be
quantum modular. Specifically, we seek U,’s quantum set.

Definition 4.1. A quantum set S < Q for a function f with respect to a group I' < SLy(Z)
is such that f(z) and f(yx) exist for all x € S and for all v e T.

Recall that we define )¢, as follows:

h : :
Qo =1 =€Q Y- [%d

>%ifdisodd
B B; H

< 5 if d is even

where h € Z,d € N,ged(h,d) =1, ;1 d, and 1 < j < n.. (see Remark 1.3)
We first establish that Uy (Cx, (") converges for % € Q¢,- We prove this in the following
lemma
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Lemma 4.2. Fiz { = (Cg‘ll, ,Cg:) Then for % € Qc¢r Un(C; Ch) converges and can be
evaluated by

n 1
(9) Uiy, 2, ..., Tp; Ch) =
R e e e (e =
X Z CC’Z[(&+s2+~~~+5k71+Sk)+(51+52+'"+Sk*1)+'"+(s2+$1)+(51)]

k—1 .
[+ 1+ a3 G ) e (1t )]
- h(s1+1 —1 ~h(s1+1
X l(—xng;Cg)a—l(—% 1C§§C¢?)s1—1 ’ (_JIQCd( o );C§)52_1(—l’2 lcd( o );§3)82—1
h(YF s, 41 R s
(= d(ZZ_l + );Cg)%_l(_gjkl d(Z Lsit );Cg)%_l]‘

Proof. Since Uy(Cr; ¢*) has no zero-terms in its denominator, each of its summands is a finite
product. Hence, it is immediate that, for % € Q, all summands of Uy (Cx; ¢?) are finite.

The rest of the proof closely follows the proof of Theorem 3.2 in [9]. Similarly, we illustrate
the proof for the case k = 2, with comments about how to generalize to k > 2.

Let 2 € Q,, and write ¢ = (. As in [9], the identity

(10) (@5 Ospnra = (1 — )M (2¢"; )5
holds for all M,r,s € Zz¢. Thus, if we let m; = s; + M;d, where 1 < s; < d and M; € Zx
then, by Definition 1.3

Ua(z1,22:0) = >0 ™2 [(14 2y '™ (1 + ay '™ )]

mi,ma=1
x [(_:EIC; C)m1—1(_l’1_1<,; C)Tm—l] X [(_wQle—H; g)m2_1(_1.2—1<“m1+1; g)m2—1]‘
Using identity (10), we get

Z 2 €2(81+M1d)+82+M2d[<1+x;1<81+M1d)<1+:C2CSl+M1d+S2+M2d)]

My,M2>01<s1<d
1<so<d

< [(1 = (=2))™ (=216 Osy1 (1 = (=20) ™) (=277¢; )y 1]

X [(1 = (=) )M (= M )y (1= (—2) ™) (g TR ()]

. 2mih
Since ( = e d

D (= (=)D (= (=) ML = () )M (1 = () )M

My ,M2=0

X Z §281+52(1 + 371_1§81_1>(_x1§; g)s1—1(_xl_1c; C)Sl (_$2C81+1; 6)82—1(_3:2_1C81+1; C)SQ_]-'

1<s1<d
1<s0<d

, ¢4 — 1, for m € Z. Thus, our expression becomes

The sum over the s;’s is finite, so the convergence of Us(z1,x9;q) is determined by the
sum over the M;’s. This sum is the product of two geometric series, each with summands
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of the form:
(11) (1= (=) (1 = (=) ™))"
From here, there are two cases. If d is odd, (11) becomes:
(1 +2f) (1 +25))",
which converges if and only if

(L4 2)(1+2;9)] < 1.

2T . 27"1'&*]..
Let 0; = 5 Using z; = e %, we have that
J

(1 + x?)(l + xj’d)| = |24 2cosdb;| < 1,
if and only if
3 1
(12) —5 < COSd@j < —5
For (12) to hold, df; = r + 2nM, where |r| > %, —7 <r <, M € Z.
Thus,
2

\do; — 2n M| > ?”

implying that:

1
> —.
3

Qg | Y
5jd [@‘d]

In the case that d is even, (11) becomes:
(1= af)(1 —23))",

which converges if and only if:
|2 —2cosdb;| < 1.

Hence: . 5
5 < cos do; < 2

For this to hold, df; = r + 27 M, where |r| < §, —7 <r <7, M € Z. Thus
o, — 27 M| < g

implying that

Yag Y%l <L
B; ! lﬁj d” 6

Recall that these are the necessary conditions to belong to ()¢,. Thus, for any % € Qs
Us(Cx, ¢) will converge to the right hand side of (9).

To apply this argument for U, with & > 2, write any m; = s; + Md. Then the sum splits
into the product of a series indexed over M, ..., My > 0 and a series indexed over sy, ..., Sk,
with each s; satisfying 1 < s; < d. The sum over the s; terms remains finite, and analyzing

each geometric series of M; into the cases as above gives the result for U.
O

We are now able to prove Theorem 1.5.
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Proof of Theorem 1.5. From Definition 3 and Lemma 4.2, we see that it suffices to show that
Q¢, is closed under the action of T'¢, .

Recall from (4) that:
11 10
e (1) (1)

¢ =lem(fy,. .., Bk)-

Thus, it suffices to show that @)¢, is closed under the action of these matrices.

and

Let " 7€ Q¢,- Then (
€ QCk

Now, observe that

1>h h+d

1 1\ h
D) E S Note that ged(h+ d, d) = ged(h, d) = 1,so< 1)d

0

1 O\Ah_ _h
¢ 1)d" ni+d

Note that ged(h, hl + d) = ged(h,d) = 1 and that §; 1 (h¢ + d), since §; | £ and 5; 1 d.

So
a; Q; Q;
h€+ - [ ht + — d” —d — l d}
6] BJ BJ /8] /BJ /BJ /BJ
since 6—h€ € Z. Thus, Q)¢, is closed under the action of I'¢, , as desired. 0
j

Next, we show that e i Uk(Ck; q) exhibits quantum modular behavior under translations.

(h€+d) lﬂg (hé+d)”

Proposition 4.3. (i = (Cg‘ll, - (g:) Let k > 2 for x € Q,., define:
A(2) = Ap(Gri ) = €77 U(Gr; €™,

where x € Q¢, .

Then, for all v = ((1) l;) where be Z and x € Q¢, ,

Hir (1) 1= Ar(z) — T2 Ay (yz) = 0.
Proof. This proof closely follows that of Theorem 1.7 in [9]. By Theorem 4.2, Ax(z) and

Ay (yz) are defined for all z € Q¢, and v = (é ll)) Note that it suffices to only consider

the generator T = <(1) }) since,
Hoy (2) := Huy (2) = 435 (C + D)™ H o (70)

for v = (CCL cbl) and 7/ = (é g) Thus:

Hor () = Ap(z) — q7 (cx + d) "2 Ag(z + 1).
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2mix 2mi(z+1) _ p2mix o2mi 2mix

When we mapx — z+1,g=c¢ remains invariant, since ¢ = e e =ce
So, since U (Ck; q) can be expressed as a series with only integer powers of ¢ (as in (1.3)):

—27i(x+1)

Ap(x +1) =e 20 Up(Ck; q)

—2mix —2mi

= e 21 e Up(Criq)
—eT Ai(z).
Hence,
Hir(2) = Ap(z) — e ((0)z + (1)) 2 Ap(z + 1)
= Ay(z) — eB (€T Ay(x)
=0,
which is clearly defined and analytic on R, as desired. 0

4.2. The Quantum Set’s Composition. Here, we discuss the contents of ()¢,. We note
that if there is at least one d satisfying the conditions for ¢, , then there are countably many
infinite choices of h that work as a numerator for that d, and hence any nonempty Q¢, is
infinite.

In some cases, it is obvious that the quantum set is empty.

Lemma 4.4. If some ng € Cr has B; € {1,3,4}, then Q¢, = .

Proof. First, if §; = 1, then 1 | d for any d € Z, violating the construction of @), .
Next, suppose there is some 3; = 3. If d is odd then, regardless of o;:

. | 1
g 5al|< o3t

which can never be strictly greater than % If d is even, then

Z—jd— lg—;d” < % only when

% € 7Z. But, since g—’ is in lowest terms, 3 t ;. Also, by the requirements of Q¢,, 3 1 d.
J

Therefore, 3 { da;, and hence % ¢ 7.

Finally let §; = 4. For g—] to be fully reduced, o; must be odd. If d is also odd, then do;

J

is odd and hence

Z—jd — [g—jd” = 2% 1. If dis even, then d = 2m where m is odd (if m

were even, then f3; | d). Thus:

ol 2]

Since ma; is odd, overall

maoy [maj” 1 1
- ==>_.
B B 2 6

Hence, when some f; € {1,3,4}, no d € N satisfies the conditions for % € Q to be in the
quantum set. O
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Despite this result, there are several instances in which that Q)¢, is nonempty.

Lemma 4.5. Let (i, = (Cél, ...,Cék), where the B;’s are coprime, each 3; > 4, and suppose

there exists a S = 2 (mod 4). Then, there exists a d € N such that % € Qc,, forallh e Z
such that ged(h,d) = 1.

Proof. We will show that there exists an odd d satisfying Definition 1.5. First, we will
consider the case when j = e. Observe that, if d = mfS, + %, for some m € Z, then:

mBe+ % [mBe+ 51 % [Z] |t 1] .t
S o e el

Also, note that (. t d because d # 0 (mod 5.). So, d satisfies the conditions in Theorem 1.5
in this case.
Now, consider 3; for j # e. Because we require the 3;’s to be coprime, and . was even,

B; must be odd. Let w; = [62—’1 Then, if d = mp; + w;, for some m € Z:
’mﬁj—kwj {mﬁj+wj]‘_ wj leH
B; Bj R
Wi Wy
N 'ij —1 lzwj - 1”

1
3

because f3; is odd. This expression is greater than
always true. Also, since w; # 0, f; 1 d.
Hence, for Q¢, to be nonempty, we seek an odd d such that:

d = aj(mod 5;),

where a; = [%] it j # e, and a; = g—“ otherwise.

Because the 3;’s are coprime, a solution to this system exists by the Chinese Remainder
Theorem. Since . = 2 (mod 4), the condition d = % (mod 3,) implies that:

when w; > 2. Since 3; > 4, this is

(where m € Z) d=mp. + %
(where p € Z) =mf. + (2p+1).
Thus, because . is even, d must be odd. Therefore, there exists an odd d € N such that
Bt d and:
Ozj Oéj 1
—d—|=d|| > =,
B; lﬁj H 3
for all 3;, as desired. O

Lemma 4.6. Let { = (Cél, ...,Cék), where the B;’s are coprime, each 3; > 12, and there
exists an even B, = 0 (mod 2). Then, there exists a d € N such that % € Q¢,, for all h e Z
such that ged(h,d) = 1.

Proof. We will find an even d € N satisfying Definition 1.5.
If d = mp; 4 2 for some m € Z, then:

mﬁj+2_[mﬁj+2”_ 2 - |:2:H_

B B Bi LB

1
< =,
6

oall
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because §; > 12. Also, 5; { d because d # 0 (mod f;). So, d satisfies the conditions in
Definition 1.5 in this case
Hence, for )¢, to be nonempty, we seek an even d where

d =2 (mod p;).

Because the (8;’s are coprime, a solution to this system exists by the Chinese Remainder
Theorem. Since 5, = 0 (mod 2), the condition d = % (mod f) implies that:

(for m € Z) d=mpB.+ 2
(for p e Z) = mp. + (2p).

Since S, is even, d is too. Therefore, there exists an even d such that 3;  d and:

Oéj Oéj 1
—=d— |==d|| < =,
Bi [53‘ ” 6

for all 8;. So, % € Q¢,, for all h € Z where ged(h,d) = 1, as desired.

Unlike the last two lemmas, the next result leaves the a;’s mostly unrestricted.

Lemma 4.7. Let G, = (5, ..., (5*), where:

the B;’s are coprime

each B; > 12

ged(ey, B;) = 1 for1 < j <k

there exists a . and o, such that 5. =0 (mod 2) and o, = 1

Then, there exists a d € N such that ’3” € Q¢,, for all h € Z where ged(h,d) = 1.

Proof. First, we will consider what d is required to satisfy Definition 1.5 when j = e. Observe
that, if d = mp, + 2 for some m € Z, then:
IR
——|=1l=|=-10
Bi LB B;

mﬂj+2 _ [mB]—FQ:H
5]' ﬁj
because 3; > 12. Also, note that 5, { d because d # 0 (mod ;). So, d satisfies the conditions
in Definition 1.5 in this case
Now consider j # e. Let g; > 2 denote the largest integer where 8; > 6g;. We seek o;d
such that a;d = g; (mod ;). If af(ﬁj)fl (mod S;), then

1
< =,
6

gjoz?(ﬁj) =g;j (modﬁj) .

Thus,

a;j(g;07"77) = g;(mod;).
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So, to guarantee that a;d = g; has a solution, we should choose d = gjoﬁ)(ﬂj)*l (mod f;).

Doing so yields ’
G, [&dH _ ‘dﬂj +9i ldﬂj +9j]
B B

(where d € Z)

B; B;
_ |9 lg_]
B; B;
1
< -
6
$(8;)—1

because f; > 6g;. Also, note that §; t d because 954 #0.
Hence, for )¢, to be nonempty, we seek an even d such that:
d = aj(mod 5;),
where a; = g;a; if j # e, and a; = 2 otherwise.
Because the 3;’s are coprime, a solution to this system exists by the Chinese Remainder
Theorem. Since . = 0 (mod 2), the condition d = %(mod Be) implies that:

(for m € Z) d=mpB. + 2

(for pe Z) = mf. + (2p).

Thus, because S, is even, d is too. Therefore, there exists an even d such that §; { d and:
Q; Q; 1
—d—|=d|| < =,
Bi lﬁ' H 6

for all 3;. So, % € ¢, for all h € Z where ged(h, d) = 1, as desired.

O
The next theorem provides a more powerful assurance that the quantum set is nonempty.

Lemma 4.8. Let (i, ..., B, € Z be such that, for 1 < j <k, 5; ¢ {1,3,4,6,10}. Then there
exist choices for au, ..., oy such that Q¢, # .

Proof. We will show that if these conditions hold, then d = 1 is a denominator in @¢, , which

permits many choices of numerator h. (In particular this means that Z < Q¢, .)
Bi | = Bi—1

5 5 Because

First, we treat all odd choices for 3; greater than 3. Choose a; = |

%_l%”z‘l_i_[l_il>
B; B; 2 2p; 2 20

. . . 1 1 1
(since, in this case, 3; = 5, so 35 S 10 < )

Now we will consider even 3;s. When 3; = 2, choosing a; = 1 yields

1 1 1 1
——l=zll=z>=
2 lall-2

Next, consider all ; = 0 (mod 4). Choose

a; = 6j2_2, and note that because §; = 0 (mod 4), % + 1 is odd. Hence, by Euclid’s

Algorithm, ged(g;, 6j2_2) = gcd(% + 1, B—QJ —-1) = gcd(% +1,2) =1. So:

1
3
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1

%?{%1_F_L_F_i]
B; B 1l 12 B 2 B
Bj

Finally, we argue for all even choices for §; = 2 (mod 4) where §; > 10. Similar to before,

choose «; = ’Bj2_4. Because ; = 2 (mod 4), ’8—23 + 2 is odd. So, by Euclid’s Algorithm,

ged(B;, ﬁjQ_Q) = ng(% + 2, 5—2” —2) = gcd(% +2,4) = 1. Hence:
2

%ﬁw%j_ﬁ_z_F_3]>
B; B 1l 12 B; 2 B
,87-<%‘

The above cases cover all possible B;’s not in the excluded cases. Thus, no matter what
combination of ;s we choose from N —{1, 3,4, 6,10}, d = 1 will always satisfy the necessary
inequalities with the choices of o outlined above. U

because < %.

1
37

as

As the previous lemma alluded to, 3; = 6 (for some j) may yield an empty quantum set.
As the next lemma shows, this scenario does not always happen.

Lemma 4.9. Let 34, ..., B, € Z be such that at least one 3; = 6. Then, if every other [5; is
a multiple of 3 and not in {3,9,12,18,24,30}, there exist oy, ..., ) so that Q¢, # .

Proof. Let d = 3. Then, since each §; > 12, 5, | d.

For all 8; = 6, let o; = 1. Then:
—d—|=d|l=|——-|=||=|=—-|=|| >
B l/@j ” B LB 2|2

Now, consider 8; # 6. Let m; € Z be such that 3; = 3m;. Then:

a |l _ |3 _ 3% Y4 |9
B_jd lﬁjd” Bi [ﬁj] m; {mj”

This is equivalent to the scenario where d = 1. Since 8; > 12,m; ¢ {1,3,4,6,10}. Hence, by
Lemma 4.8, there exists an «; such that:

o [a_] !

m; m;

&y &y

%y l—d” - |

B B; 3

Since 3; # 24, a; # 3, so the «; constructed as in Lemma 4.8 is relatively prime to ;.

Hence, if each 3; # 6 is a multiple of 3 and not in {3,9, 12, 18,2430}, there exists a d € N
such that §; { d and

1
3

1

Oéj ozj ] ‘ 1
—d—|==d||> =,
B [5‘ 3
for 1 < j < n. Therefore, % € Qc¢,, for all h € Z where ged(h,d) = 1. So, Q¢, # I, as

desired. O

With the candidate quantum set described, we discuss evidence that Uy is a quantum
modular form for some choices of (x, under the action of 5.
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5. QUANTUM MODULARITY CONJECTURE

There is precedent to investigate Uy(—1,—1, ..., —1, q) for quantum modularity properties.

In particular, Bryson et al. proves that e_%zUl(—l, e?™) is a weight % quantum modular
form on Q\{0} in [7] in a manner that ties the result to the same function’s mock modularity.

Question 5.1. If ( = (—1,—1,...,—1), then for all v = (CCL Z) € L¢, and for all x € Q¢,,

then does the function

wiz _ wi(z+1)

hn,’Y(CL‘) =e 12 Uk(Ck7 627ri$) — (Cx —+ d)_%e 12 Uk(Cka 627ri'yac)

extend to a continuous function in x on R?

To investigate quantum modularity it suffices to look for continuity with respect the gen-
erators of I'¢, , which are Sy, T of I'¢, as given in 4. Recall from Theorem 4.3 that we have
quantum modularity obviously for (7). It remains to investigate the action of Sj.

5.1. Computational Evidence. Next, we investigated the continuity of h,, g, graphically.
In order to do so, Mathematica code was generated that, given some fixed (x, would find
elements in Q¢, N [—1,1]. Subsequent functions then calculated h,,s,(%) on Q¢, for some
subinterval of [-1,1] and plotted them within the desired window.

One difficulty in plotting such functions is that in order to ensure that the sum defining
U} truncates, the necessary upper bound of the sum indices m; in U, must increase as d
increases in hy, 5,(%). In particular, hy, g, (%) requires the calculation of Uy((r; 72), and as
—d < h < d, the number of necessary computations to pass the truncation point for this sum
quickly grows with d. Early investigations truncated the sum at an arbitrary early bound
for m;, which resulted in graphs that appeared smooth. However, further work revealed that
this early truncation was not accurately representing the situation, and edits to reflect this
produced the following plots, which do not seem to clearly extend to a continuous function.
For a feasible run time, the following plots depict hs g, (x) for x in the quantum set that have
denominator less than or equal to 50.

10000 |-

* 5000 .
. 5000

020 v oas ¥ o Cot0 . oo ~0.25% . +-0.20.,*  +-0.15 -0.10 -006 . °
‘. o, . : ~5000 -

-5000 N :

-10000]

(A) (B)

FIGURE 4. The real part (A) and imaginary part (B) of hgg, graphed on
[~0.25,0].
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Clearly these figures are not necessarily an argument against quantum modularity—they
just do not provide convincing enough evidence to provoke confidence in a conjecture.

5.2. Conjectures and Further Work. While graphing did not yield convincing evidence
of modularity properties, there are many possible parameters that could be changed on our

T

conjecture and that should be investigated. We note that the inclusion of the factor of e~
comes from precedent of previous work, namely Bryson et al. and Folsom et al. in [7] and [9].
Graphing of h, s, without such a factor resulted in barely visible change on the graph that
did not appear to be more or less continuous than the images presented above, it’s possible
that a different multiplier would reveal quantum modularity.

It is also possible that { consisting of other roots of unity yield modular objects. We
chose to focus on Uy (—1, ..., —1; q) because it clearly truncates at a computable place. When
all z; = (3 € (g, then all Pochhammer symbols in Uy, are of the form (—(3¢%;q); = (¢*, q);
for some j, k. This Pochhammer product is guaranteed to equal zero for ¢ = e2™%" a root
of unity when j exceeds b. Thus high enough choices of m; (i.e. greater than b) will yield
truncating sums. In contrast, for an arbitrary (— g‘qk; q); it is not necessarily the case that
—C[‘_}qk eventually equals 1 as k increases, which means that a term in the product would
not necessarily be assured to ever equal 0, so the convergence to its limiting value will be
incremental.

Finally, it remains possible that Uy(—1, —1; ¢) or in fact many functions derivable from Uy
are closely related to other types of modular object besides quantum modular forms.

In general, work this summer revealed it is certainly feasible to code as a means to test
hypotheses about quantum modularity, although generating functions that are more than
double summations would benefit from more computational power. Here is an instance where
a single sum generating function like that achieved for Ry in [2] would be considerably more
efficient.

In addition to investigating U, for modularity, we also sought analogues between the full
rank of a k-marked Durfee symbol and the full unimodal rank. The following conjecture is
based on calculations for small values of n; it is remarkably similar to the generating function
for NFy(m,n), given in the proof of Theorem 17 in [2]:

Conjecture 5.2.

Z i NFUyx™q" = Uy(x, 2% q).

n=1m=—ow

The following conjecture is also based off calculations for small values of n, and resembles
Theorem 17 from [2].

Conjecture 5.3. Forn = 0:
NFUQ(l, 5, n) = NFQ(Q, 5, TL)

In conclusion, the results detailed in this report indicate that much remains to be explored
in terms of the properties of Uy({x; q), both with regard to modularity and to congruences.
A single-sum generating function for Uy ({x;q) would aid in the tools available to approach
this problem.
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