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Abstract. This paper applies methods from Andrews’s work on partitions to another com-
binatorial object: strongly unimodal sequences. Specifically, we define “k-marked unimodal
symbols" for unimodal sequences analogously to how Andrews defines k-marked Durfee
symbols for partitions. We establish a multivariate rank generating function Ukpζk;qq for
k-marked unimodal symbols, as well as SCUkpqq for self-conjugate k-marked unimodal sym-
bols, which we also interpret combinatorially in terms of partitions. We then discuss po-
tential quantum modularity properties for Ukpζk;qq for certain vectors of roots of unity ζk,
including determining when Ukpζk;qq can be defined as a function on a subset of rationals.
We conclude with some further observations based on computational data and a congruence
conjecture about the full rank.

1. Introduction and Statement of Results

1.1. Background. A partition of an integer n is a non-increasing sequence of positive inte-
gers that sum to n, where each summand is called a part. Partitions have been of interest to
mathematicians for centuries, partly because of their mysterious, yet indelible, connection
to modular forms.

Namely, the partition generating function ppnq and Dedekind’s eta function ηpτq (a weight
1
2
modular form) share the following relationship:

1`
8
ÿ

n“1

ppnqqn “
1

pq; qq8
“ q

1
24ηpτq´1,(1)

where

pa; qqn :“
n
ź

j“1

p1´ aqj´1q.

This link between partitions and modular forms also manifests when analyzing partition
ranks. Dyson [8] defines a partition’s rank as the largest part in the partition minus the total
number of parts. As defined in [8], the partition rank function Npm,nq counts the number
of partitions of n with rank equal to m; it is generated by:

8
ÿ

m“´8

8
ÿ

n“0

Npm,nqwmqn “
8
ÿ

n“0

qn
2

pwq; qqnpw´1q; qqn
“: R1pw; qq,

where Npm, 0q “ δm0 and δij is the Kronecker delta function.
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This generating function provides more clues to how partitions and modular forms relate.
Setting w “ 1, we recover the partition generating function (1); This can be seen from (2).
Setting w “ ´1 produces one of Ramanujan’s original third order mock theta functions, a
group of functions that, as described in [4], exhibit modular properties when they are “com-
pleted” by certain nonholomorphic functions.

As Andrews indicates in [1], partitions are represented visually using Ferrers diagrams,
where a row of dots in a diagram corresponds to a single part in a partition. Figure 1 shows
a Ferrers diagram for the partition 4 ` 3 ` 1 “ 8. We call the largest square of dots within
the Ferrers diagram the Durfee square.

Ferrers diagrams are useful to illustrate the conjugate of a partition. The conjugate of a
partition is the partition that is obtained by reflecting the diagram across the line of slope
´1 that passes through the upper left corner of the diagram. A partition that is conjugate
to itself is called a self-conjugate partition.

Using Ferrers diagrams, we can represent partitions in yet another way, by creating Durfee
symbols. As defined by Andrews in [2], a Durfee symbol’s top row corresponds to the columns
on the right of the Durfee square in a partition’s Ferrers diagram; its bottom row corresponds
to the rows below the Durfee square. The Durfee symbol’s subscript indicates the Durfee
square’s side length. A Durfee symbol for the partition 4 ` 3 ` 1 is shown in Figure 1. As
with partitions, Durfee symbols have ranks as well. Andrews defines the rank of a Durfee
symbol to be the number of parts on the top row minus the number on the bottom row–this
definition is the same as the typical partition rank.

Figure 1. A Ferrers diagram and Durfee symbol for the partition 4+3+1.
This partition has rank 1.

Note that both the top and bottom rows of a Durfee symbol are themselves partitions,
and if a Durfee symbol represents a self-conjugate partition, then the top and bottom rows
of the Durfee symbol are identical. Clearly Durfee symbols with subscript s break partitions
into three components: the Durfee square, a partition below the square, and a conjugate
partition to the right of the square. Both of these smaller partitions have parts of size at
most s, the size of the Durfee square. Hence, we can write the partition generating function
like so:

(2)
8
ÿ

n“1

ppnqqn “
8
ÿ

k“1

qk
2

pq; qq2k
.
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In [2], Andrews modifies the definition of a partition’s Durfee symbol to create a k-marked
Durfee symbol. Rather than having entries in N, k-marked Durfee symbols have entries in
k copies of N (i.e. positive integers with subscripts ranging from 1 to k) subject to the
conditions specified in Definition 2.1. Figure 2 shows an example of a k-marked Durfee
symbol.

Figure 2. A k-marked Durfee symbol for the partition 9 ` 9 ` 8 ` 8 ` 7 `
7` 5` 5` 3` 2` 2

Much like for Durfee symbols, one can define a rank statistic for k-marked Durfee symbols.
In fact, one can define k different rank statistics, as well as a “full” rank statistic. These defi-
nitions are given in [2]. In this same paper, Andrews unveils a k`1-variable rank generating
function Rk for k-marked Durfee symbols. In 2010, Bringmann [6], and Ono showed that
the two-variable rank generating function R1px1; qq is mock modular when x1 ‰ 1 is a root
of unity. Furthermore, Bringmann [3] found that the function R2p1, 1; qq was a quasimock
modular form. Bringmann et al. expanded on this in [5] by showing that Rkp1, ..., 1; qq is
a quasimock modular form for n ě 2. In 2013, Folsom and Kimport [10] then went on to
prove that, for more general roots of unity, Rkpζk; qq was essentially a mixed mock modular
form. Then, in 2018, Folsom et al. proved in [9] that Rkpζk; qq is a quantum modular (in
the sense of Definition 1.2) form for n ě 2, given suitable vectors of roots of unity.

For our REU project, we investigate if these results for partitions extend to another
combinatorial object: a unimodal sequence.

Definition 1.1. A sequence of positive integers ta1, . . . , asu is a unimodal sequence of size
n if

ř

i ai “ n and the sequence satisfies
a1 ď a2 ď ¨ ¨ ¨ ď ak ě ak`1 ě ¨ ¨ ¨ ě as.

for some k. If the above inequalities are strict, then the sequence is strongly unimodal.

Just as Ferrers diagrams represent partitions, we define unimodal dot diagrams to represent
unimodal sequences. To construct a unimodal dot diagram, we represent each integer in a
unimodal sequence as dots in a column. The tallest column in the diagram is the peak.
Figure 3 shows a unimodal dot diagram for the strongly unimodal sequence t1, 4, 2, 1u. The
rank of a strongly unimodal sequence is s´ 2k ` 1: the number of terms to the right of the
peak minus the number of terms to the left of the peak.

We may also define a notion of the conjugate for a unimodal sequence, which is obtained
this time by reflecting across a vertical axis that passes through and is parallel to the se-
quence’s peak. A self-conjugate strongly unimodal sequence is one that is conjugate to itself.

Just as Durfee symbols represent partitions, we define unimodal symbols to represent
strongly unimodal sequences. The top row of the symbol enumerates terms ak`1, ak`2, . . . , as,
while the bottom row enumerates terms ak´1, ak´2, . . . , a1. The unimodal symbol’s subscript
indicates the length of the sequence’s peak (i.e. the value ak). As with a Durfee symbol, the
number of entries in the top row minus the number of entries in the bottom row gives the
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Figure 3. A unimodal dot diagram and unimodal symbol for the sequence
t1, 4, 2, 1u.

typical sequence rank, as presented in [7]. And as with Durfee symbols, a unimodal symbol
for a self-conjugate sequence will have two identical rows.

We construct a natural analogue of k-marked Durfee symbols for strongly unimodal se-
quences by modifying unimodal symbols. Given a unimodal symbol, one may create a
k-marked unimodal symbol with entries originating from k copies of the integers in a way
consistent with Andrews’s original definition for k-marked Durfee symbols in [2]. The formal
definition of a k-marked unimodal symbol is given in Definition 2.3. The introduction of the
subscripts allows for the definition of k different ranks on a k-marked Durfee symbol, as well
as a “full” rank, which are again analogous to Andrews’s k ranks and full rank of k-marked
Durfee symbols in [2].

1.2. Quantum Modular Forms. Before stating our results, we review the definition of
quantum modular forms.

Classically, a modular form of weight k is a holomorphic function f : H ÝÑ C satisfying
the transformation

f

ˆ

az ` b

cz ` d

˙

“ εpγqpcz ` dqkfpzq

for all z P H and all matrices γ “
ˆ

a b
c d

˙

P SL2pZq, where k is a fixed integer and εpγq is
some appropriate root of unity.

Of course, there are many variants and generalizations of modular forms, e.g. we can
replace the weight to be a half integer or any rational, or we can replace SL2pZq with a
different Lie group. However, one of the generalizations we are interested in are quantum
modular forms.

Roughly speaking, quantum modular forms, originally defined by Zagier [11] in 2010, are
complex-valued functions defined on Q that exhibit modular-like transformation with respect
to the action of some appropriate subgroup of SL2pZq. More precisely:

Definition 1.2. A quantum modular form is a function f : Q ÝÑ C such that for all

γ “

ˆ

a b
c d

˙

P Γ ď SL2pZq, the “error to modularity” function

hγpxq “ fpxq ´ εpγqpcx` dq´kf

ˆ

ax` b

cx` d

˙

,
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where k P 1
2
Z and εpγq is a root of unity, is continuous or analytic.

Zagier purposefully left this definition a bit vague to encompass more examples of quantum
modular forms from different areas.

1.3. Statement of Results. As we’ve demonstrated, several combinatorial objects for par-
titions have analogous counterparts for unimodal sequences. Since Andrews developed a
k ` 1 variable generating function for k-marked Durfee symbols in [2], which was revealed
to have quantum modular properties by Folsom et al. in [9], it is natural to ask if such a
function with similar properties exists for k-marked unimodal symbols.

In this paper, we develop a k`1-variable generating function Ukpx1, . . . , xk; qq for k-marked
unimodal symbols. In particular, we define

(3) Ukpx1, x2, ..., xk; qq :“
ÿ

m1,...,mkě1

qpm1`m2`¨¨¨`mk´1`mkq`pm1`m2`¨¨¨`mk´1q`¨¨¨`pm2`m1q`pm1q

ˆ
“

p1` x´11 qm1qp1` x´12 qm1`m2q ¨ ¨ ¨ p1` x´1k´1q
řk´1
i“1 miq

‰

ˆ

„

p´x1q; qqm1´1p´x
´1
1 q; qqm1´1 ¨ p´x2q

m1`1; qqm2´1p´x
´1
2 qm1`1; qqm2´1

¨ ¨ ¨ p´xkq
p
řk´1
i“1 miq`1; qqmk´1p´x

´1
k qp

řk´1
i“1 miq`1; qqmk´1



.

Then we obtain the following equality.

Theorem 1.3. Let Ukpn1, n2, ..., nk;nq be the number of k-marked unimodal symbols of size
n with ith rank ni. Then

ÿ

miPZ

ÿ

ną0

Ukpn1, n2, ..., nk;nqx
n1
1 x

n2
2 ...x

nk
k q

n
“ Ukpx1, x2, ..., xk; qq.

We also define a notion of a self-conjugate k-marked unimodal symbol, which, in the 1-
marked case, recovers a third order mock theta function. In general, we let SCUkpqq be the
generating function that gives self-conjugate k-marked unimodal symbols. It turns out that
SCUkpqq has another combinatorial interpretation that reflects a theorem from Andrews [2].
This relies on the quantities ωk, εk which each count partitions with specific unmarked odd
parts and k ´ 1-marked even parts. The generating functions are related in the following
theorem.

Theorem 1.4. For k ě 2, it holds that

SCUkpqq “
ÿ

ně0

p´1qkpωkpnq ´ εkpnqqq
n.

In addition to proving Uk’s combinatorial properties, we also investigate what Uk’s prop-
erties would be if it were quantum modular. To do so, fix some ζk “ pζα1

β1
, . . . , ζαkβk q, with

each ζαiβi “ e
2πi

αi
βi . Without loss of generality we require gcd pαi, βiq “ 1. Next let

S` “
ˆ

1 0
` 1

˙

, T “
ˆ

1 1
0 1

˙

, where

` “ `pζkq :“ lcmpβ1, . . . , βkq.

Further define
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(4) Γζk :“ xS`, T y.

We prove the following:

Theorem 1.5. Let h P Z, d P N, gcdph, dq “ 1, and βj - d. Then, for 1 ď j ď n,

Qζk :“

$

’

&

’

%

h

d
P Q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d

ˇ

ˇ

ˇ

ˇ

ą
1

3
if d is odd

ă
1

6
if d is even

,

/

.

/

-

where rxs denotes the closest integer to x P Q, gives a quantum set for Ukpζk; qq with respect
to the group Γζk .

Remark 1.6. As [9] notes, while sources differ on the treatment of rxs for x P 1
2
` Z, there

is no ambiguity in the definition of Qζk . This is because |x ´ rxs| “ 1
2
whether we define

rxs “ x` 1
2
or rxs “ x´ 1

2
.

We also show in Section 4 through a variety of lemmas that for many choices of ζk, the
quantum set Qζk is nonempty. Therefore, this construction frequently yields an interesting
and large set on which to look for quantum modularity properties. Then we explore quantum
modularity on a specific choice of Ukpζk, qq with respect to the group Γζk .

1.4. Outline. In Section 2, we introduce the background material necessary to derive our
generating functions in Theorem 1.3 and Theorem 1.4. In Section 3, we develop our rank
generating function for strongly unimodal sequences Uk as well as a generating function
for self-conjugate strongly unimodal sequences that generalizes a third-order mock theta
function. In Section 4, we prove that Qζk would be a suitable quantum set for Ukpζk, ζhk q
if it were quantum modular, and that e´

πix
12 Ukpζk; qq is quantum modular under the action

of
B

T “

ˆ

1 1
0 1

˙F

. In addition, we provide several lemmas detailing Qζk ’s composition. In

Section 5, we recount the process of graphically investigating Ukp´1, ...,´1; qq’s potential
quantum modularity, as well as Ukpζk, ζhk q’s possible additional combinatorial analogues to
k-marked Durfee symbols.

2. Preliminaries

Below we reproduce the definitions of a Durfee k-marked Durfee symbol, as well as its
rank, as presented in [2].

Definition 2.1. A k-marked Durfee symbol is a Durfee symbol composed of k copies of the
integers for parts in both rows. In addition, we require. that:

(1) The sequence of parts and the sequence of subscripts in each row be non-increasing
(2) Each of the subscripts 1,2,...,k occur at least once in the top row.
(3) IfM1,M2, ...,Mk are the largest parts with their respective subscripts in the top row,

then all parts in the bottom row with subscript 1 lie in r1,M1s, with subscript 2 lie
in rM1,M2s, ... with subscript k´1 lie in rMk´2,Mk´1s, and with subscript k lie in
rMk´1, Ss, where S is the side length of the Durfee square.
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Definition 2.2. LetD be a k-marked Durfee symbol and let τ i (resp. δi) denote the sequence
in the top row (resp. bottom row) with subscript i in D. The jth rank of γ, denoted ρjpγq,
is

(5) ρjpγq “

#

lengthpτ jq ´ lengthpδjq ´ 1 j ă k

lengthpτ jq ´ lengthpδjq j “ k.

We proceed to define a k-marked unimodal symbol, which bears clear resemblance to that
of Andrews given above in Defintion 2.1.
Definition 2.3. A k-marked unimodal symbol of n is a unimodal symbol corresponding to
a unimodal sequence of size n with entries in k copies of the integers that also satisfies the
following properties:

(1) The sequence of entries in both the top and bottom rows are each strictly decreasing,
while the sequence of subscripts for entries in both rows are each non-increasing.

(2) Each of 1, 2, . . . , k ´ 1 appear as a subscript in the top row.
(3) Let d be the size of the sequence’s peak. For 1 ď i ď k´ 1, let mi be the largest part

in the top row with subscript i and define m0 “ 0,mk “ d´ 1. Then the parts in the
bottom row with subscript i lie in rmi´1 ` 1,mis.

The natural calculation of the rank for a k-marked unimodal symbol also exactly follow
from Andrews, given above in Definition 2.
Definition 2.4. Let γ be a k-marked unimodal symbol and let τ i (resp. δi) denote the
sequence in the top row (resp. bottom row) with subscript i in γ. The jth rank of γ,
denoted ρjpγq, is

(6) ρjpγq “

#

lengthpτ jq ´ lengthpδjq ´ 1 j ă k

lengthpτ jq ´ lengthpδjq j “ k.

The subtraction of 1 in Definition 2.4 compensates for the requirement (2) in Definition 2.3.
Notice that if γ is 1-marked, then (6) in Definition 2.4 shows that ρ1pγq recovers the original
Dyson’s rank statistic. One consequence of defining k ranks on a k-marked Durfee symbol
is that we may calculate the number of k-marked unimodal symbols with ith rank equal to
ni through a function in k`1 variables that generalizes Upx, qq studied by Bryson et al. in [7].

We define the full unimodal rank of a k-marked unimodal symbol analogous to Andrews’s
definition of the full unimodal rank of a k-marked Durfee symbol in [2].
Definition 2.5. For each k-marked unimodal symbol δ, we define the full rank FRUpδq by

FRUpδq “ ρ1pδq ` 2ρ2pδq ` 3ρ3pδq ` ...` kρkpδq,

and we let NFUkpm,nq denote the number of k-marked unimodal symbols of size n with
full rank m. Additionally, we let NFUkpm,Q, nq denote the number of k-marked unimodal
symbols of n with full rank congruent to m (mod Q).

3. Some Generating Functions

This section addresses two combinatorial results–first, the appropriateness of our multi-
rank generating function for k-marked unimodal symbols, and second the definition and
partition-theoretic interpretation of the generating function for self-conjugate k-marked uni-
modal symbols.
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3.1. Proof of Theorem 1.3. Recall from Theorem 1.3 that we defined

Ukpx1, x2, ..., xk; qq “
ÿ

m1,...,mkě1

qpm1`m2`¨¨¨`mk´1`mkq`pm1`m2`¨¨¨`mk´1q`¨¨¨`pm2`m1q`pm1q

ˆ
“

p1` x´11 qm1qp1` x´12 qm1`m2q ¨ ¨ ¨ p1` x´1k´1q
řk´1
i“1 miq

‰

ˆ

„

p´x1q; qqm1´1p´x
´1
1 q; qqm1´1 ¨ p´x2q

m1`1; qqm2´1p´x
´1
2 qm1`1; qqm2´1

¨ ¨ ¨ p´xkq
p
řk´1
i“1 miq`1; qqmk´1p´x

´1
k qp

řk´1
i“1 miq`1; qqmk´1



.

Furthermore, Theorem 1.3 states gives that if Ukpn1, n2, ..., nk;nq denotes the number of
strongly unimodal sequences of size n with the ith rank equal to ni, then for k ě 1 we have
that

ÿ

miPZ

ÿ

ną0

Ukpn1, n2, ..., nk;nqx
n1
1 x

n2
2 ¨ ¨ ¨ x

nk
k q

n
“ Ukpx1, x2, ..., xk; qq.

This follows from combinatorially analyzing the component pieces of the summands in
Ukpx1, x2, ..., xk; qq.

Proof. The proof is analogous to that of Theorem 10 in [2]. Consider an arbitrary k-marked
unimodal symbol D representing a strongly unimodal sequence U . Let m1 be the largest
entry of D’s top row with subscript 1. By condition 1 in Definition 2.3, D’s largest entry
with subscript 2 must be greater than m1. Hence, this largest entry with subscript 2 is
m1 ` m2, for some m2 ą 0. Similarly, the largest entry with subscript 3 must be greater
than m1 `m2, and is therefore m1 `m2 `m3, for some m3 ą 0. In general, the largest of
D’s entries with subscript l ď k ´ 1 is

řl
i“1mi, where mi ą 0. Since the underlying peak’s

length is larger than any of D’s entries, it equals
řk
i“1mi, where mk ą 0.

Consider the terms needed to generate τ 1 and δ1, the portion of the k-marked unimodal
symbol where the entries have subscript 1 in both rows. Since we are assuming that m1

exists by construction, a factor of qm1 is needed. Now because U is strongly unimodal, all
entries in τ 1 must be distinct, as are the entries in δ1. Since m1 is the largest entry in
τ 1, all other entries in τ 1 are at most m1 ´ 1, giving us that the entries are generated by
p´q; qqm1´1. Conversely, the entries in δ1 are at most m1 since they represent parts on the
opposite side of the peak and are not subject to the same strict bound. Thus δ1 is generated
by p´q; qqm1 “ p1` q

m1qp´q; qqm1´1.
Let x1 track the first rank. To track the first rank of the unimodal symbol, we use

p´x1q; qqm1´1 to generate τ 1 and p´x´1q; qqm1 to generate δ1. That is, the entries marked
with subscript 1 are generated by

qm1p´x1q; qqm1´1p´x
´1
1 q; qqm1 “ qm1p1` x´11 qm1qp´x1q; qqm1´1p´x

´1
1 q; qqm1´1.

Construction of the other terms proceeds analogously. The sequence of entries in the top
row with subscript 2 have maximal entrym1`m2, which is generated by qm1`m2 . The entries
in τ 2 are at most m1`m2´1, while those in δ2 are at most m1`m2. Entries in both τ 2 and
δ2 are at least m1 ` 1. The variables x2 and x´12 count the second rank. So the generators
for these two sequences of subscript 2 entries are p´xqm1`1; qqm2´1 and p´x´1qm1`1; qqm2 .
Hence, these entries have as a generator



Strongly Unimodal Sequences and Modularity 9

qm1`m2p1` x´12 qm2qp´x2q
m1`1; qqm2´1p´x

´1
2 qm1`1; qqm2´1.

We proceed in a similar fashion to generate the terms with subscript up through k ´ 1.
Now, recall that there is no requirement to have any terms with subscript k on the top

row. As a result, no positive power of q is required like the previous steps. There still may,
however, be sequences τ k and δk. Thus, we generate both of these via

p´xkq
p
řk´1
i“1 miq`1; qqmk´1p´x

´1
k qp

řk´1
i“1 miq`1; qqmk´1.

Finally, we must generate the sequence’s peak. Since the peak length is
řk
i“1mi, it is

generated by
qpm1`m2`¨¨¨`mkq.

If all of these factors generate their respective parts of D, then their product will generate
the entirety ofD. To account for all possible values for eachmi and the size of U , we sum over
all mi’s with mi ą 0 for 1 ď i ď k as well as over all n ą 0. The result is Ukpx1, . . . , xk; qq,
as defined in the theorem statement. �

3.2. Proof of Theorem 1.4. We next turn to self-conjugate unimodal symbols, which yield
results that are interesting both combinatorially and in terms of connections to modularity.

Definition 3.1. A self-conjugate k-marked unimodal symbol is one in which the two rows
in the k-marked unimodal symbol are identical, both in terms of the subscripts and the
underlying unimodal sequence itself.

Now if we let SCUkpnq denote the number of self-conjugate k-marked unimodal symbols
of n, we can define the generating function

SCUkpqq :“
ÿ

ně0

SCUkpnqq
n.

Lemma 3.2. The number of self-conjugate k-marked unimodal symbols representing n is
given by the equation

SCUkpqq “
ÿ

m1,...,mkě1

q2m1`2pm1`m2q`¨¨¨`2pm1`¨¨¨mk´1q`pm1`¨¨¨mkqp´q2; q2qm1´1p´q
2pm1`1q; q2qm2´1

¨ ¨ ¨ p´q2pm1`m2`1q; q2qm3´1 ¨ ¨ ¨ p´q
2pm1`¨¨¨`mk´1`1q; q2qmk´1

“
ÿ

m1,...,mkě1

q2m1`2pm1`m2q`¨¨¨`2pm1`¨¨¨`mk´1q`pm1`¨¨¨`mkq
k
ź

i“1

p´q2pp
ři´1
j“1mjq`1q; q2qmi´1

“
ÿ

Mkěk

qMkp´q2; q2qMk´1

ÿ

1ďM1ăM2ă¨¨¨ăMk

q2pM1`¨¨¨`Mk´1q

p1` q2M1qp1` q2M2q ¨ ¨ ¨ p1` q2Mk´1q
.(7)

where Mi “ m1 ` ¨ ¨ ¨ `mi.

Proof. Applying a similar argument as in the proof of Theorem 1.3, consider a self-conjugate
k-marked unimodal symbol D. Let m1 be the largest entry of D with subscript 1. By
Definition 2.3, it follows that the largest entry ofD with subscript 2 ism1`m2 for somem2 ě

1. Following this pattern, the largest entry ofD with subscript i is given bym1`m2`¨ ¨ ¨`mi

where each mj ě 1. Since the peak length is larger than any of the entries of D, we get that
the peak length is given by m1 ` ¨ ¨ ¨ `mk where each mi ě 1.
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Since the two rows in the k-marked unimodal symbol are the same by assumption, we get
that each value must appear on top and bottom. Thus, we count each of the largest entries
of D with subscript l ď k ´ 1 twice, giving us the factors q2p

řl
j“1mjq. Furthermore, the peak

contributes a factor of qm1`¨¨¨`mk in the generating function.
Consider the entries ofD with subscript 1. Since every value appears twice in the unimodal

symbol, and since we are assuming that m1 is the maximal entry of D with subscript 1, we
only need to consider the distinct even numbers less than 2m1, giving us that the entries of
D with subscript 1 are generated by p´q2; q2qm1´1.

Construction of terms with different subscripts proceeds similarly. Consider the entries
with subscript 2. Since entries of D with subscript 2 are of size at most m1 ` m2 ´ 1
and are also at least m1 ` 1, we get that the entries of D with subscript 2 are generated
by p´q2pm1`1q; q2qm2´1. Proceeding in a similar fashion to generate all terms of D for all
subscripts, we obtain a factor of

p´q2; q2qm1´1p´q
2pm1`1q; q2qm2´1p´q

2pm1`m2`1q; q2qm3´1 ¨ ¨ ¨ p´q
2pm1`¨¨¨`mk´1`1q; q2qmk´1.(8)

Letting Mi “ m1 ` ¨ ¨ ¨ `mi, we form a strictly increasing sequence of numbers 1 ďM1 ă

M2 ă ¨ ¨ ¨ ăMk. Furthermore, we can rewrite (7) as
k
ź

i“1

p´q2pp
ři´1
j“1mjq`1q; q2qmi´1 “

p´q2; q2qMk´1

p1` q2M1q ¨ ¨ ¨ p1` q2Mk´1q

giving us (6). �

Remark 3.3. If we consider the generating function for unmarked self-conjugate strongly
unimodal sequences, i.e. if k “ 1, we get that

SCUpqq “ SCU1pqq “
ÿ

Mě1

qMp´q2; q2qM´1 “ ψpqq,

where ψpqq is one of the original third-order mock theta functions defined by Ramanujan
[7]. This connection indicates that SCUkpqq could be a fruitful place to look for differeny
modular objects.

Theorem 14 by Andrews in [2] connects self-conjugate k-marked Durfee symbols of n to
partitions of n into distinct unmarked odd parts and k´ 1-marked even parts under specific
conditions. It turns out that there is a combinatorial interpretation connecting SCUkpqq to
partitions that mirrors this theorem of Andrews.

Definition 3.4. Let ωkpnq count the number of partitions of n into at least k unmarked
odd parts such that every odd part less than the largest part appears at least once, as well
as k´ 1 differently marked and distinct pk´ 1q-marked even parts (which may repeat) such
that each even part is less than twice the number of odd parts and the total number of even
parts is odd. Similarly, let εkpnq count the same as above, except where the total number of
even parts is even.

We note that in Definition 3.4, the total number of even parts counted by ωk or εk is not
necessarily k ´ 1, as the even parts themselves may repeat any number of times.

Recall Theorem 1.4 from Section 1.3 which says

SCUkpqq “
ÿ

ně0

p´1qk ppωkpnq ´ εkpnqq q
n.
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Proof of Theorem 1.4. From Lemma 3.2, we have that SCUk splits into nested sums. The
right side of (6) gives ψpqq that begins indexing at some k ě 1. The mock theta function
ψpqq is well known to give the partitions of n into odd parts such that every odd smaller
than the largest part appears at least once. This can also be seen by constructing a bijection
between strongly unimodal sequences and partitions by reading across the rows starting from
the bottom in a diagram. In doing this, it becomes clear that Mk, originally thought of as
the peak of the sequence, gives the number of odd parts in this interpretation. Additionally,
k bounds the number of parts below, which gives the unmarked odds in the definition of ωk
and εk.

All of the inner sums are finite after fixing Mk in the outermost sum. Grouping q2Mi

with 1
1`q2Mi

, we can use the geometric series expansion to obtain factors of the form pq2Mi ´

q2p2Miq`q3p2Miq´¨ ¨ ¨ q for each i. Each 2pMiq is one of the even parts referred to in Definition
3.4, with the number of repetitions of this even part counted by its multiplier in the exponent.
Additionally, 2Mk gives an upper bound to each of the even parts as described in the sum
index, but recall from the first sum that this number is the number of odd parts. Finally, we
observe that by multiplying factors of the form pq2Mi´q2p2Miq`q3p2Miq´¨ ¨ ¨ q in the summand
we always obtain either terms representing a total number of even parts with positive sign
and total number of odd parts with negative sign, or vice versa. This distinction is based on
the parity of k, which determines how many such factors exist. �

4. A Rational Domain for Ukpζk; qq

4.1. Proof of Theorem 1.5. First, we investigate what set Uk must be defined on to be
quantum modular. Specifically, we seek Uk’s quantum set.

Definition 4.1. A quantum set S Ď Q for a function f with respect to a group Γ ď SL2pZq
is such that fpxq and fpγxq exist for all x P S and for all γ P Γ.

Recall that we define Qζk as follows:

Qζk :“

$

’

&

’

%

h

d
P Q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

ą
1

3
if d is odd

ă
1

6
if d is even

,

/

.

/

-

where h P Z, d P N, gcdph, dq “ 1, βj - d, and 1 ď j ď n.. (see Remark 1.3)
We first establish that Ukpζk, ζhd q converges for h

d
P Qζk . We prove this in the following

lemma
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Lemma 4.2. Fix ζk “ pζα
1

β1
, ..., ζα

k

βk
q. Then for h

d
P Qζk, Ukpζk; ζhd q converges and can be

evaluated by

(9) Ukpx1, x2, ..., xk; ζ
h
d q “

n
ź

j“1

1

1´ p1´ p´xjqdqp1´ p´xjq´dq

ˆ
ÿ

1ďs1,...,skďd

ζ
hrps1`s2`¨¨¨`sk´1`skq`ps1`s2`¨¨¨`sk´1q`¨¨¨`ps2`s1q`ps1qs
d

ˆ
“

p1` x´11 ζhs1d qp1` x´12 ζ
hps1`s2q
d q ¨ ¨ ¨ p1` x´1k´1ζ

hp
řk´1
i“1 siq

d q
‰

ˆ

„

p´x1ζ
h
d ; ζhd qs1´1p´x

´1
1 ζhd ; ζhd qs1´1 ¨ p´x2ζ

hps1`1q
d ; ζhd qs2´1p´x

´1
2 ζ

hps1`1q
d ; ζhd qs2´1

¨ ¨ ¨ p´xkζ
hp
řk´1
i“1 si`1q

d ; ζhd qsk´1p´x
´1
k ζ

hp
řk´1
i“1 si`1q

d ; ζhd qsk´1



.

Proof. Since Ukpζk; ζhd q has no zero-terms in its denominator, each of its summands is a finite
product. Hence, it is immediate that, for h

d
P Q, all summands of Ukpζk; ζhd q are finite.

The rest of the proof closely follows the proof of Theorem 3.2 in [9]. Similarly, we illustrate
the proof for the case k “ 2, with comments about how to generalize to k ą 2.

Let h
d
P Qζk , and write ζ “ ζhd . As in [9], the identity

(10) pxζr; ζqs`Md “ p1´ x
d
q
M
pxζr; ζqs

holds for all M, r, s P Zě0. Thus, if we let mj “ sj `Mjd, where 1 ď sj ď d and Mj P Zě0
then, by Definition 1.3

U2px1, x2; ζq “
ÿ

m1,m2ě1

ζ2m1`m2rp1` x´11 ζm1qp1` x´12 ζm1`m2qs

ˆ rp´x1ζ; ζqm1´1p´x
´1
1 ζ; ζqm1´1s ˆ rp´x2ζ

m1`1; ζqm2´1p´x
´1
2 ζm1`1; ζqm2´1s.

Using identity (10), we get
ÿ

M1,M2ě0

ÿ

1ďs1ďd
1ďs2ďd

ζ2ps1`M1dq`s2`M2drp1` x´11 ζs1`M1dqp1` x2ζ
s1`M1d`s2`M2dqs

ˆ rp1´ p´x1q
d
q
M1p´x1ζ; ζqs1´1p1´ p´x1q

´d
q
M1p´x´11 ζ; ζqs1´1s

ˆ rp1´ p´x2q
d
q
M2p´x2ζ

s1`M1d`1; ζqs2´1p1´ p´x2q
´d
q
M2p´x´12 ζs1`M1d`1; ζqs2´1s.

Since ζ “ e
2πih
d , ζdm = 1, for m P Z. Thus, our expression becomes

ÿ

M1,M2ě0

p1´ p´x1q
d
q
M1p1´ p´x1q

´d
q
M1p1´ p´x2q

d
q
M2p1´ p´x2q

´d
q
M2

ˆ
ÿ

1ďs1ďd
1ďs2ďd

ζ2s1`s2p1`x´11 ζs1´1qp´x1ζ; ζqs1´1p´x
´1
1 ζ; ζqs1p´x2ζ

s1`1; ζqs2´1p´x
´1
2 ζs1`1; ζqs2´1.

The sum over the sj’s is finite, so the convergence of U2px1, x2; qq is determined by the
sum over the Mj’s. This sum is the product of two geometric series, each with summands
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of the form:

(11) pp1´ p´xjq
d
qp1´ p´xjq

´d
qq
Mj .

From here, there are two cases. If d is odd, (11) becomes:

pp1` xdj qp1` x
´d
j qq

Mj ,

which converges if and only if

|p1` xdj qp1` x
´d
j q| ă 1.

Let θj “
2παj
βj

. Using xj “ e
2πi

αj
βj , we have that

|p1` xdj qp1` x
´d
j q| “ |2` 2 cos dθj| ă 1,

if and only if

(12) ´
3

2
ă cos dθj ă ´

1

2
.

For (12) to hold, dθj “ r ` 2πM , where |r| ą 2π
3
, ´π ă r ď π,M P Z.

Thus,

|dθj ´ 2πM | ą
2π

3
,

implying that:
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

ą
1

3
.

In the case that d is even, (11) becomes:

pp1´ xdj qp1´ x
´d
j qq

Mj ,

which converges if and only if:
|2´ 2 cos dθj| ă 1.

Hence:
1

2
ă cos dθj ă

3

2
.

For this to hold, dθj “ r ` 2πM , where |r| ă π
3
, ´π ă r ď π,M P Z. Thus

|dθj ´ 2πM | ă
π

3
,

implying that
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d

ˇ

ˇ

ˇ

ˇ

ă
1

6
.

Recall that these are the necessary conditions to belong to Qζk . Thus, for any h
d
P Qζk ,

U2pζk, ζ
h
d q will converge to the right hand side of (9).

To apply this argument for Uk with k ą 2, write any mj “ sj `Md. Then the sum splits
into the product of a series indexed overM1, . . . ,Mk ě 0 and a series indexed over s1, . . . , sk,
with each sj satisfying 1 ď sj ď d. The sum over the sj terms remains finite, and analyzing
each geometric series of Mj into the cases as above gives the result for Uk.

�

We are now able to prove Theorem 1.5.
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Proof of Theorem 1.5. From Definition 3 and Lemma 4.2, we see that it suffices to show that
Qζk is closed under the action of Γζk .

Recall from (4) that:

Γζk :“

Bˆ

1 1
0 1

˙

,

ˆ

1 0
` 1

˙F

and

` “ lcmpβ1, . . . , βkq.

Thus, it suffices to show that Qζk is closed under the action of these matrices.

Let h
d
P Qζk . Then

ˆ

1 1
0 1

˙

h

d
“
h` d

d
. Note that gcdph` d, dq “ gcdph, dq “ 1, so

ˆ

1 1
0 1

˙

h

d
P Qζk .
Now, observe that

ˆ

1 0
` 1

˙

h

d
“

h

h`` d
.

Note that gcdph, h`` dq “ gcdph, dq “ 1 and that βj - ph`` dq, since βj | ` and βj - d.
So

ˇ

ˇ

ˇ

ˇ

αj
βj
ph`` dq ´

„

αj
βj
ph`` dq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

αj
βj
h``

αj
βj
d´

„

αj
βj
h``

αj
βj
d

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d

ˇ

ˇ

ˇ

ˇ

,

since
αj
βj
h` P Z. Thus, Qζk is closed under the action of Γζk , as desired. �

Next, we show that e
´πix
12 Ukpζk; qq exhibits quantum modular behavior under translations.

Proposition 4.3. ζk “ pζα
1

β1
, ..., ζα

k

βk
q. Let k ě 2 for x P Qζk, define:

Akpxq “ Akpζk;xq “ e
´πix
12 Ukpζk; e2πixq,

where x P Qζk.

Then, for all γ “
ˆ

1 b
0 1

˙

where b P Z and x P Qζk,

Hk,γpxq :“ Akpxq ´ e
πi
12Akpγxq “ 0.

Proof. This proof closely follows that of Theorem 1.7 in [9]. By Theorem 4.2, Akpxq and

Akpγxq are defined for all x P Qζk and γ “
ˆ

1 b
0 1

˙

. Note that it suffices to only consider

the generator T “
ˆ

1 1
0 1

˙

since,

Hn,γγ1pxq :“ Hn,γ1pxq ´ q
1
24 pCx`Dq´

3
2Hn,γ1pγxq

for γ “
ˆ

a b
c d

˙

and γ1 “
ˆ

A B
C D

˙

. Thus:

Hn,γpxq “ Akpxq ´ q
1
24 pcx` dq´

3
2Akpx` 1q.
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When we map x ÞÑ x` 1, q “ e2πix remains invariant, since q “ e2πipx`1q “ e2πixe2πi “ e2πix.
So, since Ukpζk; qq can be expressed as a series with only integer powers of q (as in (1.3)):

Akpx` 1q “ e
´2πipx`1q

24 Ukpζk; qq

“ e
´2πix

24 e
´2πi
24 Ukpζk; qq

“ e
´πi
12 Akpxq.

Hence,

Hk,γpxq “ Akpxq ´ e
πi
12 pp0qx` p1qq´

3
2Akpx` 1q

“ Akpxq ´ e
πi
12 pe

´πi
12 Akpxqq

“ 0,

which is clearly defined and analytic on R, as desired. �

4.2. The Quantum Set’s Composition. Here, we discuss the contents of Qζk . We note
that if there is at least one d satisfying the conditions for Qζk , then there are countably many
infinite choices of h that work as a numerator for that d, and hence any nonempty Qζk is
infinite.

In some cases, it is obvious that the quantum set is empty.

Lemma 4.4. If some ζαjβj P ζk has βj P t1, 3, 4u, then Qζk “ H.

Proof. First, if βj “ 1, then 1 | d for any d P Z, violating the construction of Qζk .
Next, suppose there is some βj “ 3. If d is odd then, regardless of αi:

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

P

"

0,
1

3

*

,

which can never be strictly greater than 1
3
. If d is even, then

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

ă 1
6
only when

dαj
3
P Z. But, since αj

βj
is in lowest terms, 3 - αj. Also, by the requirements of Qζk , 3 - d.

Therefore, 3 - dαj, and hence dαj
3
R Z.

Finally let βj “ 4. For αj
βj

to be fully reduced, αj must be odd. If d is also odd, then dαj

is odd and hence
ˇ

ˇ

ˇ

ˇ

αj
βj
d ´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

“ 1
4
­ą 1

3
. If d is even, then d “ 2m where m is odd (if m

were even, then βj | d). Thus:
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

mαj
2
´

„

mαj
2

ˇ

ˇ

ˇ

ˇ

.

Since mαj is odd, overall

ˇ

ˇ

ˇ

ˇ

mαj
βj

´

„

mαj
βj


ˇ

ˇ

ˇ

ˇ

“
1

2
ą

1

6
.

Hence, when some βj P t1, 3, 4u, no d P N satisfies the conditions for h
d
P Q to be in the

quantum set. �
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Despite this result, there are several instances in which that Qζk is nonempty.

Lemma 4.5. Let ζk “ pζ1β1 , ..., ζ
1
βk
q, where the βj’s are coprime, each βj ą 4, and suppose

there exists a βe ” 2 (mod 4). Then, there exists a d P N such that h
d
P Qζk , for all h P Z

such that gcdph, dq “ 1.

Proof. We will show that there exists an odd d satisfying Definition 1.5. First, we will
consider the case when j “ e. Observe that, if d “ mβe `

βe
2
, for some m P Z, then:

ˇ

ˇ

ˇ

ˇ

mβe `
βe
2

βj
´

„

mβe `
βe
2

βe


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

βe
2

βe
´

„ βe
2

βe


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

2
´

„

1

2


ˇ

ˇ

ˇ

ˇ

ą
1

3
.

Also, note that βe - d because d ‰ 0 (mod βe). So, d satisfies the conditions in Theorem 1.5
in this case.

Now, consider βj for j ‰ e. Because we require the βj’s to be coprime, and βe was even,
βj must be odd. Let ωj “

Pβj
2

T

. Then, if d “ mβj ` ωj, for some m P Z:
ˇ

ˇ

ˇ

ˇ

mβj ` ωj
βj

´

„

mβj ` ωj
βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ωj
βj
´

„

ωj
βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ωj
2ωj ´ 1

´

„

ωj
2ωj ´ 1


ˇ

ˇ

ˇ

ˇ

,

because βj is odd. This expression is greater than 1
3
when ωj ą 2. Since βj ą 4, this is

always true. Also, since ωj ‰ 0, βj - d.
Hence, for Qζk to be nonempty, we seek an odd d such that:

d ” ajpmod βjq,

where aj “
Pβj

2

T

if j ‰ e, and aj “
βj
2
otherwise.

Because the βj’s are coprime, a solution to this system exists by the Chinese Remainder
Theorem. Since βe ” 2 (mod 4), the condition d ” βe

2
pmod βeq implies that:

d “ mβe `
βe
2

(where m P Z)

“ mβe ` p2p` 1q.(where p P Z)
Thus, because βe is even, d must be odd. Therefore, there exists an odd d P N such that
βj - d and:

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d

ˇ

ˇ

ˇ

ˇ

ą
1

3
,

for all βj, as desired. �

Lemma 4.6. Let ζk “ pζ1β1 , ..., ζ
1
βk
q, where the βj’s are coprime, each βj ą 12, and there

exists an even βe ” 0 (mod 2). Then, there exists a d P N such that h
d
P Qζk , for all h P Z

such that gcdph, dq “ 1.

Proof. We will find an even d P N satisfying Definition 1.5.
If d “ mβj ` 2 for some m P Z, then:

ˇ

ˇ

ˇ

ˇ

mβj ` 2

βj
´

„

mβj ` 2

βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2

βj
´

„

2

βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2

βj
´

„

0


ˇ

ˇ

ˇ

ˇ

ă
1

6
,
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because βj ą 12. Also, βj - d because d ‰ 0 (mod βj). So, d satisfies the conditions in
Definition 1.5 in this case

Hence, for Qζk to be nonempty, we seek an even d where

d ” 2 pmod βjq.

Because the βj’s are coprime, a solution to this system exists by the Chinese Remainder
Theorem. Since βe ” 0 (mod 2), the condition d ” βe

2
pmod βeq implies that:

d “ mβe ` 2(for m P Z)
“ mβe ` p2pq.(for p P Z)

Since βe is even, d is too. Therefore, there exists an even d such that βj - d and:
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

ă
1

6
,

for all βj. So, hd P Qζk , for all h P Z where gcdph, dq “ 1, as desired.
�

Unlike the last two lemmas, the next result leaves the αj’s mostly unrestricted.

Lemma 4.7. Let ζk “ pζα1
β1
, ..., ζαkβk q, where:

‚ the βj’s are coprime
‚ each βj ą 12
‚ gcdpαj, βjq = 1 for 1 ď j ď k
‚ there exists a βe and αe such that βe ” 0 (mod 2) and αe “ 1

Then, there exists a d P N such that h
d
P Qζk , for all h P Z where gcdph, dq “ 1.

Proof. First, we will consider what d is required to satisfy Definition 1.5 when j “ e. Observe
that, if d “ mβe ` 2 for some m P Z, then:

ˇ

ˇ

ˇ

ˇ

mβj ` 2

βj
´

„

mβj ` 2

βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2

βj
´

„

2

βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2

βj
´

„

0


ˇ

ˇ

ˇ

ˇ

ă
1

6
,

because βj ą 12. Also, note that βj - d because d ‰ 0 (mod βj). So, d satisfies the conditions
in Definition 1.5 in this case

Now consider j ‰ e. Let gj ě 2 denote the largest integer where βj ą 6gj. We seek αjd
such that αjd ” gj (mod βj). If α

φpβjq”1
j (mod βj), then

gjα
φpβjq
j ” gj(modβjq.

Thus,

αjpgjα
φpβjq´1
j q ” gj(modβjq.



18 Savana Ammons, Young Jin Kim, Laura Seaberg

So, to guarantee that αjd ” gj has a solution, we should choose d ” gjα
φpβjq´1
j (mod βj).

Doing so yields
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

dβj ` gj
βj

´

„

dβj ` gj
βj


ˇ

ˇ

ˇ

ˇ

(where d P Z)

“

ˇ

ˇ

ˇ

ˇ

gj
βj
´

„

gj
βj


ˇ

ˇ

ˇ

ˇ

ă
1

6
,

because βj ą 6gj. Also, note that βj - d because gjα
φpβjq´1
j ‰ 0.

Hence, for Qζk to be nonempty, we seek an even d such that:

d ” ajpmod βjq,

where aj “ gjα
φpβjq´1
j if j ‰ e, and aj “ 2 otherwise.

Because the βj’s are coprime, a solution to this system exists by the Chinese Remainder
Theorem. Since βe ” 0 (mod 2), the condition d ” βe

2
pmod βeq implies that:

d “ mβe ` 2(for m P Z)
“ mβe ` p2pq.(for p P Z)

Thus, because βe is even, d is too. Therefore, there exists an even d such that βj - d and:
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

ă
1

6
,

for all βj. So, hd P Qζk for all h P Z where gcdph, dq “ 1, as desired.
�

The next theorem provides a more powerful assurance that the quantum set is nonempty.

Lemma 4.8. Let β1, . . . , βk P Z be such that, for 1 ď j ď k, βj R t1, 3, 4, 6, 10u. Then there
exist choices for α1, . . . , αk such that Qζk ‰ H.

Proof. We will show that if these conditions hold, then d “ 1 is a denominator in Qζk , which
permits many choices of numerator h. (In particular this means that Z Ď Qζk .)

First, we treat all odd choices for βj greater than 3. Choose αi “ t
βj
2

u “
βj´1

2
. Because

ˇ

ˇ

ˇ

ˇ

βj´1

2

βj
´

„ βj´1

2

βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

2
´

1

2βj
´

„

1

2
´

1

2βj


ˇ

ˇ

ˇ

ˇ

ą
1

3

(since, in this case, βj ě 5, so 1
2βj
ď 1

10
ă 1

6
.)

Now we will consider even βjs. When βj “ 2, choosing αj “ 1 yields
ˇ

ˇ

ˇ

ˇ

1

2
´

„

1

2


ˇ

ˇ

ˇ

ˇ

“
1

2
ą

1

3
.

Next, consider all βj ” 0 (mod 4). Choose
αj “

βj´2

2
, and note that because βj ” 0 (mod 4), βj

2
` 1 is odd. Hence, by Euclid’s

Algorithm, gcdpβj,
βj´2

2
q “ gcdp

βj
2
` 1,

βj
2
´ 1q “ gcdp

βj
2
` 1, 2q “ 1. So:
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ˇ

ˇ

ˇ

ˇ

βj´2

2

βj
´

„ βj´2

2

βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

2
´

1

βj
´

„

1

2
´

1

βj


ˇ

ˇ

ˇ

ˇ

ą
1

3
,

because 1
βj
ă 1

6
.

Finally, we argue for all even choices for βj ” 2 (mod 4) where βj ą 10. Similar to before,
choose αj “

βj´4

2
. Because βj ” 2 (mod 4), βj

2
` 2 is odd. So, by Euclid’s Algorithm,

gcdpβj,
βj´2

2
q “ gcdp

βj
2
` 2,

βj
2
´ 2q “ gcdp

βj
2
` 2, 4q “ 1. Hence:

ˇ

ˇ

ˇ

ˇ

βj´4

2

βj
´

„ βj´4

2

βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

2
´

2

βj
´

„

1

2
´

2

βj


ˇ

ˇ

ˇ

ˇ

ą
1

3
,

as 2
βj
ă 1

6
.

The above cases cover all possible βj’s not in the excluded cases. Thus, no matter what
combination of βjs we choose from N´t1, 3, 4, 6, 10u, d “ 1 will always satisfy the necessary
inequalities with the choices of αj outlined above. �

As the previous lemma alluded to, βj “ 6 (for some j) may yield an empty quantum set.
As the next lemma shows, this scenario does not always happen.

Lemma 4.9. Let β1, . . . , βk P Z be such that at least one βj “ 6. Then, if every other βj is
a multiple of 3 and not in t3, 9, 12, 18, 24, 30u, there exist α1, ..., αk so that Qζk ‰ H.

Proof. Let d “ 3. Then, since each βj ą 12, βj | d.
For all βj “ 6, let αj “ 1. Then:

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

3

βj
´

„

3

βj

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

2
´

„

1

2

ˇ

ˇ

ˇ

ˇ

ą
1

3
.

Now, consider βj ‰ 6. Let mj P Z be such that βj “ 3mj. Then:
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

3αj
βj
´

„

3αj
βj


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

αj
mj

´

„

αj
mj


ˇ

ˇ

ˇ

ˇ

.

This is equivalent to the scenario where d “ 1. Since βj ą 12,mj R t1, 3, 4, 6, 10u. Hence, by
Lemma 4.8, there exists an αj such that:

ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

αj
mj

´

„

αj
mj


ˇ

ˇ

ˇ

ˇ

ą
1

3
.

Since βj ‰ 24, αj ‰ 3, so the αj constructed as in Lemma 4.8 is relatively prime to βj.
Hence, if each βj ‰ 6 is a multiple of 3 and not in t3, 9, 12, 18, 2430u, there exists a d P N

such that βj - d and
ˇ

ˇ

ˇ

ˇ

αj
βj
d´

„

αj
βj
d


ˇ

ˇ

ˇ

ˇ

ą
1

3
,

for 1 ď j ď n. Therefore, h
d
P Qζk , for all h P Z where gcdph, dq “ 1. So, Qζk ‰ H, as

desired. �

With the candidate quantum set described, we discuss evidence that Uk is a quantum
modular form for some choices of ζk, under the action of S`.
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5. Quantum Modularity Conjecture

There is precedent to investigate Ukp´1,´1, . . . ,´1, qq for quantum modularity properties.
In particular, Bryson et al. proves that e´

πix
12 U1p´1, e2πixq is a weight 3

2
quantum modular

form on Qzt0u in [7] in a manner that ties the result to the same function’s mock modularity.

Question 5.1. If ζk “ p´1,´1, . . . ,´1q, then for all γ “
ˆ

a b
c d

˙

P Γζk and for all x P Qζk,

then does the function

hn,γpxq :“ e´
πix
12 Ukpζk, e

2πix
q ´ pcx` dq´

3
2 e´

πipx`1q
12 Ukpζk, e

2πiγx
q

extend to a continuous function in x on R?

To investigate quantum modularity it suffices to look for continuity with respect the gen-
erators of Γζk , which are S`, T of Γζk as given in 4. Recall from Theorem 4.3 that we have
quantum modularity obviously for xT y. It remains to investigate the action of S`.

5.1. Computational Evidence. Next, we investigated the continuity of hn,S` graphically.
In order to do so, Mathematica code was generated that, given some fixed ζk, would find
elements in Qζk X r´1, 1s. Subsequent functions then calculated hn,S`p

h
k
q on Qζk for some

subinterval of [-1,1] and plotted them within the desired window.
One difficulty in plotting such functions is that in order to ensure that the sum defining

Uk truncates, the necessary upper bound of the sum indices mi in Uk must increase as d
increases in hn,S`p

h
d
q. In particular, hn,S`p

h
d
q requires the calculation of Ukpζk; h

h``d
q, and as

´d ď h ď d, the number of necessary computations to pass the truncation point for this sum
quickly grows with d. Early investigations truncated the sum at an arbitrary early bound
for mi, which resulted in graphs that appeared smooth. However, further work revealed that
this early truncation was not accurately representing the situation, and edits to reflect this
produced the following plots, which do not seem to clearly extend to a continuous function.
For a feasible run time, the following plots depict h2,S`pxq for x in the quantum set that have
denominator less than or equal to 50.

-0.20 -0.15 -0.10 -0.05

-5000

5000

(a)

-0.25 -0.20 -0.15 -0.10 -0.05

-10000

-5000

5000

10000

(b)

Figure 4. The real part (A) and imaginary part (B) of h2,S` graphed on
r´0.25, 0s.
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Clearly these figures are not necessarily an argument against quantum modularity–they
just do not provide convincing enough evidence to provoke confidence in a conjecture.

5.2. Conjectures and Further Work. While graphing did not yield convincing evidence
of modularity properties, there are many possible parameters that could be changed on our
conjecture and that should be investigated. We note that the inclusion of the factor of e´

πix
12

comes from precedent of previous work, namely Bryson et al. and Folsom et al. in [7] and [9].
Graphing of hn,S` without such a factor resulted in barely visible change on the graph that
did not appear to be more or less continuous than the images presented above, it’s possible
that a different multiplier would reveal quantum modularity.

It is also possible that ζk consisting of other roots of unity yield modular objects. We
chose to focus on Ukp´1, . . . ,´1; qq because it clearly truncates at a computable place. When
all xi “ ζ12 P ζk, then all Pochhammer symbols in Uk are of the form p´ζ12q

k; qqj “ pq
k, qqj

for some j, k. This Pochhammer product is guaranteed to equal zero for q “ e2πia{b a root
of unity when j exceeds b. Thus high enough choices of mi (i.e. greater than b) will yield
truncating sums. In contrast, for an arbitrary p´ζαβ qk; qqj it is not necessarily the case that
´ζαβ q

k eventually equals 1 as k increases, which means that a term in the product would
not necessarily be assured to ever equal 0, so the convergence to its limiting value will be
incremental.

Finally, it remains possible that U2p´1,´1; qq or in fact many functions derivable from Uk
are closely related to other types of modular object besides quantum modular forms.

In general, work this summer revealed it is certainly feasible to code as a means to test
hypotheses about quantum modularity, although generating functions that are more than
double summations would benefit from more computational power. Here is an instance where
a single sum generating function like that achieved for Rk in [2] would be considerably more
efficient.

In addition to investigating Uk for modularity, we also sought analogues between the full
rank of a k-marked Durfee symbol and the full unimodal rank. The following conjecture is
based on calculations for small values of n; it is remarkably similar to the generating function
for NFkpm,nq, given in the proof of Theorem 17 in [2]:

Conjecture 5.2.

ÿ

ně1

8
ÿ

m“´8

NFU2x
mqn “ U2px, x

2; qq.

The following conjecture is also based off calculations for small values of n, and resembles
Theorem 17 from [2].

Conjecture 5.3. For n ě 0:

NFU2p1, 5, nq “ NF2p2, 5, nq.

In conclusion, the results detailed in this report indicate that much remains to be explored
in terms of the properties of Ukpζk; qq, both with regard to modularity and to congruences.
A single-sum generating function for Ukpζk; qq would aid in the tools available to approach
this problem.
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