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Abstract. In this project, we study properties of maps in one and multiple variables over Qp.
First, we study the roots of unity in Qp for prime p ≥ 2. Specifically, we prove the existence of
(p−1)-st roots of unity for odd primes p and that there are no other roots of unity in Qp. We prove
similar results for p = 2. We then study linearization and isolated periodic points of polynomial
maps. Finally, we study multivariable maps and, more specifically, Hénon maps.

1. Introduction

In this section, we introduce relevant terms and notations that will be used throughout this
document. We will study dynamical systems T : X → X over a space X and make frequent use of
the notation

Tn = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n iterations

.

Definition 1.1. Let S be a set, T : S → S be any mapping.

(1) A point a ∈ S is called a fixed point of T is T (a) = a. The set of all fixed points of T is
denoted Fix(T )

(2) Let m ≥ 1. A point a is called m-periodic if Tm(a) = a, and is called periodic if it is
m-periodic for some m ≥ 1. The set of m-periodic points is denoted Perm(T ), and the set
of periodic points is denoted Per(T ).

(3) A point a ∈ S is said to be preperiodic if Tm(a) = Tm+k(a) for some m ≥ 0 and k ≥ 1.
Equivalently, a is preperiodic if T k(a) is periodic for some m ≥ 0. Clearly periodic points
are preperiodic (set m = 0). A preperiodic point a ∈ S is said to be strictly preperiodic if
m ≥ 1, that is a is preperioidic but not periodic. The set of preperiodic points is denoted
PrePer(T ).

Definition 1.2. A dynamical system T : X → X is a conjugate of dynamical system S : Y → Y if
there exists a bijective function f : X → Y such that f ◦ T = S ◦ f , that is f makes the following
diagram commute.

X X

Y Y

f

T

S

f
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An advantage of conjugacy is that it preserves preperiodic points.

Theorem 1.3. Let T : X → X be conjugate to S : Y → Y via f : X → Y . A point α ∈ X is
T -preperiodic if and only if f(α) ∈ Y is S-preperiodic.

Proof. Since T is conjugate to S, we have

S = f ◦ T ◦ f−1.
This implies

(1) Sn = f ◦ Tn ◦ f−1 and therefore Sn ◦ f = f ◦ Tn.
We prove if α is a preperiodic point of T , then f(α) is preperiodic point of S. Assume α is

T-preperiodic. So Tn(α) = Tn+k(α) for some n, k ∈ N. Evaluating both sides with the function f
yields the following.

f(Tn(α)) = f(Tn+k(α))

By conjugacy of T and S, we see that f(α) is S-preperiodic.

Sn(f(α)) = Sn+k(f(α))

Similarly, it follows by conjugacy that if we start with Sn(f(α)) = Sn+k(f(α)), then we obtain
f(Tn(α)) = f(Tn+k(α)). Taking the inverse of f on both sides yields the desired equation, Tn(α) =
Tn+k(α), i.e. α is T -preperiodic. �

Definition 1.4. The p-adic absolute value is defined on the rational numbers α ∈ Q by

|α|p =

{∣∣pk ab ∣∣p = p−k α 6= 0

0 α = 0
for p prime and p - a, b

This absolute value satisfies:

• |α|p = 0 if and only if α = 0.
• |αβ|p = |α|p|β|p.
• |α+ β|p ≤ max{|α|p, |β|p} with equality whenever |α|p 6= |β|p.

The final property above is known as the ultrametric inequality or the strong triangle in-
equality.

The set of p-adic numbers Qp is the completion of the set of rational numbers Q with respect to
the p-adic absolute value | · |p [3]. A p-adic number α ∈ Qp is a number described as a series of the
form

α =

∞∑
n≥n0

anp
n n0 ∈ Z, an ∈ {0, 1, . . . , p− 1}

which converges under the p-adic absolute value | · |p.
Definition 1.5. A fixed point α of a polynomial map T ∈ Qp[x] is an attracting fixed point if
|T ′(α)| < 1. The set B of points b for which Tn(b)→ α as n→∞ is called the basin of attraction
of α.

2. Roots of Unity in Qp via Dynamical Systems

We divide this section into two parts. The first part proves the existence of (p − 1)-st roots of
unity in Qp for odd prime p. In addition, we prove that there are no other roots of unity except
those (p− 1)− st roots of unity. In the second part, we prove that 1 and −1 are the only roots of
unity in Q2.
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2.1. Odd Prime p. Let p be an odd prime, p 6= 2.

Theorem 2.1. For each 1 ≤ k ≤ p− 1 there exists (p− 1)-st roots of unity ζk in the disk D1/p(k).

Proof. Let f(x) = xp−1−1 and let 1 ≤ k ≤ p−1. Since p - k, by Fermat’s Little Theorem, kp−1 ≡ 1
(mod p). Therefore, we have

(2) | f(k) |p ≤ 1/p.

In addition, f ′(k) = (p− 1)kp−2. Since p - p− 1 and p - k, we have

(3) | f ′(k) |p = 1.

Since k ∈ Zp along with (2) and (3), Hensel’s Lemma [3] applies. Therefore, there exists ζk ∈ Zp
such that f(ζk) = 0, i.e. ζk is (p − 1)-st roots of unity, and | k − ζk |p ≤ 1/p. Therefore, we have
ζk ∈ D1/p(k). �

Next, we take a dynamical systems approach in proving that there are no other roots of unity
outside the ones constructed in Theorem 2.1. We first establish equivalency between roots of unity
in arbitrary fields and preperiodic points with respect to powering maps.

Proposition 2.2. Let K be a field and let m ≥ 2. An element α ∈ K is a preperiodic point with
respect to T (x) = xm if and only if α = 0 or α is a root of unity.

Proof. Let Tn(x) denote the composition of T with itself n times.

(4) Tn(x) = xm
n

We first prove if α is preperiodic, then it is either 0 or a root of unity. By definition, α is
preperiodic if there exists n ≥ 0 such that Tn(α) is periodic. Therefore, we have

Tn(α) = Tn+k(α). k ∈ N
Substituting (4), we have

xm
n − xm(n+k)

= 0

xm
n
(1− xmk

) = 0.

Since K is a field, its an integral domain. Therefore, there are no zero divisors, i.e. either

xm
n

= 0 or xm
k

= 1. Therefore, either x = 0 or x is a root of unity.
Now we prove implication in the opposite direction. Let α = 0. It follows that Tn(α) = 0.

Therefore, it is preperiodic. Now we look at the second case where α is the n-th root of unity. By
definition, αn = 1. Therefore, there are only finitely distinct elements of the form αk for k ≥ 0. In
other words, the set

S = {αk ∈ K | k ≥ 0}
is finite.

Consider the following sequence

α, T (α), . . . , Tn(α), . . . T i(α) ∈ S.
Since every element in the sequence is an element of S, by the pigeonhole principle, we must

have T i(α) = T j(α) for some i 6= j. Therefore, α is T -preperiodic. �

Since a preperiodic point with respect to T is also a root of unity, we can show that there are
no other roots of unity if there are no other preperiodic points. We do this by defining a conjugacy
that takes a dynamical system T in the form of T (x) = xm to another dynamical system S that is
linear. However, we must first prove that T is a dynamical system over the disk of radius 1/p.
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Proposition 2.3. Let 1 ≤ k ≤ p− 1 and define T (x) = xp. Then T (D1/p(k)) ⊆ D1/p(k).

Proof. Assume α ∈ D1/p(k). Therefore, α ≡ k (mod p).
Since T (α) = αp, we have

T (α) ≡ kp (mod p).

Since k ∈ Z, by Fermat’s Little Theorem, kp ≡ k (mod p). Therefore, we obtain

T (α) ≡ k (mod p).

This means |T (α)− k |p ≤ 1/p and so T (α) ∈ D1/p(k). �

Notice the p-adic absolute for any root of unity ζ must be 1. By definition, ζm = 1 for some
m ∈ N. Taking the p-adic absolute value on both sides yield | ζ |p = 1. This implies ζ ∈ Z×p .

With respect to our goal of determining that there are no other preperiodic points inside the
disk except the ones we mentioned in 2.1, based on Theorem 1.3, we can try to obtain conjugacy.

D1/p(k) D1/p(k)

D1/p(0) D1/p(0)

f

T (x) = xp

S(x) = px

f

Figure 1. Conjugacy between T and S for odd p.

We will show that a conjugacy between T and S in figure 1 above is possible through the bijective
function f(x) = logp(x/ζk) where logp : D1/p(1)→ Qp is the p-adic logarithm [3].

Definition 2.4. The p-adic logarithm is defined by the power series

logp(x) =
∞∑
n=1

(−1)n+1 (x− 1)n

n
x ∈ D1/p(1) = {x ∈ Zp : |x− 1|p < 1} = 1 + pZp

Theorem 2.5. If a, b ∈ 1 + pZp, then logp(ab) = logp(a) + logp(b)

Proof. The proof follows from Gouvea [3]. �

Definition 2.6. Let D = {x ∈ Zp : |x|p < p−1/(p−1)}. The p-adic exponential, denoted expp : D →
Qp is defined by the power series

expp(x) =
∞∑
n=0

xn

n!

Theorem 2.7. Let

U = 1 + pZp U1 =

{
U p 6= 2

1 + 4Z2 p = 2
W =

{
pZp p 6= 2

4Z2 p = 2

be considered as an additive group. Then the p-adic logarithm defines an isomorphism of groups

logp : U1 →W

with inverse expp.

Proof. The proof follows from Gouvea [3]. �
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We must first ensure that when x is in the disk D1/p(k), then y = x/ζk is contained in the
domain of logp(y). This ensures the following:

• The function f(x) = logp(x/ζk) is well-defined over the domain that we want D1/p(k).

• Conjugacy requires f has an inverse f−1. Since preperiodic point of f(α) ∈ S is a preperiodic
point α ∈ T , it is important that the range of f−1 covers the entire disk D1/p(k) so that

we can be ensured if there exists any preperiodic point f(α) of S, f−1(f(α)) = α must lie
within the disk D1/p(k).

Lemma 2.8. The disk D1/p(k) is contained in the domain of f(x) = logp(x/ζk) where 0 < k < p
and ζk ∈ D1/p(k) is a root of unity.

Proof. We want to prove the following.

x, ζk ∈ D1/p(k) =⇒ x

ζk
∈ D1/p(1)

where 0 < k < p and ζk is a root of unity.
Since x, ζk is in the closed disk D1/p(k), by definition, we have the following.

(5) |x− ζk |p ≤
1

p
⇐⇒ x ≡ ζk ≡ k (mod p)

From (5), we have the following.∣∣∣∣ xζk − 1

∣∣∣∣
p

=

∣∣∣∣ x− ζkζk

∣∣∣∣
p

= |x− ζk |p ≤
1

p
< 1

Therefore, x/ζk is in the domain of logp(y). In other words, the disk of D1/p(k) is contained in
the domain of f(x) = logp(x/ζk). �

Our last verification of the conjugacy between T and S in figure 1 above is that f must be
bijective. A function is bijective in a domain D if and only if it has an inverse in D.

Lemma 2.9. The function f : D1/p(k)→ D1/p(0) where f(x) = logp

(
x

ζk

)
is bijective with inverse

f−1(x) = ζk expp(x).

Proof. The proof follows from Proposition 4.5.9 in Gouvea [3]. From Gouvea, logp defines an
isomorphisms of groups D1/p(1)→ D1/p(0) with inverse expp. By Lemma 2.8, x/ζk sends D1/p(k)
to D1/p(1). Therefore, f : D1/p(k)→ D1/p(0) is bijective.

Since the inverse of logp() is expp(), rough algebra of f−1 yields the following.

f((f−1(x)) = logp

(
f−1(x)

ζk

)
= x implies f−1(x) = ζk expp(x)

Similarly, we have the following.

f−1(f(x)) = ζk expp

(
logp

(
x

ζk

))
= x

Therefore, f−1(x) = ζk expp(x). �

Finally, we prove that the logp() function defines a conjugacy between T and S as follows.



6 Nico Diaz-Wahl, Marcel Hudiani, and Connor Thompson

Theorem 2.10. The function g(x) = logp(x/ζk) where ζk is a root of unity defines a conjugacy
between

T : D1/p(k)→ D1/p(k) and S : D1/p(0)→ D1/p(0)

where T (x) = xp and S(x) = px for 0 < k < p

Proof. Given T (x) = xp defined on a disk D1/p(k), we have the following.

f(T (x)) = logp

(
xp

ζk

)
From Theorem 2.1, ζk is a (p− 1)-st root of unity. Therefore, ζp−1k = 1. It follows that ζpk = ζk.

Therefore, we have the following.

f(T (x)) = logp

(
xp

ζpk

)
= p logp

(
x

ζk

)
= S(f(x)) where S(x) = px(6)

�

Theorem 2.11. Qp contains no roots of unity except the (p− 1)-st roots of unity for odd prime p.

Proof. By definition, a preperiodic point α of S must satisfy Sm(α) = Sn(α) for m 6= n.

pmα = pnα

pm(α− pn−mα) = 0 for n > m

Since p 6= 0, it must be that α is zero. Therefore, there is only one preperiodic point, i.e. α = 0,
in some subset V of the disk D1/p(0). Since there is only one preperiodic point in S, by Theorem
1.3, there is only one preperiodic point in the disk D1/p(k). Therefore, by Proposition 2.2, there is
only one (p− 1)-st root of unity ζk in each of the disk D1/p(k) per theorem 2.1 for 0 < k < p. �

2.2. For p = 2. We know that any root of unity ζ has p-adic absolute value |ζ|p = 1. For Q2, this
implies there are no roots of unity in D1/2(0) since all elements in D1/2(0) by definition have p-adic
absolute value less than 1/2. Therefore, any roots of unity must be in the disk D1/2(1). We know
that D1/2(1) consists of only disks D1/4(1) and D1/4(−1) where for every element x ∈ D1/4(1), its
negative −x is in D1/4(−1) and vice versa. In addition, we know −α is a root of unity if and only
if α is a root of unity. Therefore, it suffices to find all roots of unity in the disc D1/4(1).

We can apply the same strategy of using conjugacy to determine the existence of roots of unity.
We use the following conjugacy.

D1/4(1) D1/4(1)

D1/4(0) D1/4(0)

f

T (x) = x2

S(x) = 2x

f

Figure 2. Conjugacy between T and S for p = 2.

Theorem 2.12. Let T (x) = x2. Then T (D1/4(1)) ⊆ D1/4(1).



Dynamics of Polynomial Maps on Q2
p 7

Proof. Assume x ∈ D1/4(1). By definition, x ≡ 1 (mod 4). Therefore, x2 ≡ 1 (mod 4). So
T (x) ≡ 1 (mod 4). This means, T (x) is in the disk D1/4(1). �

Theorem 2.13. The only roots of unity in Q2 are 1 and −1.

Proof. We know log2 defines an isomorphism from D1/4(1) to D1/4(0) from [3]. Therefore, the
conjugacy between T and S follows from f(x) = log2(x) where log2 is the 2-adic logarithm.

f(T (x)) = log2(x
2) = 2 log2(x) = S(f(x))

The proof for Theorem 2.11 shows that S(x) = 2x has 0 as the only preperiodic point in D1/4(0).
Therefore, by conjugacy, there is only one preperiodic point α ∈ D1/4(1) where f(α) = log2(α) = 0.
Therefore, α = 1. By proposition 2.2, it follows that α = 1 is a root of unity in Q2.

Since α = 1 is a root of unity in D1/4(1), we know −α = −1 is also a root of unity in D1/4(−1).
In addition, since there is only one root of unity in D1/4(1), there is also only one root of unity in
D1/4(−1). Therefore, there are only 1 and −1 as roots of unity in Q2. �

3. Preperiodic Points in One Dimension

In this section, we will explore linearization of maps f : Qp → Qp and what information we can
infer regarding periodic points. We will make use of the theorems of Lindahl [4]. We also explore
the effect of perturbation on the dynamics of polynomial maps and power series. Note that Br(x)
denotes the closed ball of radius r surrounding x. Since we are often working with the same prime
p throughout a proof, we let |x| denote |x|p whenever the prime in reference is clear.

3.1. An Introductory Example. We begin this section with an example. Consider the function
f(x) = x2− 6. Note that this map is not an automorphism of Qp. This map has fixed points x = 3

and x = −2. The fixed point x = 3 is attracting, as we can easily see by letting y = 3 + 3k ab with
3 - a, b, b 6= 0, k > 0. We then have

f(y) = (3 + 3k
a

b
)2 − 6

= 3 + 2 · 3k+1a

b
+ 32k

a2

b2

= 3 + 3k+1 2ab+ 3k−1a2

b2
,

so |f(y) − f(x)| ≤ |y − x| for all y ∈ B1/3(0), with equality if and only if a = 0 or a = −2. Thus
x = 3 and x = −3 are the only preperiodic points in this ball.

Next, we will show that the point x = −2 is the only remaining preperiodic point of f . First, note
that for |x| > 1, we have |f(x)| = |x|2 > |x|, so we need only look in the unit ball. As we have already
considered the case x ∈ B1/3(0), we need to consider the cases x ∈ B1/3(1) and x ∈ B1/3(2). We may

reduce this if we note, for x ∈ B1/3(2), we have f(x) = (2+3k ab )2−6 = −2+3k(2ab+3ka2

b2
) ∈ B1/3(1).

Thus we need only consider x ∈ B1/3(1) to classify all preperiodic points of f .

First, note S(x) = f(x − 2) + 2 = −4x + x2 is conjugate to f , so periodic points x ∈ B1/3(0)
of S correspond to periodic points y ∈ B1/3(0). We may then use lemma 4.1 of Lindahl [4] (with
m = 2, k = 7, s = 0) to write (with λ1 = f ′(−2) = −4)

r(−4) =

3
1
2

(
6∏

n=1

|1− (−4)n|

)−1− 1
6

=
1

3

3
4



8 Nico Diaz-Wahl, Marcel Hudiani, and Connor Thompson

So that S is analytically conjugate to g(x) = −4x in the open disk D
1/3

3
4
(0) in Cp, or equivalently

(in Qp) the closed ball B1/3(0). Thus S has no preperiodic points besides x = 0 in B1/3(0), so f
has no preperiodic points besides x = −2 in B1/3(1). Thus f has no preperiodic points except for
x = 3 and x = −2.

3.2. Preperiodic Points of Perturbed Maps. Inspired by the beginning of the above example,
we begin with the following lemma:

Lemma 3.1. Suppose T : Qp → Qp is a polynomial with coefficients in Zp such that T (α) = α and
|T ′(α)| < 1 for some α ∈ Zp. Then α is an attracting fixed point with basin of attraction B1/p(α).

Proof. First, let T (x) = α + T ′(α)(x − α) +
∑∞

n=2 an(x − α)n with |an| ≤ 1. Then, we can write

any point in B1/p(α) in the form α+ pkc with k ≥ 1 and |c| = 1. We begin with T (x):

S(x) = α+ λ(x− α) +

∞∑
n=2

an(x− α)n

S(α+ pkc) = α+ λ(pkc) +
∞∑
n=2

an(pkc)n

= α+ λpkc+ p2kc2
∞∑
n=2

an(pkc)n−2

Then, continuing from above,

|S(α+ pkc)− α| =

∣∣∣∣∣λpkc+ p2kc2
d∑

n=2

an(pkc)n−2

∣∣∣∣∣
≤ max

{∣∣∣λpkc∣∣∣ , ∣∣∣∣∣p2kc2
d∑

n=2

an(pkc)n−2

∣∣∣∣∣
}

≤ max
{∣∣∣λpk∣∣∣ , ∣∣∣p2k∣∣∣}

≤ p−(k+1),

which concludes our proof. �

Following similar logic to the example we began with, we will prove the following theorem:

Theorem 3.2. Let T : Q3 → Q3 be of the form T (x) = x2 + c, where |c| ≤ 1
3 . By Hensel’s lemma,

T has a unique fixed point α0 ∈ B1/3(0) and a unique fixed point in α1 ∈ B1/3(1). Let λ = T ′(α1).

Then if |1 − λ2| = 1
3 , T has exactly two preperiodic points in Q3 − B1/3(0) and finitely many in

B1/3(0).

Proof. First we see that, letting g(x) = T (x) − x, g(0) = c, g′(0) = −1 and g(1) = c, g′(1) = 1, so
by Hensel’s lemma T has unique fixed points α1 and α0 as described above. Next, similarly to the
example above, note that T (2 + 3k) = 4 + 12k + 9k2 + c ∈ B1/3(1) for all k ∈ Z3, so we may again
consider only elements of B1/3(i) for i = 0, 1. Next, we will show the fixed point α0 is attracting.
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Let α0 ∈ B1/3(0) be a fixed point of T . Then, given x ∈ B1/3(0) \ {α0}, we have x = α0 + 3ka

for |a| = 1, k ∈ Z+, so

T (x)− α0 = (α0 + 3ka)2 + c− α0

= α2
0 + 2 · 3kaα0 + 32ka2 + c− α0

=
(
α2
0 + c− α0

)
+ 3k+1

(
2a
α0

3
+ 3k−1a2

)
= 3k+1

(
2a
α0

3
+ 3k−1a2

)
.

Observing that 2aα0
3 + 3k−1a2 ∈ Z3, we have shown that α0 is an attracting fixed point, and there-

fore, since points which eventually map to α0 must be contained in Zp, and each point can have at
most 2 elements in its preimage under a quadratic map, T has finitely many preperiodic points in
B1/3(0) \ {±α0}.

Now, consider the equation T (x) − x = x2 − x + c = 0. This has solutions of the form x± =
1±
√
1−4c
2 , with x+ and x− corresponding to the choice of sign. By the Hensel’s lemma argument

above, we know x+ and x− are both elements of Z3, and furthermore we know that one is an
element of B1/3(1), and the other of B1/3(0). We now split our argument into two cases:

(1) Suppose x− ∈ B1/3(1). Then, let λ = T ′(x−) = 1−
√

1− 4c ∈ B1/3(2). We then see that T

is topologically conjugate to the map S(x) = T (x+ x−)− x− = λx+ x2, which has a fixed
point at x = 0. We will use the theorems of Lindahl [4] we used previously to determine
the radius on which S is analytically conjugate to its linear part. First, we find m:

|1− λ| = |
√

1− 4c| = 1

|1− λ2| = |1− 1 + 2
√

1− 4c− 1 + 4c|

≤ max
{
|4c|, |1− 2

√
1− 4c|

}
≤ 1

3
.

To justify the final inequality note that 1 − 2
√

1− 4c = 2λ − 1 is the difference of two
elements of B1/3(1) and is therefore an element of B1/3(0). Thus m = 2, which tells us

s = 0 as in our example. We then let k = 3, so k−1
mps = 1 is a nonnegative integer power of

3 and thus, by lemma 4.1 of Lindahl, a lower bound for the radius of analytic conjugacy of
S to its linear part can be found by

r(λ) =
[
3

1
2
(
|1− λ||1− λ2|

)−1]− 1
2

= 3−
1
4 |1− λ2|

1
2{

= 1
3

3
4 > 1

3 |1− λ2| = 1
3

≤ 1
3

5
4 < 1

3 |1− λ2| < 1
3

.

By a similar argument to the example, we have shown T has no preperiodic points in
B1/3(1) \ {α1} and thus T has exactly two preperiodic points.

(2) We will use a similar argument to the above in the second case. Suppose x+ ∈ B1/3(1).

Then, let λ = T ′(x+) = 1 +
√

1− 4c ∈ B1/3(2). We then see that T is topologically

conjugate to the map S(x) = T (x+ x+)− x+ = λx+ x2, which has a fixed point at x = 0.
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We will use the theorems of Lindahl [4] we used previously to determine the radius on which
S is analytically conjugate to its linear part. First, we find m:

|1− λ| = |
√

1− 4c| = 1

|1− λ2| = |1− 1− 2
√

1− 4c− 1 + 4c|

≤ max
{
|4c|, |1 + 2

√
1− 4c|

}
≤ 1

3
.

To justify the final inequality note that 1 + 2
√

1− 4c = 2λ − 1 is the difference of two
elements of B1/3(1). The remainder of the argument follows similarly to the above.

If we note that T−1(α1) has exactly one element −α1 in B1/3(2), we have now shown the theorem
to be true. �

We continue with a generalization of the above, which does not quite cover each ball of radius
1
p . We begin with a second theorem.

Theorem 3.3. Let T : Qp → Qp for any odd prime p such that T (x) = x2 + c, where |c|p < 1. If
|1− λm| > p−m, where m is the smallest integer such that |1− λm| < 1, then the set

PrePer(f) ∩

(⋃
`∈L

B 1
p
(`)

)
is finite. In this case, L is the set

L =
{
` ∈ {1, 2, . . . , p− 1} : `(2

k) ≡ 1 mod p for some k ∈ Z
}
.

Proof. From Hensel’s lemma, using the same argument we used above, f has a fixed point α0 ∈
B1/p(0) and α1 ∈ B1/p(1). These take form similar to x± above. Now, note that the eigenvalue
f ′(α1) = λ ∈ B1/p(2). To use the linearization theorem of Lindahl [4], we find m to be the smallest
integer such that |1 − λm| < 1, or equivalently 2m ≡ 1 mod p. Because λ ∈ Qp, |1 − λm|p < 1 ⇒
|1− λm|p ≤ 1

p . Then, we know Lindahl’s parameter s = 0. Then, let k = m+ 1, so that [4]

r(λ) =
[
p

1
p−1 |1− λm|−1

]− 1
m

= p
− 1

m(p−1) |1− λm|
1
m .

Letting |1− λm| = p−q, we continue

r(λ) >
1

p
⇔ 1

m(p− 1)
+

q

m
< 1

⇔ 1 + q(p− 1)

m(p− 1)
< 1

⇔ q < m− 1

p− 1

⇔ q < m because q,m ∈ Z.

The remainder of the theorem follows similarly to above, by induction.
�

We proceed with a general result about preperiodic points of functions T : Qp → Qp such that

T (x) = xk + c with k being a power of p and |c|p < 1.
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Theorem 3.4. Let T be as above with p an odd prime. Then PrePer(T ) contains exactly p − 1
points outside of B1/p(0), all of which are fixed points. It contains finitely many preperiodic points
inside B1/p(0).

Before we prove the above theorem, we will prove the following lemma:

Lemma 3.5. Let T be described as above. Then Per(T ) contains exactly p points, all of which are
fixed points.

Proof. Similarly to above, define gn(x) = Tn(x)− x. Then, because c ≡ 0 mod p, we have gn(x) ≡
xk

n − x ≡ 0 mod p for all n ∈ Z+, x ∈ {0, 1, . . . , p− 1}. Furthermore, we see that

(7) g′n(x) = T ′(Tn−1(x))(Tn−1)′(x)− 1.

Then, if we note that T ′(x) = kxk−1 ≡ 0 mod p for all x ∈ Zp, and that all terms of (7) are surely
in Zp, we see that g′n(x) ≡ −1 mod p, so by Hensel’s lemma, for all n ∈ Z+, Tn has a unique
periodic point of period n in each ball B1/p(i), i ∈ {0, 1, . . . , p − 1}. Because a fixed point has

period n for all n ∈ Z+, we have shown the theorem to be true. �

We proceed with the proof of theorem 3.4:

Proof. For the sake of notation, we write T (x) = xp
r

+ c. Then, let k ≥ 1, |a| = 1, and let α be a
fixed point of f outside of B1/p(0). We then have

T (α+ pka)− α = (α+ pka)p
r

+ c− α

=

pr−1∑
i=0

(
pr

i

)
αi(pka)p

r−i + 0

= αp
r−1pk+ra+

(
pr

pr − 2

)
αp

r−2p2ka2 +

pr−3∑
i=1

(
pr

i

)
αi(pka)p

r−i,

so that

|T (α+ pka)− α| = |αpr−1pk+ra+

(
pr − 1

pr − 2

)
αp

r−2

pr − 2
p2k+ra2 +

pr−3∑
i=1

(
pr

i

)
αi(pka)p

r−i|

= |αpr−1pk+ra| = p−(k+r),

thus the point α is attracting with no preperiodic points in B1/p(α). Next, we observe that the fixed
point α ∈ B1/p(0) is an attracting fixed point and thus by a similar argument to that in theorem
3.2, there are finitely many preperiodic points in B1/p(0). Alongside lemma 3.5, this concludes our
proof. �

We continue to explore the concept of small perturbations of maps with the following theorems.
First, consider a map

T (x) = α+ λ(x− α) +
∞∑
n=2

an(x− α)2

whos power series converges on Zp, with an ∈ Zp and λ not a root of unity. Consider also a
perturbation

S(x) = T (x) + E(x), E(x) =
∞∑
k=0

ekx
k
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whos additional power series converges on Zp with |ek| ≤ ε for all k ∈ Z≥0. We may use a power
series extension of Hensel’s lemma [2] to observe that S has a fixed point β such that |β−α| < |1−λ|.
We then state the theorem:

Theorem 3.6. Let T and S be as above. Then, β → α as ε→ 0. More precisely, |β − α| ≤ ε
|1−λ| .

Furthermore, if λ = T ′(α) and µ = S′(β), then µ→ λ as ε→ 0. More precisely, |µ− λ| ≤ ε
|1−λ| .

Proof. Consider the following:

S(β)− T (β) = β − α− λ(β − α)−
∞∑
n=2

an(β − α)n

E(β) = (1− λ)(β − α)− (β − α)2
∞∑
n=2

an(β − α)n−2.

Using the fact that |α− β| < |1− λ|, we then have

|1− λ||β − α| = |E(β)| ≤ ε

by the strong triangle inequality. Thus |β − α| < ε
|1−λ| . This concludes the proof of the first

statement in the theorem. We will then prove the second statement:

|λ− µ| = |T ′(α)− S′(β)|
≤ max{|T ′(α)− S′(α)|, |S′(α)− S′(β)|}

≤ max

{
ε,

ε

|1− λ|

}
=

ε

|1− λ|
,

which concludes the proof. �

4. Multivariable Maps

We begin this section with the following lemma:

Lemma 4.1. Let T : Qn
p → Qn

p be a map of formal power series,

T (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) for fi(x1, . . . , xn) ∈ Zp[[x1, . . . , xn]]

and let α be a fixed point of T in Zp. If ||JT (α)|| < 1, then α is an attracting fixed point with
basin of attraction containing B1/p(α).

Proof. Let

fi(X1, . . . , Xn) = α+ JT (α)(X − α) +
∑

k∈Nn : |k|`1≥2

ci,k(X − α)k
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with ||JT (α)|| < 1. Then for x ∈ B1/p(α), we can write x = α+ pmh with ||h|| = 1.

|fi(x)− α|p =

∣∣∣∣∣∣α+ JT (α)(x− α) +
∑

k∈Nn : |k|`1≥2

ci,k(x− α)k − α

∣∣∣∣∣∣
=

∣∣∣∣∣∣JT (α)(pmh) +
∑

k∈Nn : |k|`1≥2

ci,kp
m|k|hk

∣∣∣∣∣∣
≤ max

{
||JT (α)||p−m, |ci,k|pp−m|k|||h|||k|

}
≤ p−(m+1),

hence
||T (x)− α|| ≤ p−(m+1),

thus if x ∈ B1/pk(α), then T (x) ∈ B1/pk+1(α), so T (n)(x) ∈ B1/pk+n(α), therefore B1/p(α) is

contained in the basin of attraction of α as T (n)(x)→ α as n→∞. �

We proceed with an overview of relevant results which describe multivariate maps.

Definition 4.2. Let T : Qn
p → Qm

p , and write T = (T1, . . . , Tm) where Ti : Qn
p → Qp. If the

partial derivatives ∂Ti
∂xj

(defined as difference quotients in the usual way) exist and are continuous

at some point a ∈ Qn
p , we say that T is differentiable at a. If T is said to be differentiable if it is

differentiable at all points a ∈ Qn
p . Furthermore, if T is differentiable at a, we define the Jacobian

of T to be

JT (a) =


∂T1
∂x1

· · · ∂T1
∂xn

...
. . .

...
∂Tm
∂x1

· · · ∂Tm
∂xn


where all derivatives are evaluated at a.

Proposition 4.3. Chain Rule: If T : Qn
p → Qm

p and S : Qm
p → Ql

p, then

JS◦T = JS(T )JT , i.e. for all a ∈ Qn
p , JS◦T (a) = JS(T (a))JT (a).

Lemma 4.4. Let Tm denote T ◦ · · · ◦ T composed with itself m times. Then

JTm(a) = JT (Tm−1(a))JT (Tm−2(a)) · · · JT (T (a))JT (a).

Lemma 4.5. (Keith Conrad) Let T : Qn
p → Qn

p be a polynomial map with coefficients in Zp. Then
if a ∈ Znp satisfies

||T (a)|| < | det JT (a)|2,
there is a unique α ∈ Znp such that f(α) = 0 and ||α− a|| < | det JT (a)|. More precisely,

(1) ||α− a|| = ||JT (a)−1T (a)|| ≤ ||T (a)||/|det JT (a)| < |det JT (a)|.
(2) |det JT (α)| = |detT (a)|.

In particular, if ||T (a)|| < 1 (e.g. T (Znp ) ⊂ Znp ) and |det JT (a)| = 1, then there is a unique α ∈ Znp
such that T (α) = 0 and ||α− a|| < 1. The solution may be obtained by “Newton’s method”, that
is with the recurrence

αn+1 = αn − (JT (αn))−1T (αn)

with α1 = a.
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We study the case of so-called Hénon maps with good reduction (meaning T and T−1 have coef-
ficients in Zp). Hénon maps are maps of the form T : Q2

p → Q2
p via (x, y) 7→ (A + By − φ(x), x).

Indeed,

JT ((a, b)) =

[
−φ′(a) 1
B 0

]
which has determinant −B. If T is invertible, the inverse is

(y,B−1(−A− x+ φ(y)))

which has coefficients in Zp if and only if B−1 ∈ Zp, i.e. |B| = 1, so | det JT ((a, b))| = 1. The only
hitch is that ||T (a, b)|| could equal 1; indeed this is very likely the case.

Let’s compute the eigenvalues for JT ((a, b)). First, χJT (X) = X2 + φ′(a)X − B, so the eigen-
values are

λ =
−φ′(a)±

√
φ′(a)2 + 4B2

2
= (−φ′(a)/2)±

√
(φ′(a)/2)2 +B2.

We would extend the norm to K/Qp where K = Qp(
√

(φ′(a)/2)2 +B2), thus

|λ|K = |NK/Qp
(λ)|1/|K:Qp|

p = | −B|1/dp = 1

where |K : Qp| denotes the degree of the field extension K/Qp which is 1 or 2 depending on whether
or not λ is a square in Qp (though this is not relevant since |B|p = 1). Both eigenvalues have norm
1.

5. Hénon Maps

In this section, we will briefly explore Hénon maps, mostly through examples. We will show
results including repeated eigenvalues and irrational periodic points. The definition provided in the
previous section pertains to generalized Hénon maps. A degree 2 Hénon map is a map T : Q2

p → Q2
p

of the form
TA,B = (A+By − x2, x)

with B 6= 0. Note that this map can be defined by the ordered pair A,B. A Hénon map has inverse

T−1A,B = (y,
1

B
(x+ y2 −A)).

We say a Hénon map has good reduction if both TA,B and T−1A,B have coefficients in Zp. That is, if

A ∈ Zp and |B| = 1.

5.1. An Interesting Function? Consider the function T (x, y) = (2 − y − x2, x) from Q2
3 to Q2

3.
Using sage, we found the following 3-cycles of T :

(−1,−1)→ (2,−1)→ (−1, 2)→ (−1,−1)(8)

(1, 1)→ (0, 1)→ (1, 0)→ (1, 1)(9)

The cycle (1) is contained entirely in B 1
3

(
(−1,−1)

)
, while the points in the cycle (2) are each

distance 1 from each other. If we consider the function

Hn(x, y) = Tn(x, y)− (x, y)

which may not be an automorphism, we can spot a difference in the Jacobian of H. Note that a
root of H3 is a fixed point of T 3. First, for points (a, b) in the cycle (1),

|det(JH3)|3 =
1

9
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while for points (a, b) in the cycle (2),

|det(JH3)|3 = 1.

This suggests a relationship between det(JH) and the potential closeness of periodic points of T ,
which is consistent with a multivariable Hensel’s lemma [2]. For example, using the multivariate
Hensel’s lemma we could prove that any 3-cycle of T must be at least distance 1 from the points
in (2), and at least distance 1

81 from the points in (1). We then continue to observe fixed points for
different cycles to look for patterns in the Jacobian:

• For the Hénon map defined by (A,B) = (1, 1), we have fixed points or points of period 2
at (±1,±1), and |det(JH2)| = 1.
• For (A,B) = (1,−1), the 3-cycle {(1, 0), (0, 1), (0, 0)} produces |det(JH3)| = 0, while the

4-cycle {(1, 1), (−1, 1), (−1,−1), (1,−1)} produces |det(JH4)| = 1.
• For (A,B) = (4,−1), the 2-cycle {(2, 0), (−2, 2), (0,−2), (0, 0)} produces |det(JH4)| = 0.

Each of these points is a root of Hn for some n, and the multivariate Hensel’s lemma in theorem
3.3 of [2] provides us with a bound on how nearby a different T -periodic point of the same period
can be (in the cases where |det(JH)| 6= 0). That is, we can prove the uniqueness of these periodic
points within balls of radius |det(JH)| for those with nonzero determinant. We also may want to
observe more points of varying periods and various cycles or search for a reason justifying these
conjectures, as well as look further into those with determinant 0.

5.2. Proving the existence of a periodic point using Hensel’s lemma. Consider the Hénon
map T (x, y) = (−10 + 2y − x2, x). Using SageMath, we found that the point (1, 2) has period 5
mod 36. Through further exploration, we found more accurate descriptions of the periodic point
near (1, 2), as (1, 2) itself is not periodic. We then observe the following 5-cycle mod 3 of T (x, y):

(10) (1, 2)→ (2, 1)→ (0, 2)→ (0, 0)→ (2, 0)→ (1, 2).

We proceed with the following proposition:

Proposition 5.1. For each point ~a ∈ {(1, 2), (2, 1), (0, 2), (0, 0), (2, 0)}, there is a unique ~α in the
closed ball B 1

3
(~a) such that ~α is T -periodic with period 5.

Proof. First, note that this is equivalent to having a unique root of H5, with H5 defined as above.
We then apply the multivariable Hensel’s lemma provided in [2]. Given each of these points, we
calculate the value ||H5(~a)|| as well as |det(JH5)|:

~a ||H5(~a)|| |det(JH5)|
(1,2) 1/729 1
(2,1) 1/9 1
(0,2) 1/3 1
(0,0) 1/3 1
(2,0) 1/3 1

Because each of these points ~a satisfies ||H5(~a)|| < |det(JH5)|2, we know that, for each ~a listed
in (3), there is exactly one root of H5, and therefore exactly one T -periodic point of period 5, in
each closed ball B 1

3
(~a) (equivalently in each open ball B1(~a)). �

We now move on to a proposition regarding the rationality of these points.

Proposition 5.2. The periodic point ~α ∈ B 1
3
(0, 0) described above is irrational. That is, ~α /∈ Q2.
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Proof. We will begin by supposing ~α = (x, y) ∈ Q2 has period 5 with respect to T and is within
one of the balls B 1

3
(~a) described above.

First, note that if any of the points in the 5-cycle {Tn(x, y)}4n=0 is rational, they must all be. Then
without loss of generality we may assume that (x, y) ∈ B 1

3
(0, 0). Because T has good reduction

(as defined in [1]), we know from [1] that the filled Julia set Fp(T ) = Z2
p for each odd prime p.

Thus our point (x, y) must take on the form ( 3A
2m ,

3B
2n ) for some A,B ∈ Z, m, n ∈ Z+. We will now

provide bounds on F2(T ) and F∞(T ), using a proof modelled after the proof of proposition 7 from
[1].

First, define the sets

S+ =
{

(x, y) ∈ Q2
2 : ||(x, y)|| > 1, |x| ≥ |y|

}
S− =

{
(x, y) ∈ Q2

2 : ||(x, y)|| > 1, |x| ≤ |y|
}
.

Suppose (x, y) ∈ S+. Then we have that |x|2 > |y| > |2y| and |x|2 > 1 > | − 10|. From this, let
T (x, y) = (x′, y′). Then

|x′| = |−10 + 2y − x2| = |x2| > |x| = |y′|,

so ||(x′, y′)|| = ||x||2 and (x′, y′) ∈ S+. By induction, ||Tn(x, y)|| = ||x||2n → ∞, so (x, y) /∈ F (T ).
Next, suppose (x, y) ∈ S−. This tells us that |y2| > |x| and |y2| > |10| and |12y

2| = 2|y| > |y|. Let

T−1(x, y) = (y, 12(x+ 10 + y2)) = (x′, y′). We then have

|y′| = |1
2

(x+ 10 + y2)| = 2|y|2 > |y| = |x′|

so ||T−1(x, y)|| = 2|y2| and by induction ||T−n(x, y)|| = 2n|y|2n → ∞, so (x, y) /∈ F2(T ). We have
now shown that F2(T ) ⊆ Z2

2 (it may be a proper subset, but that isn’t important for this proof).
This tells us that our T -periodic point of period 5 must take the form (3A, 3B) with A and B
integers. To find a bound on A and B, we will consider the filled Julia set F∞(T ) in the complex
plane C2.

First, given (x, y) ∈ C2 suppose |x| ≥ |y| > 10 where | · | is now the standard absolute value in
C. Then if we let T (x, y) = (x′, y′) we have that

|x′| = | − 10 + 2y − x2| ≥ |x2| − | − 10 + 2y|
≥ |x|2 − |2y| − 10

≥ |x|(|x| − 2)− 10

≥ 8|x| − 10

≥ 7|x| > |x| = |y′|.

If we notice that ||x, y|| =
√
|x|2 + |y|2 ≤

√
2|x|, we can then see that

||T (x, y)|| > |x′| ≥ 7|x| ≥ 7√
2
||(x, y)|| > 3||(x, y)||
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and, because |x′| > |y′| > 10, we then have by induction ||Tn(x, y)|| > 3n||(x, y)|| → ∞, so
(x, y) /∈ F∞(T ). Now suppose |y| ≥ |x| > 10. Then, letting T−1(x, y) = (x′, y′), we see that

|y′| = 1

2
|x+ 10 + y2| ≥ 1

2

(
|y|2 − |x| − 10

)
≥ 1

2
(|y|(10− 1)− 10)

>
1

2
(8|y|) = 4|y| > |y| = |x′|.

We then see that ||T (x, y)|| > |y′| ≥ 4|y| ≥ 2
√

2||(x, y)|| > 2||(x, y)||. Because |y′| > |x′| > 10, we
have by induction that ||T−n(x, y)|| > 2n||(x, y)|| → ∞ and therefore F∞(T ) ⊆ B10(0, 0). Note
that this is a näıve upper bound and the ball containing F∞(T ) is likely much smaller.

From the above, we know that, if our periodic point (x, y) ∈ B 1
3
(0, 0) in Q2

3 is rational, we

must have (x, y) = (3A, 3B) for A,B ∈ {0,±1,±2,±3}. By checking each of these points for
periodicity in sage, we find that none of them are periodic with period 5. Thus the periodic point
(x, y) ∈ B 1

3
(0, 0) is contained in Q2

3 \Q2. �

Corollary 5.3. None of the periodic points ~α described in the propositions above are rational.

5.3. Repeated Eigenvalues. We now want to investigate Hénon maps alongside the eigenvalues
of their Jacobian matrices. We begin with a proposition:

Proposition 5.4. Suppose a Hénon map T has a fixed point (x, x) such that the Jacobian matrix
JT (x, x) has a repeated eigenvalue λ. If T has good reduction, then |λ| = |x| = 1.

Proof. Let T (x, y) = (a+ by − x2, x). Then JT =
(−2x b

1 0

)
, so we have characteristic polynomial

pJT (λ) = λ2 + 2xλ− b = 0

⇒ λ = −x±
√
x2 + b.

To have repeated eigenvalues, we must have −b be a square with x2 = −b. Because T has good
reduction, we then have |x|2 = |b| = 1 so that |x| = 1, and |λ| = | − x| = |x| = 1. �

Corollary 5.5. Choice of repeated eigenvalue λ (or equivalently choice of point x) above determines
a unique map.

5.4. Nearby Fixed Points. Consider the set of Hénon maps T : Q2
p → Q2

p such that T (x, y) =

((pk + 1)y − x2, x). These maps all have good reduction, and they have fixed points at the origin
(0, 0) as well as (pk, pk). These two fixed points both lie in B1/pk(0, 0).
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