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Abstract. Influenza is a viral infectious disease of high importance and widely

studied around the world. In this study we model the within-host transmission

of influenza in a continuous deterministic setting (system of ordinary differential

equations) and a discrete stochastic framework (discrete-time Markov chain model).

Previous models omit cellular restoration through cellular death, which is a key

component for the possibility of chronic infections. We thus investigate the effect

of cellular restoration on the spread of influenza within the host. The conditions or

existence of a disease-free equilibrium and biologically relevant endemic equilibrium

are stated in terms of the basic reproductive number, R′. When R0 is less than

or equal to one the disease-free equilibrium was found to be locally asymptotically

stable and the endemic equilibrium was unstable. For R0 > 1 the equilibrium

behaviors were reversed, which is consistent with models that do not include cellular

restoration. Finally, while Discrete-Time Markov Chains are rarely used in endemic

models with more than two variables, we develop a method designing the necessary

transition matrix to utilize DTMC instead of CTMC in endemic modeling.

1. Introduction

Influenza is a viral infectious respiratory disease that can be seasonal and mild,

severe, or chronic. In 2018 there were 3-5 million cases of severe influenza around the

world, resulting in approximately 500,000 deaths [1]. Part of what makes Influenza

dangerous is that the virus mutates very quickly; in one day it can mutate more

than humans have in the past several thousand years [20]. Influenza virus may
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be contracted via an air-born path by inhaling the cough droplets of an infected

individual (in the case of human influenza), or a vector-born virus that is contracted

via infected birds (in the case of avian influenza). Human influenza attacks the upper

respiratory tract; however, it is capable of spreading to cells in the lower respiratory

tract, cardiovascular system, and nervous system. It is in these secondary locations

that it is most dangerous [11]. Humans are primarily infected by either influenza A

or influenza B. These two types of influenza are distinguishable by the rate the virus

mutates. Individuals can sometimes develop immunity to influenza B for years, but

due to the rate of mutation in influenza A, people are not able to develop immunity

[11, 20].

Once an influenza viron makes it past the mucous membrane that covers organ

tissue, it is trapped within the pericilliary fluid which makes direct contact with

epithelial cells in the respiratory tract. The epithelium consists of four different types

of cells: ciliated cells, non-ciliated cells, clara cells, and basal cells. Influenza usually

targets ciliated cells and non-ciliated cells and binds to their cell surface receptors

[35, 34, 39, 48, 53]. Viruses cannot replicate on their own, so they must hijack cells

and utilize their genetic replication process [20]. Approximately 20 minutes after

an influenza viron binds to the surface receptors of a cell, it is brought into the

cell through endocytosis, allowing for viral genetic material to be sent to the nucleus

where it is replicated and used to produce viral proteins [42, 271-297]. Once the viral

proteins and genetic material are put together, new virons are sent out of the cell to

infect other cells [5]. Thousands of new virons may be produced within 6 hours of

the initial infection of a single cell [5, 20]. The presence of foreign bodies prompts the

activation of interferons, which down-regulate viral production, and activate natural

killer cells as part of the innate immune response [5, 43]. About 5 day post infection,

the adaptive immune response kicks in and antigen-specific antibodies are detectable

[8, 27, 36].

Most of the time, the infected cell will produce virons until its cell membrane

is either consumed or the cell is destroyed by the immune system [5, 8]. Death is

the most likely outcome for infected cells, however, a minority of infected cells are

able to recover; these cells are called ‘survivor’ cells [16, 22]. Cells that have the

ability to recover from influenza B infection are predominantly ciliated epithelial

cells. After the infection has run its course, approximately 3% of the epithelial cells
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can be labeled as survivor cells, 74% of which were ciliated, and are located primarily

in the trachea [16]. The presence of these survivor cells has been shown to improve

epithelial barrier function, have antiviral effects, increase lung compliance, and speed

host recovery [16].

At peak infection, 30-50% of epithelial cells are killed [8]. The body recognizes

areas of dead cells due to infection as an injury and responds using a process called

cell restoration. Within the trachea, nearby epithelial cells move to the wound within

12-24 hours. 15-24 hours after the injury, these cells begin to de-differentiate, then

proliferate to cover the surface where the dead cells were, which results in new

healthy cells [12, 13, 14, 23, 49, 51]. This process produces new cells that may

be susceptible to infection, and the susceptibility of these new cells can result in

chronic influenza infections. Thus, it is important to incorporate cellular restoration

into any mathematical model that should be able to produce mild, severe, or chronic

infections.

Mathematical modelling has been used to study the spread of diseases throughout

populations dating back to the work of Daniel Bernoulli (1700-1782) regarding the

effectiveness of inoculation against smallpox [9]. Since then, similar but expanded

upon techniques have been used to analyze diseases such as Tuberculosis, HIV, In-

fluenza, West Nile Virus, and Zika. Disease transmission models are so important

because they allow us to acquire useful public health information, such as epidemic

severity, epidemic length, vaccine and quarantine effectiveness, and the necessary

anti-viral drug quantity. We use mathematical models because this information is

less accessible through typical experimental and statistical approaches due to the

scale of epidemics and the lack of pertinent data available [31]. Deterministic and

stochastic models are commonly used and we will discuss both types throughout this

paper.

The use of mathematical models for the study of within-host viral kinetics is a

newer but similar practice to population studies. Instead of human populations, we

have populations of cells. The importance of modeling revolves on their capability

to facilitate our understanding of the mechanisms of viral kinetics, advise treatment

methods and provide insight towards immune response dynamics and drug effec-

tiveness [7]. This practice can be seen in HIV models, as well as similar Hepatitis

C virus (HCV) and Human papillomavirus (HPV) models, where viral load decline
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in patients with antiviral drug therapy [5]. It is also present in deterministic HIV

models that explore topical microbicide product properties and how they work to

prevent the sexual transmission of infections [29].

The within-host kinetics of influenza have been studied through many variations

of mathematical models. These models examine viral loads kinetics from infection

data, analyze symptoms, help us understand immune response dynamics, explore

the impact from different host and viral factors, and review the efficacy of different

treatments [46]. Influenza models come in ranging complexity, considering few to

substantial numbers of parameters and variables. Common parameters that are

considered include the viral clearance rate, the lifespan of infected cells, the lifespan of

a viron, the length of the latent/eclipse phase, the rate of epithelial cell regeneration,

and the lifespan of the interferon [7]. There is always a give and take between the

simplicity and complexity of a model. Simplicity allows for better analysis but may

sacrifice specific biological factors while complexity includes more biological factors

at the cost of more unknown values that need to be estimated. In our model we

consider a cellular restoration rate (rD), the rate at which target cells come into

contact with virons (β), the length of the latent phase
(

1
τE

)
, the lifespan of an

infected cell
(

1
τI

)
, and the production and clearance rates of virons (p and c).

Deterministic models are useful for larger populations, through differential or dif-

ference equations, they allow us to make informed predictions. They assume that the

susceptible and infectious populations are functions of time [31]. Many within-host

influenza kinetics models already exist. They consider different degrees of complexity.

On the simpler end, such are the models developed by Baccam et. al, the variables

in their first model include are target/susceptible epithelial cells, infected cells, and

level of viral titer; their second model expanded upon the first to include two classes of

infected cells: latent cells, which are infected cells that do not actively produce virons;

and actively producing cells. This divide was instituted to account for the time delay

of viron production after a cell is initially infected. Their second model produced

more accurate cell lifespan parameters [5]. These and similar models assume that the

limited availability of target epithelial cells is what eventually eradicates the virus,

but does not directly include the impact from any immune responses. Advantages of

these include that much of the available viral titer data fits them. However, they do
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not specify what biological factors are responsible for the limitation of target cells,

which leads to different parameter values [46].

As influenza models begin increasing in complexity, they start introducing more

immune response factors. The model developed by Miao et. al builds upon the

variables of Baccam et al.’s first model, by now introducing cells immune to infection

and cells that regenerate. This is through antibodies IgG and IgM, as well as effector

CD8 T cells. These come into play through the rates in which target cells, infected

cells, and viral titer values interact with each other. Beyond this, Miao et. al split

the models into two phases: the first taking into account innate immune responses

and the second considering adaptive immune responses. The advantage of this model

is that it more accurately fits the common pattern of viral titer data containing two

peaks [36]. Our model will consider cellular restoration but will not take immune

response factors directly into account.

Stochastic models differ from deterministic models in that they do not produce a

single outcome, but instead generate a probability distribution of outcomes. This

inherent randomness is useful in circumstances in which there are complex factors

that we will not be able to perfectly model, which is ideal for biological systems such

as the within-host spread of influenza. We use stochastic models to predict likely

paths the influenza infection may take within the human body.

Researchers have used a number of different stochastic techniques in the modeling

of infectious diseases, including Continuous-Time Markov Chains [6, 52], Discrete-

time Markov Chains [40], Wright-Fisher Model [55], stochastic differential equations

[10], and stochastic simulations on adaptive random networks [41]. They have also

been used in prediction simulations of flu outbreaks [37, 40]. It is possible for de-

terministic models to predict an epidemic, while simulations of a stochastic model

of the same disease result in disease extinction. These differences in model output

indicates that the stochasticity of the infection process can drastically change the

outcome [10]. Using stochastic modeling will allow us to use parameter estimation

to complement our deterministic model.

A number of biological processes for within-host spread of infections can be ap-

propriately modeled using stochastic processes. In 2019, Zhao et al. found that the

mutation of RNA viruses, such as influenza, and the onset of antiviral drug resis-

tance arise through a stochastic evolutionary process [55]. Additionally, utilizing
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Continuous-Time Markov Chains has revealed that a stochastic event at the start

of an influenza infection may result in virus extinction before symptoms are even

noticed [52].

Time-delays exist in between transitions of cells between exposed to infectious

classes, and infectious to dead/recovered classes. Understanding these time-delays is

important because the amount of time a cell spends in each phase affects the number

of virons produced by that cell. Stochastic models have been used to model these

time delays because the amount of time it takes to transition between these states

depends on the virus strain, and the cell. Comparing various distributions for the

time-delays have revealed that Normal and lognormal delays provide better fits to

biological data [24].

2. Deterministic Model

2.1. Governing Equations: In this project we propose to study the disease inter-

action with cells . The cells are grouped into four classes: Target cells, T , Exposed

cell, E, Infectious cells, I, and Dead cells D (see Figure 2.1). T , represent the cell

population susceptible to infection. These cells transition to the exposed class at the

rate β. Cells enter the target class at a rate rD due to cellular restoration which

is triggered by dead cells, D. Exposed cells, E represent the cells that have been

infected but are not yet producing new virons. This class can also be referred to as

the latent or eclipse class. This class gains cells from the target population and loses

cells to the infectious class at a rate of
1

τE
. Infectious cells, I, represent the class

that actively produces new virons. It gains cells from the exposed class and loses

cells to infection related death at a rate of
1

τI
. Finally, Virus, V represents the virus.

Infectious cells produce new virons at rate p and cells clear the virus at a rate c.
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dT

dt
= −βTV + rDD(1)

dE

dt
= βTV − E

τE
(2)

dI

dt
=

E

τE
− I

τI
(3)

dV

dt
= pI − cV(4)

where

N = D + T + E + I =⇒ D = N − T − E − I

T E I D

V

βV 1/τE 1/τI

rD

p

c

Figure 1. Compartmental diagram for model (1)-(4)

We conduct both a stability analysis and a sensitivity analysis on this model.

2.2. Steady states. We first find constant solutions (steady states) for system (1)-

(4), by setting it equal to zero. This makes each derivative equal to zero, thus its

integral produces a constant. We set all four of our rates simultaneously to zero

and solve for the constant values of T,E, I, and V . The first thing we need to do is

substitute N − T −E− I in for D equation (1). N is a constant so this substitution

lets us work with only our four variables.

Starting with (4), we algebraically manipulate it to isolate I and obtain an equation

in terms of V with parameters c and p:

(5) I =
cV

p
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Then, setting (3) equal to zero, algebraically isolating E, and substituting what

we found in equation (2) in for I, we obtain an equation for E in terms of V with

parameters c, p, τE and τI :

(6) E = I
τE
τI

=

(
cV

p

)
τE
τI

Next we follow the same approach for (2) where we will isolate T. Set
dE

dt
equal

to zero, substitute what we found in equation (6) for E, cancel, and we obtain an

equation for T . Due to the cancellation of V (thus V 6= 0), it is only in terms of the

variables c, β, τI and p:

(7) T = E
1

βV τE
=
cV τE
pτI

1

βV τE
=

c

pβτI

Now we move on to the most involved equation, (1), which becomes the following

when we substitute in for D:

dT

dt
= −βTV + rD(N − T − E − I)

First we substitute the values found in equations (7), (6), and (5) for T,E and I.

Then we bring all the terms containing V to one side of the equation and all that

do not contain V to the other. We factor out V and divide the remaining term to

the other side. Finally, we simplify to obtain an equation for V based on all the

parameters:

(8) V =
rD(NβτIp− c)

cβ(1 + rDτE + rDτI)
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Finally, we plug what we found for V back into equations (5) and (6) and we

obtain the following steady state equations:

T =
c

pβτI

E =
τErD(NβτIp− c)

τIpβ(1 + rDτE + rDτI)

I =
rD(NβτIp− c)

pβ(1 + rDτE + rDτI)

V =
rD(NβτIp− c)

cβ(1 + rDτE + rDτI)

(9)

Notice that if V = 0, this implies (from equation (4)) that I = 0, thus E = 0

by equation (3) and finally T = N by equation (1). We call this a Disease-Free

Equilibrium (DFE).

2.3. Basic reproductive number, R0. The basic reproductive number, R0, tells

us how many cells will be infected as a result of one infected cell (secondary cases

per infected cell). If R0 > 1 the virus will grow, if R0 < 1 the virus will diminish,

and if R0 = 1 then further analysis is required.

There are several different techniques to compute R0 but our approach will use

the next generation matrix (NGM). First we take the Jacobian matrix of our system

of equations:

(10) J(X) =


−(βV + rD) −rD −rD −βT

βV − 1
τE

0 βT

0 1
τE

− 1
τI

0

0 0 p −c
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Next, we plug in the conditions of our disease free equilibrium where the number

of target cells is the total number of cells and everything else is zero, T = N,E =

I = V = 0 and we now have:

(11) J(N, 0, 0, 0) = JDFE =


−rD −rD −rD −βN

0 − 1
τE

0 βN

0 1
τE

− 1
τI

0

0 0 p −c


This matrix can be expressed as the difference of a non-negative matrix F and a

non-singular Metzler matrix V . By the work of Van den Driessche and Watmough

[47] we can define the basic reproductive number R0 as the spectral radius ρ of the

matrix FV−1 where:

(12) F =


0 0 0 0

0 0 0 βN

0 1
τE

0 0

0 0 p 0



(13) V =


rD rD rD βN

0 1
τE

0 0

0 0 1
τI

0

0 0 0 c



(14) V−1 =


1
rD
−τE −τI − βN

rDc

0 τE 0 0

0 0 τI 0

0 0 0 1
c
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Multiplying the matrices F and V−1, we obtain:

(15) FV−1 =


0 0 0 0

0 0 0 βN
c

0 1 0 0

0 0 pτI 0


Setting det(λI −FV−1) equal to zero, solving for λ, and taking the largest value,

we obtain:

(16) ρ(FV−1) = R̃0 =

(
βpNτI
c

) 1
3

2.4. Analysis of R0. We can utilize equation (16) in a simplified form because all

of our parameters are positive and we are comparing against 1. Thus our basic

reproductive number is defined by:

(17) R0 =

(
βpNτI
c

)
Next we express our steady state equations in terms of R0 so that we can explore

what will happen when R0 is less than, equal to, or greater than one.

(18) T =
c

pβτI
· R0

R0

=
βpNτI
pβτIR0

=
N

R0

or R0 =
N

T

Since the remaining equations contain the same term, (NβτIp−c), and since cR0 =

NβτIp, the term (NβτIp−c) can also be written as cR0−c or c(R0−1). Substituting

this in to our equilibrium equations for E, I and V , we have the following:

E = (R0 − 1) · τErD
τIpβ(1 + rDτE + rDτI)

I = (R0 − 1) · rD
pβ(1 + rDτE + rDτI)

V = (R0 − 1) · rD
β(1 + rDτE + rDτI)

(19)

We have two cases to consider R0.
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Case 1: R0 ≤ 1

The equation for T in terms of R0, (18), tells us that N < T and the similar equa-

tions for E, I and V , (19), tell us that E, I and V will all be negative. Both of these

aspects are biologically irrelevant because T cannot exceed N and we cannot have

negative cell populations. This tells us that the endemic equilibrium is unstable in

this case.

However, our disease free equilibrium is relevant so we look at the biological im-

plications of R0 ≤ 1. Substituting in for the parameters that make up R0, we obtain

the inequality βpN ≤ c
1

τI
. This tells us that the maximum product of the rate

target cells become exposed and viral production is less than or equal to the product

of viral clearance and the lifespan of infected cells. In other words, the birth rate of

the infection is less than or equal to the death rate of the infection. It makes sense

that these conditions will lead to the disease free equilibrium.

Case 2: R0 > 1

Equation (18) tells us that N > T and (19) tells us that E, I ans V are all greater

than zero. Both of these conditions are biologically relevant so we can consider this

case further. Substituting in for the parameters that define R0, we obtain the in-

equality βpN ≤ c
1

τI
. This tells us that the maximum product of the rate target cells

become exposed and viral production is greater than the product of viral clearance

and the lifespan of infected cells. Opposite from the case above, we have that the

birth rate of infection is greater than the death rate of the infection, logically leading

towards the endemic equilibrium.

The stability of the two equilibrium and its relationship with R0 will be addressed.

2.5. Boundary behavior. Our biological constraints dictate that only non-negative

cell populations are relevant. We analyze the behavior of the system of differential

equations on the T,E, I and V axes, all the combinations of planes, and all the

combinations of hyper-planes, in order to confirm that solutions always point from

the boundaries inward towards the set of positive real numbers of the state space,

Ω = {(T,E, I, V ) ∈ R4|0 ≤ T,E, I, V, N ≥ T + E + I} ⊂ R4
+.
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Axis

T (T, 0, 0, 0)→
(
rD(N − T ), 0, 0, 0

)
E (0, E, 0, 0)→

(
rD(N − E),− E

τE
, E
τE
, 0
)

I (0, 0, I, 0)→
(
rD(N − I), 0,− I

τI
, pI
)

V (0, 0, 0, V )→
(
NrD, 0, 0,−cV

)

Planes

TE (T,E, 0, 0)→
(
rD(N − T − E),− E

τE
, E
τE
, 0
)

TI (T, 0, I, 0)→
(
rD(N − T − I), 0,− I

τI
, pI
)

TV (T, 0, 0, V )→
(
− βTV + rD(N − T ), 0, 0,−cV

)
EI (0, E, I, 0)→

(
rD(N − E − I),− E

τE
, E
τE
− I

τI
, pI
)

EV (0, E, 0, V )→
(
rD(N − E),− E

τE
, E
τE
,−cV

)
IV (0, 0, I, V )→

(
rD(N − I), 0,− I

τI
, pI − cV

)

Hyperplanes

TEI (T,E, I, 0)→
(
rD(N − T − E − I),− E

τE
, E
τE
− I

τI
, pI
)

TEV (T,E, 0, V )→
(
− βTV + rD(N − T − E), βTV − E

τE
, E
τE
,−cV

)
TIV (T, 0, I, V )→

(
− βTV + rD(N − T − I), βTV,− I

τI
, pI − cV

)
EIV (0, E, I, V )→

(
rD(N − E − I),− E

τE
, E
τE
− I

τI
, pT − cV

)
Table 1: Table to illustrate boundary behaviours

The cases listed in table [1] above point towards the interior of Ω when all the

variables that do not make up the boundary being considered are non-negative. For

example, when considering the TE plane, the I and V components must be greater

than or equal to zero.

Without considering any of our biological constraints, all of the boundaries con-

taining a T axis(TI and TV planes, and TEI, TEV, and TIV hyper-planes), as well

as the V axis, meet the above requirement. This last statement is with the exception

of the T axis, which is invariant. The E axis and the EV plane fit the requirement

if N > E, the I axis and IV plane fit the requirement if N > I, and the EI plane

and the EIV hyper-plane fit the requirement if N > E + I. Due to our biological

constraint, N = T +E + I +D, N is in facr greater the E, I, and E + I, making all

the cases in the table above point towards the interior of Ω, as desired.
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2.6. Well posedness. In order to secure the existence and uniqueness of solutions

for a one dimensional ODE,
d

dt
y = f(y), f(y) must be continuous and f ′(y) must

exist and be continuous. This can be extended to systems of differential equations,
d

dt
F = F

(
x1(t), x2(t), ..., xn(t)

)
. The system must be continuous on an open set U ,

the Jacobian matrix for F must be defined in U , and the elements of the jacobian

matrix must be continuous. In our case, U =
◦
Ω, the Jacobian exists and is continuous,

see (10), over this region. Because U =
◦
Ω does not account for the boundaries, the

boundary behavior was analyzed to show that points on the boundary always go in

towards the interior, see section ??. The only exception is the T-axis which it is

invariant.

2.7. Local stability of equilibria.

Theorem 2.1. The Disease Free Equilibrium is locally asymptotically stable when

R0 ≤ 1 and it is unstable when R0 > 1.

Proof. Recall equilibrium points are locally stable when the eigenvalues of their Ja-

cobian matrices have only negative real parts [50, 11].

We want to show that if R0 ≤ 1 then the disease free equilibrium has asymptotic

stability and if R0 > 1 then the disease free equilibrium is unstable. We must

show that R0 ≤ 1 produces only negative eigenvalues and that R0 > 1 produces at

least one positive eigenvalue. Starting with the Jacobian matrix of the disease free

equilibrium, (11), we compute the following:

First we obtain λI − JDFE :

(20) λI − JDFE =


λ+ rD rD rD βN

0 λ+ 1
τE

0 −βN
0 − 1

τE
λ+ 1

τI
0

0 0 −p λ+ c


Next we set the determinant of this matrix equal to zero:

(21) det(λ− JDFE) = (λ+ rD)
(

(λ+
1

τE
)(λ+

1

τI
)(λ+ c)− βNp

τE

)
= 0
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We notice that the term
βNp

τE
can easily be expressed in terms of R0 and we find

that
βNp

τE
=
cR0

τEτI
. Substituting in this term and simplifying equation 21, we obtain

the following:

(22)

det(λI−JDFE) = (λ+rD)
(
λ3+λ2

( 1

τE
+

1

τI
+c
)
+λ
( 1

τEτI
+
c

τE
+
c

τI

)
+

c

τEτI
·(1−R0)

)
= 0

We see that λ = −rD is a negative root so it only remains for us to consider the

third degree polynomial. The coefficients of λ3, λ2, and λ are all always positive due

to our assumptions about the parameters. The term corresponding to λ0 is positive

when R0 ≤ 1 and negative when R0 > 1.

When R0 ≤ 1 and all the signs of the coefficients of λ are positive, there are zero

sign changes in the sequence of coefficients. By Descartes’ Rule of signs [50, 13],

there are zero real positive roots. So, when R0 < 1, all the real components of the

eigenvalues are negative and we have local asymptotic stability, as desired. Similarly,

when R0 > 1, there is one sign change in the sequence of coefficients, meaning we

have exactly one positive root, giving us instability at the disease free equilibrium.

We can confirm that there are no roots with positive real parts when R0 < 1

through the Routh Hurwitz test. The Routh Hurwitz table for a third degree poly-

nomial is constructed below,

a3 a1

a2 a0

a2a1 − a3a0

a2

0

a0 0

where a3 is the coefficient of λ3, a2 is the coefficient of λ2, and so on.

The Routh-Hurwitz test states that all the roots of the polynomial have real parts

strictly less than zero if and only if all the elements in the leftmost column are nonzero

and share the same sign [50, 14]. In our case, we need to show that a3, a2,
a2a1 − a3a0

a2

,

and a0 are all positive.
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We know that a0, a2, and a3 are all greater than zero because all of our parameters

are positive and R0 < 1. It remains for us to look at
a2a1 − a3a0

a2

. Since a2 is

positive, we only need to consider the numerator. We have:

a2a1 − a3a0 =

(
1

τE
+

1

τI
+ c

)(
1

τEτI
+

c

τE
+

c

τI

)
− c

τEτI
· (1−R0)(23)

=
cR0

τEτI
+

(
1

τE
+

1

τI
+ c

)(
1

τEτI
+

c

τE
+

c

τI

)
− c

τEτI
(24)

where the only negative term,
c

τEτI
, will cancel with one of the three positive

c

τEτI
terms that are present when the a2a3 term is expanded. So, we are left with a sum of

positive values and a2a1− a3a0 > 0, completing the Routh Hurwitz test and proving

that the DFE is locally, asymptotically stable. �

Theorem 2.2. The Endemic Equilibrium is locally asymptotically stable when R0 >

1 and it is locally asymptotically unstable when R0 ≤ 1.

Proof. Next we will look for local stability for the endemic equilibrium when R0 > 1.

We will denote this point by (T,E, I, V ) = (T ∗, E∗, I∗, V ∗). Our Jacobian at the

endemic equilibrium (JEE) after taking the difference from λI is as follows:

(25) λI − JEE =


λ+ βV ∗ + rD rD rD βT ∗

−βV ∗ λ+ 1
τE

0 −βT ∗

0 − 1
τE

λ+ 1
τI

0

0 0 −p λ+ c


From this we can calculate the characteristic polynomial of JEE.

(26)

det(λI−JEE) = (λ+βV ∗+rD)

∣∣∣∣∣∣∣
λ+ 1

τE
0 −βT ∗

− 1
τE

λ+ 1
τI

0

0 −p λ+ c

∣∣∣∣∣∣∣+βV ∗

∣∣∣∣∣∣∣
rD rD βT ∗

− 1
τE

λ+ 1
τI

0

0 −p λ+ c

∣∣∣∣∣∣∣
(27)

= (λ+βV ∗+rD)
(

(λ+
1

τE
)(λ+

1

τI
)(λ+c)−βT

∗p

τE

)
+βV ∗

(
rD(λ+

1

τI
)(λ+c)+

1

τE

(
rD(λ+c)+pβT ∗

))
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This term is expanded and simplified because it cannot be factored. T ∗ is replaced

by its equivalent form,
c

pβτI
, to aid with the simplification. We are left with a

characteristic polynomial with the coefficients listed below. The term corresponding

to λ4 is named a4, the term with λ3 is named a3, and so forth.

a0 =
crD
τI

+
crD
τE

+
c

τEτI

a1 =
2rd
τE

+
2rD
τI

+ crD +
βV ∗c

τI
+
βV ∗c

τE
+
βV ∗

τEτI
+

rD
τEτI

a2 =
c

τI
+

c

τE
+

1

τEτI
+ rD + βV ∗c+

βV ∗

τE
+
βV ∗

τI
+ rDc+

rD
τE

+
rD
τI

a3 = c+
1

τE
+

1

τI
+ βV ∗ + rD

a4 = 1

With these coefficients we can use the Routh Hurwitz test to show that when

R0 > 1 we have only negative real roots. The Routh Hurwitz table for a fourth

degree polynomial is constructed below.

a4 a2 a0

a3 a1 0

b1 =
a3a2 − a4a1

a3

a0 0

a1b1 − a3a0

b1

0 0

a0 0 0
We thus need to verify that the most left column has non-zero elements with

the same sign. Since the coefficients of the characteristic polynomial are positive,

we must show that a4, a3, a0, b1 =
a3a2 − a4a1

a3

and
a1b1 − a3a0

b1

are all greater than

zero. Note that because R0 > 1, T ∗, E∗, I∗ and V ∗ are all positive values. Also, our

biological constraints give us the assumption that all of the parameters are greater

than zero.

Starting with the least complex terms we have that: a4 = 1 > 0.
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So we also have:

a3 = c+
1

τE
+

1

τI
+ βV ∗ + rD > 0

a0 =
crD
τI

+
crD
τE

+
c

τEτI
> 0

Next we look at b1. We know that the denominator, a3, is positive from above so it

only remains to show that the numerator, a3a2− a4a1 is positive. When a3a2− a4a1

is expanded all of the negative terms from a4a1 cancel with positive terms from a3a2

and we are left with the following sum of positive terms:

a3a2 − a4a1 =
c2

τI
+
c2

τE
+

3c

τIτE
+ c2βV ∗ +

2cβV ∗

τE
+

2cβV ∗

τI
+ rDc

2 +
2crD
τI

+
c

τ 2
I

+
1

τ 2
I τE

+
2βV ∗

τEτI
+
βV ∗

τ 2
I

+
rD
τ 2
I

+
c

τ 2
E

+
1

τIτ 2
E

+
2rDc

τE
+
rD
τ 2
E

+
2rD
τIτE

+ rDβV
∗

+ c(βV ∗)2 +
(βV ∗)2

τE
+

(βV ∗)2

τI
+ 2βV ∗rDc+

2βV ∗rD
τE

+
2βV ∗rD
τI

+ r2
Dc

+
r2
D

τE
+
r2
D

τI
> 0

Finally we look at
a1b1 − a3a0

b1

. Since b1 > 0 we can look solely at the numerator,

a1b1 − a3a0. Through some algebraic manipulation we obtain the following:

a1b1 − a3a0 = a1

(
a3a2 − a4a1

a3

)
− a3a0 = a1a2 −

a2
1

a3

− a3a0

Since a3 > 0, we multiply through by a3:

a1a2a3 − a2
1 − a3a

2
0 = a1(a2a3 − a1)− a2

3a0

This arrangement of terms lets us utilize the term a2a3− a1 that we used to show

b1 > 0. Because a1 > 0 and a2a3 − a1 > 0, their product is positive. When this

product is expanded and written with specific grouping we get 203 positive terms.

When a2
3a0 is expanded and the negative is distributed and written with specific

grouping we get 45 negative terms. 36 of these negative terms correspond directly

with positive terms so they cancel, leaving us with nine negative terms. It remains

for us to show that the sum of positive terms that did not cancel is larger than

the sum of the nine remaining negative terms. Showing this will guarantee that all
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the terms in the leftmost column of the Routh-Hurwitz table are positive. We need

to show that the positive terms are greater than the negative terms, so instead of

showing that a1b1 − a3a0 > 0, we want to show that the remaining positive terms

minus the remaining negative terms is strictly greater than 0.

We are now left with exactly 203 - 45 terms because some negative terms only

canceled with part of the corresponding positive part. For example, the positive

term
4cβV ∗rD

τ 2
E

cancels out the negative term
2cβV ∗rD

τ 2
E

. This does not leave us with

zero but with the positive term
2cβV ∗rD

τ 2
E

. This occurs several times and we end up

with 181 remaining positive terms. Let us denote the sequence of the i remaining

positive terms with P and the j remaining negative terms with N . We will show

that:

(28)
181∑
1

Pi >
9∑
1

Nj

Because of the Arithmetic Geometric Mean, we know that

(29)
1

181
·

181∑
1

Pi >
( 181∏

1

Pi
) 1

181

Stringing 28 and 29 together we find that it is enough to show the following:

(30) 181 ·
( 181∏

1

Pi
) 1

181
>

9∑
1

Nj

Substituting our actual terms to 30 we obtain:

181·
(34 · 297 · c171(βV ∗)182r214

D

τ 208
E τ 224

I

) 1
181

>
c

τEτI

(
c2 +

2c

τI
+

2c

τE
+ 2βV ∗c+

1

τ 2
I

+
2

τEτI
+

2βV ∗

τI
+

1

τ 2
E

+
2βV ∗

τE

)
Which can also be written as the following when we divide out

c

τEτI
:

181·
(34 · 297(βV ∗)182r214

D

c10τ 27
E τ

43
I

) 1
181

> c2+
2c

τI
+

2c

τE
+2βV ∗c+

1

τ 2
I

+
2

τEτI
+

2βV ∗

τI
+

1

τ 2
E

+
2βV ∗

τE
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Next we place some constraints on c, βV ∗,
1

τE
,

1

τI
, and rD. In order to make this less

complicated we split the above inequality into nine separate pieces. We compare one

ninth of the left-hand side to each individual term on the right. Our new inequalities

are as follows:

181

9
·
( ·34 · 297(βV ∗)182r214

D

c10τ 27
E τ

43
I

) 1
181

> c2

181

9
·
( ·34 · 297(βV ∗)182r214

D

c10τ 27
E τ

43
I

) 1
181

>
2c

τI
...

181

9
·
( ·34 · 297(βV ∗)182r214

D

c10τ 27
E τ

43
I

) 1
181

>
2βV ∗

τE

Looking at just the greater component, we separate the numerical components

and the parameter components.

181

9
·
( ·34 · 297(βV ∗)182r214

D

c10τ 27
E τ

43
I

) 1
181

=
181 · 3 4

181 · 2 97
181

9
·
((βV ∗)182r214

D

c10τ 27
E τ

43
I

) 1
181

We now place the assumption that
((βV ∗)182r214

D

c10τ 27
E τ

43
I

)
> 1. We will return to this

assumption after we have set constraints on c, βV ∗,
1

τE
and

1

τI
to set constraints for

rD. Now it is enough to show that:

181 · 3 4
181 · 2 97

181

9
> c2

181 · 3 4
181 · 2 97

181

9
>

2c

τI
...

181 · 3 4
181 · 2 97

181

9
>

2βV ∗

τE
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Looking specifically at the first inequality listed, we can obtain an upper bound

for c.

(31) c <

√
181 · 3 4

181 · 2 97
181

9
≈ 5.47

Next we follow a similar approach to acquire upper bounds for
1

τE
,

1

τI
and βV ∗,

plugging the upper bound in for c where necessary. We obtain the same upper

bound for all three.

(32)
1

τE
,

1

τI
, βV ∗ <

c

2
=

1

2
·

√
181 · 3 4

181 · 2 97
181

9
≈ 2.73

When we plug all these bounds in for the remaining five inequalities, all the in-

equalities are satisfied, ensuring that none of the bounds lead to any contradictions.

One example is shown below.

181 · 3 4
181 · 2 97

181

9
>

1

τ 2
I

=

(
1

2
·

√
181 · 3 4

181 · 2 97
181

9

)2

=
1

4
· 181 · 3 4

181 · 2 97
181

9

Finally, we return to the term we earlier let be greater than one,
(βV ∗)182r214

D

c10τ 27
E τ

43
I

> 1.

Plugging in the bounds we have acquired for c,
1

τE
,

1

τI
and βV ∗, we will find a lower

bound for rD. after combining the terms with the same bounds, rearranging to isolate

rD, and plugging in with the values, we obtain the following:

(33) rD >
c

10
214

(βV ∗)
252
214

=

(
4126 ·

(
9

181 · 3 4
181 · 2 97

181

)121
) 1

214

≈ .331

So, all together we can guarantee local stability when c < 5.47, βV ∗,
1

τE
,

1

τI
< 2.73,

and rD > .331. Let us recall that all these parameters interact with one another.

We can still have local stability if one of these parameters exceeds its bound if the

quantities of the other parameters are altered from their bounds appropriately. Also,

keep in mind that we are showing 30 while we actually only require 28, giving us

even more freedom on these parameter bounds. �
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2.8. Global stability of equilibria. Lyapunov functions are powerful tools for

determining the global stability of equilibrium points. Let U ⊂ R4 be a neighborhood

of 0, then a Lyapunov function, denoted as L(x) is a real-valued function that is

decreasing across the entire vector field, f , that is defined by the ODE system. Since

L(x) is decreasing along f , intuitively we would expect that the lowest point of L(x)

should be a stable equilibrium point. Since Lyapunov functions need to be decreasing

over time, we know that L̇(X) = ∇(L(X)) · Ẋ must be less than or equal to 0. There

are three circumstances that could arise from L(X) and L̇(X).

(1) If

• L(X) ≥ 0 for all X ∈ U
• L(X) = 0 if and only if X = 0

• L̇(X) ≤ 0 for all X ∈ U
then X = 0 is a locally stable equilibrium point.

(2) If

• L(X) ≥ 0 for all X ∈ U
• L(X) = 0 if and only if X = 0

• L̇(0) = 0 and L̇(X) < 0 for all X 6= 0 contained in U

then X = 0 is locally asymptotically stable equilibrium point.

(3) If

• L(0) = 0 and there exists some sequence of values Xn where L(Xn) < 0

for all n and Xn → 0

• L̇(0) = 0 and L̇(X) < 0 for all X 6= 0 and in U

then X = 0 is an unstable equilibrium point.

The Lyapunov function also provides us with a method of finding when equilibrium

points are globally asymptotically stable. Let K be the largest invariant set in R4

such that L̇(X) = 0. This can be thought of as the set of all points (T,E, I, V ) that

remain within a set K at any time. If K consists of a single point, X∗, then X∗ is an

equilibrium point that is globally asymptotically stable, this is known as LaSalle’s

Invariance Principle [31]. Let us now look to our system of equations.

Theorem 2.3. Let R0 < 1, and consider the Disease-Free Equilibrium. This is

globally asymptotically stable with respect to initial conditions in Ω if
2N

T
+

p

rD
<
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2 +
1

τIrD
and

R0

τIp
< 1.

Proof. Let us consider the function

(34) L(X) =

∫ T

N

1− N

x
dx+ E + I + V

Notice that (34) is a nonnegative function for any X ∈ Ω. Moreover, L(X) = 0 if

and only if X = XDFE = (N, 0, 0, 0).

Finally,

L̇(X) =
(
1− N

T

)
Ṫ + Ė + İ + V̇

=
(
1− N

T

)(
− βTV − rD(N − T − E − I)

)
+
(
βTV − E

τE

)
+
( E
τE
− I

τI

)
+
(
pI − cV

)
= rD(N − T )

(
1− N

T

)
+ rD

(
1− N

T

)
(−E − I) + βNV − I

τI
+ pI − cV

≤ rD(N − T )
(
1− N

T

)
+ rD

(
1− N

T

)
(−2N) + βNV + I

(
p− 1

τI

)
− cV

= rD(N − T )
(
1− N

T

)
+ rD

(N
T
− 1
)
(2N) + V (βN − c) + I

(
p− 1

τI

)
≤ rD(N − T )

(
1− N

T

)
+ rD

(N
T
− 1
)
(2N) + V (βN − c) +N

(
p− 1

τI

)
= rD(N − T )

(
1− N

T

)
+N

(2rDN

T
− 2rD + p− 1

τI

)
+ V (βN − c)

= rD(N − T )
(
1− N

T

)
+N

(2rDN

T
− 2rD + p− (2rD

1

τI
)
)

+ V c
(R0

τIp
− 1
)

Because of our biological conditions, N > T+E+I which allows for the substitutions

made above. Also, it ensures that our first term, rD(N − T )
(
1 − N

T

)
, is negative.

The following two terms will be negative from our conditions set at the beginning of

this proof. So, L(X) < 0, giving us global stability about the DFE. �

Theorem 2.4. Let X∗ = (T ∗, E∗, I∗, V ∗) be a positive steady state of the system

( 1-4). Then X∗ is globally asymptotically stable with respect to initial conditions in
◦
Ω if T ∗ < T,E∗ < E, I∗ < I, V ∗ < V and V ∗ < 4V, and pI < cV .
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Proof. Let us consider the system (1)-(4), we will prove the existence of a Lyapunov

function. Let us notice that any steady state holds the following steady state equa-

tions:

(35) βT ∗V ∗ = rD(N − T ∗ − E∗ − I∗) =
E∗

τE
=
I∗

τI

(36) pI∗ = cV ∗

We define the function

(37) L(X) =

∫ T

T ∗
1− T ∗

x
dx+

∫ E

E∗
1− E∗

x
dx+

∫ I

I∗
1− I∗

x
dx+ α

∫ V

V ∗
1− V ∗

x
dx

where α is a positive constant, defined later. Notice that for any X ∈ Ω is such that

V (X) ≥ 0 where V (X) = 0 if and only if X = X∗. Furthermore, notice that

˙L(X) = ∇(L(X) · Ẋ =

(
1− T ∗

T

)
Ṫ +

(
1− E∗

E

)
Ė +

(
1− I∗

I

)
İ + α

(
1− V ∗

V

)
V̇

=
(
1− T ∗

T

)(
− βTV + rD(N − T − E − I)

)
+
(
1− E∗

E

)(
βTV − E

τE

)
+
(
1− I∗

I

)( E
τE
− I

τI

)
α
(
1− V ∗

V

)
(pI − cV )

Now we strategically add terms that sum to zero and algebraically manipulate the

above.

=
(
1− T ∗

T

)(
− βTV + rD(N − T − E − I −N + T ∗ + E∗ + I∗) + rD(N − T ∗ − E∗ − I∗)

)
+ βTV − E

τE
− βTV E∗

E
+
E∗

τE
+
E

τE
− I

τI
− I∗E

IτE
+
I∗

τI
+ α

(
1− V ∗

V

)
(pI − cV )

=
(
1− T ∗

T

)
rD(T ∗ − T + E∗ − E + I∗ − I) +

(
1− T ∗

T

)
(−βTV )

+
(
1− T ∗

T

)
rD(N − T ∗ − E∗ − I∗) + βTV − βTV

(E∗
E

)
+
E∗

τE
− I

τI
− I∗E

IτI
+
I∗

τI
+

α
(
1− V ∗

V

)
(pI − cV )
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=
(
1− T ∗

T

)
rD(T ∗ − T + E∗ − E + I∗ − I) + βT ∗V + βT ∗V ∗ − T ∗

T
βT ∗V ∗ − E∗

T ∗V ∗τE

· TV E
∗

E
+
E∗

τE
− I∗E

τEI
− I

τI
+
I∗

τI
+ α

(
1− V ∗

V

)
(pI − cV )

=
(
1− T ∗

T

)
rD(T ∗ − T + E∗ − E + I∗ − I) + βT ∗V +

I∗

τI
− T ∗

T

I∗

τI
+

TV E∗

T ∗V ∗E

I∗

τI
+
I∗

τI

− I∗E

τEI
− II∗

τII∗
+
I∗

τI
+ α

(
1− V ∗

V

)
(pI − cV )

=
(
1− T ∗

T

)
rD(T ∗ − T + E∗ − E + I∗ − I) +

V

V ∗
I∗

τI
+
I∗

τI
− T ∗

T

I∗

τI
−
( TV E∗
T ∗V ∗E

)I∗
τI

+
I∗

τI

−
(I∗E
IE∗

)I∗
τI
− I

I∗
I∗

τI
+
I∗

τI
+ α

(
1− V ∗

V

)
(pI − cV )

=
(
1− T ∗

T

)
rD(T ∗ − T + E∗ − E + I∗ − I) +

I∗

τI

( V
V ∗

+ 1− T ∗

T
− TV E∗

T ∗V ∗E
+ 1− I∗E

IE∗
− I

I∗
+ 1
)

+

α
(
1− V ∗

V

)
(pI − cV )

=
(
1− T ∗

T

)
rD(T ∗ − T + E∗ − E + I∗ − I) +

I∗

τI

(
1− T ∗

T
− TV E∗

T ∗V ∗E
− I∗E

IE∗
− I

I∗
)

+
I∗

τI

( V
V ∗

+ 2
)

α
(
1− V ∗

V

)
(pI − cV )

We know that the first term,
(
1 − T ∗

T

)
rD(T ∗ − T + E∗ − E + I∗ − I) is negative

from our conditions. Looking at the second term, we want the magnitude of the

negative terms to be greater than the positive terms. As in the local stability, we

will utilize the Arithmetic Geometric Mean. Since there are 4 negative terms we

know the following:

(38)
4∑
i=1

Ni ≥ 4

(
4∏
i=1

N1

) 1
4
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So, it is enough to show that four times the fourth root of the product of the

negative terms is greater than 1.

(39) 4

(
4∏
i=1

N1

) 1
4

= 4
(T ∗
T
· TV E

∗

T ∗V ∗E
· I
∗E

IE∗
· I
I∗

) 1
4

= 4
( V
V ∗

) 1
4

Setting this result greater than 1 and rearranging our terms, we obtain the in-

equality V >
1

4
V ∗, which follows from our hypotheses. So, this term is negative.

We are now left with two terms,
I∗

τI

(
V

V ∗
+ 2

)
and α

(
1− V ∗

V

)
(pI − cV ). Due to

our conditions, we know that the term attached to α is negative. So, we define α so

that we ensure the negative term overpowers the only remaining positive one. We

define α as:

(40) α = k · I
∗

τI

(
V

V ∗
+ 2

)
where k is some constant that is larger than one when multiplied with

(
1− V ∗

V

)
(pI−

cV ). �

3. Stochastic Model

In Discrete-Time Markov Chains, time is considered to be a discrete variable that

can take on the values t0 +n∆t for n ∈ N and some initial time t0. Thus, in order to

make use of Discrete-Time Markov Chains, one must be able to reasonably assume

that ∆t can be chosen to be small enough so that at most one event occurs dur-

ing ∆t [4, 32]. On the other hand in Continuous-Time Markov Chains, t ∈ [0,∞),

which frees us from needing to make such an assumption. However, Continuous-Time

Markov Chains can be very computationally expensive, as they require generating

exponential random variables that dictate how long a cell or person stays in a given

state within the model [25, 45]. Additionally, given a population of size N , N + 1

Kolmogorov’s differential equations would be needed for one of the most basic epi-

demiological models, an SIS model, in the case of Continuous-Time Markov Chains

[28]. Previous biological models have produced Discrete-Time Markov Chains that

are more efficient than Continuous-Time models and produce stochastically identical
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results in the case of biochemical network modeling [45] and genetic regulatory net-

work modeling [26]. However, these biological situations may lend themselves more

easily to DTMC models due to having only one independent variable.

Continuous-Time Markov Chains are a popular and well-studied model for the

spread of infectious diseases [4, 6, 17, 52]. We have chosen instead to focus on a

DTMC model in order to better study methods for using this type of model to

predict the spread of infectious diseases and to develop a more computationally

efficient model than ones used in the past.

We have chosen to focus on Discrete Homogenous-Time Markov Chains for the

stochastic modeling of within-host dynamics of influenza. In this type of model,

the classes a cell can be in and time are discrete variables. In our case, a cell may

be a target, exposed, infectious, or dead cell in any of the time values {t0, t0 +

∆t, t0 + 2∆t, ...}. The homogeneous-time aspect of our model indicates that we

are assuming that the probability of transitioning between the classes of our model

does not depend on time. We will assume that we have a fixed number of cells that

may fall in the classes of target cell, exposed cell, infectious cell, or dead cell. The

random variables in the stochastic model will be denoted in calligraphic letters to

avoid confusion with the non-random variables in the deterministic model. If we let

N be the total number of cells, T be the random variable representing the number

of target cells, E be the random variable representing the number of exposed cells,

I be the random variable representing the number of infectious cells, and D be the

random variable representing number of dead cells, then we have the dynamic states

equation

N = T + E + I +D.

Within this model, there are five events that could occur. Some of these events also

affect the amount of virus present, represented by the random variable V . These

events and the probability of them occurring are summarized in the below table.

Notice that the transition probabilities are given by the transition rates seen in the

deterministic ODE model multiplied by ∆t.

Notice also that since N is a constant and due to the biological constraint N =

T +E +I+D, we have one dependent variable and three independent variables. We

choose our dependent variable to be D, leaving our independent variables as T , E ,

and I. This set-up is a multivariate stochastic process {(T (t), E(t), I(t))|∞t=0}, that is
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Transition Events and Their Probabilities

Event Event Description Transitions
Probability of Event Occurring

between time t and t+ ∆t

1
Target cell becomes

exposed to the viron

T → T − 1,

E → E + 1

βT V∆t

2
Exposed cell becomes

infectious

E → E − 1,

I → I + 1

E
τE

∆t

3 Infectious cell dies
I → I − 1,

D → D + 1

I
τI

∆t

4 Cellular restoration
D → D − 1,

T → T + 1

rDD∆t

5 No change No transitions
1−

(
βT V +

E
τE

+
I
τI

+ rDD
)

∆t

Table 2: Table containing all transitions and their probabilities in the stochastic

model.

time-homogeneous and should satisfy the Markov property, discussed below. Thus,

we may write our joint probability density function as

(41) Pt,e,i(t) := Pr [(T (t), E(t), I(t)) = (t, e, i)]

where t, e, i ∈ {0, 1, 2, · · · ,M}. We defineM to be the total number of live cells which

is bound by the total population size N such that T (t) + E(t) + I(t) = M ≤ N ,

this means that the sum of T (t), E(t), I(t) can never exceed the size of the entire

population. We can assume that ∆t can be sufficiently small such that at most one

change in state occurs during the time interval ∆t. The probability of transition

from the state (t, e, i) to the state (t+ k, e+ j, i+ l) is defined (using the notation in

[3] and [32]) by

Pt+k,e+j,i+l(∆t) = Pr[(∆T ,∆E ,∆I) = (k, j, l) | (T (t), E(t), I(t)) = (t, e, i)]

where

∆T = T (t+ ∆t), ∆E = E(t+ ∆t), and ∆I = I(t+ ∆t)
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We assume that the joint probability density function (41) holds the Markov Prop-

erty.

Definition 3.1. The Markov Property holds that the state at time t + ∆t is

dependent only on the state at time t and is independent of all previous times. If Xt

is a vector describing our state at time t, then the Markov Property may be written

as

Pr(Xt+∆t = b|Xt, Xt−∆t, ..., X∆t, X0) = Pr(Xt+∆t = b|Xt).

If the Markov Property holds, then the values of T (t+ ∆t), E(t+ ∆t), I(t+ ∆t),

and D(t+ ∆t) depend only on the values of T (t), E(t), and I(t).

It is reasonable to assume that our model holds the Markov Property because we

would not expect the probability that transition from a current disease state to a

new disease state to depend on past disease states. The only factors that should

affect the transition from the current disease state are how many virons, target cells,

exposed cell, infectious cells, and dead cells there are at each moment; all of which

are encompassed in the current disease state. The Markov Property is important

for understanding a component of our stochastic model, the transition matrix. The

transition matrix is a matrix that governs how values change from one time to the

next. The Markov Property allows us to make use of the transition matrix in the

following manner.

Denote the transition matrix asM and the random vector of values of describing

the state at time t as X(t). Then,

X(t0 + ∆t) =M ·X(t0)

X(t0 + 2∆t) =M ·X(t0 + ∆t) =M2 ·X(t0)

...

X(t0 + n∆t) =M ·X(t0 + (n− 1)∆t) =Mn ·X(t0).

We give a more formal definition of the transition matrix.

Definition 3.2. The transition matrix of the Discrete Time Markov Chain {Xn}∞n=0

with state space {1, 2, ...} and one-step transition probabilities, {pab}∞a,b=1, is denoted
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as M = (pab), where

M =


p00 p01 p02 . . .

p10 p11 p12 . . .

p20 p21 p22 . . .
...

...
...

. . .

 .

In this case, pab is the probability of transitioning from state a at time t to state

b at time t+ ∆t and
∑

b pab = 1 [2, 47].

Discrete Markov Chains are most commonly used when the change in state from

a to b can be described by the change in only one variable. So, p01 may be thought

of as the probability of having 0 cells in one class (say the infectious class) at time

t and 1 cell in the same (infectious) class at time t + ∆t. When there is only one

independent variable to change between times, this approach is relatively straight-

forward. However, in our case, we have three independent variables that define our

disease state: T , E , and I.

In response to this, we first grouped the exposed and infectious classes together

such that the state of the exposed/infectious class can be represented as an ordered

pair of the form (E , I). Then we can form a transition matrix that describes the

probability of transitioning in and out of this exposed/infectious class. There are

N + 1 different matrices of this type that can be formed, where for each matrix the

number of target cells, T (t) ∈ {0, 1, 2, ..., N}, is fixed. The form of these matrices

is described in more depth below. Each of these matrices should be a part of our

transition matrix, so our final transition matrix will appear as block matrix that is

composed of these smaller matrices on the diagonal. This allows for the transition

matrix to account for changes in the number of exposed/infectious cells, but we also

need to account for changes in the remaining independent variable, T .

The diagonal of our transition matrix is composed of the blocks described above, so

we use the off-diagonal blocks to include diagonal matrices, denoted as DT (t),T (t+∆t),

that account for the probability of transitioning between the T (t) and T (t + ∆t)
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number of target cells. Like so:

M =



[
T (t) = 0

]
D0,1 0

D1,0

[
T (t) = 1

]
D1,2

D2,1

. . . . . . . . .

DN−1,N

0 DN,N−1

[
T (t) = N

]


.

In order to compute the probabilities contained in the transition matrix, we need to

determine how a cell can move between our independent classes. Given that we end

up with (T , (E , I)) = (t + k, (e + j, i + l)) at time t + ∆t, we want to find all the

states we could have been in at time t. We assume ∆t is very small so that T (t),

E(t), and I(t) can change by at most 1 in time ∆t; thus k, j, l ∈ {1,−1, 0} (see the

table below, table 3, for the events and how the event may lead to state (t, (e, i))).

Transition Events of Independent Variables

Event Description State at t State at t+ ∆t (k, j, l)

Target cell becomes ex-

posed

(t+ 1, (e− 1, i)) (t, (e, i)) (−1, 1, 0)

Exposed cell becomes in-

fectious

(t, (e+ 1, i− 1)) (t, (e, i)) (0,−1, 1)

Infectious cell dies (t, (e, i+ 1)) (t, (e, i)) (0, 0,−1)

Cellular restoration (t− 1, (e, i)) (t, (e, i)) (1, 0, 0)

No change (t, (e, i)) (t, (e, i)) (0, 0, 0)

Table 3: Table describing the movements of each transition event to attain the

(t, (e, i)) state.

The probabilities of the events described in the above table, table 3, are already

known, and can be found in the first table. Using our knowledge of states at time t

that could result in the state (t, (e, i)) at time t+ ∆t, and the transition probability

between these states, we are able to find Pab(t+ ∆t), which can be thought of as the

sum of the probabilities of transitioning into the state b = (t, (e, i)). The probability

of remaining in state b during the time ∆t has the probability: 1-(probability of
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leaving state (t, (e, i))). Thus, we have the following lemma:

Lemma 1 For t + e + i + d = N , the probability of leaving state a and entering

state b while T (t) remains fixed in time ∆t is given by

(42) Pab =
∑

e,i,j,l≥0
e+i=a

e+j+i+l=b

P(e,i),(e+j,i+l)

where

(43) P(e,i),(e+j,i+l) =


e
τE

∆t (j, l) = (−1, 1)
i
τI

∆t (j, l) = (0,−1)

− e
τE

∆t− i
τI

∆t (j, l) = (0, 0)

0 otherwise.

You may have observed that the transition probability associated with no change

(i.e., when (j, l) = (0, 0)) should be 1− βtV∆t− rD(N − t− e− i)∆t− e
τE

∆t− i
τI

∆t

instead of − e
τE

∆t− i
τI

∆t; however, in some cases we may have several transitions in

which (j, l) = (0, 0). In these cases, we only want the 1−βtV∆t−rD(N−t−e−i)∆t to

appear in the sum once, where as − e
τE

∆t− i
τI

∆t should appear as many times as the

no change transition occurs. It is important to note that because of this discrepancy

the ‘probabilities’ described above will be different from the actual probability when

a = b. In this circumstance, the actual probability is

1− βtV∆t− rD(N − t− e− i)∆t+ Paa, where a is the state (e, i).

We use the probabilities from Lemma 1 to determine the values in a matrix which

we will call MM. To account for the extra added terms, we will form another matrix

with the missing values, called MR such that our transition matrix can be written

as M = MR +MM.

We will denote our entire transition matrix as M, where M is the sum of two

matrices, MR and MM. We let MR contain the off-diagonal blocks of M and the

remaining probability terms that are not generated in Lemma 1, these probabilities

are all related to a change in the number of target cells. Each block describing the

change in the number of target cells can be written in the form of a diagonal matrix

denoted as DT (t),T (t+∆t).
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In general, we have that

DT (t),T (t+∆t) =


βtV∆t+ rD(N − t) 0 . . . 0

0 βtV∆t+ rD(N − t− 1) . . . 0
...

...
. . .

...

0 0 . . . βtV∆t+ rD(0)


where t = T (t). However, it is helpful to break DT (t),T (t+∆t) into the sum of two

matrices, described below. Let DT (t),T (t+∆t) = BN−T (t)+1 + CN−T (t)+1, where the

subscripts indicate the size of the matrix. IN−T (t)+1 is the (N − T (t) + 1) × (N −
T (t) + 1) identity matrix, and

BN−T (t)+1 =


βtV∆t 0 0 . . . 0

0 βtV∆t 0 . . . 0

0 0 βtV∆t . . . 0
...

...
...

. . .
...

0 0 0 . . . βtV∆t

 ,

CN−T (t)+1 =


rD(N − t)∆t 0 0 . . . 0

0 rD(N − t− 1)∆t 0 . . . 0

0 0 rD(N − t− 2)∆t . . . 0
...

...
...

. . .
...

0 0 0 . . . rD(0)∆t

 .
Thus, BN−T (t)+1 is a matrix containing the probabilities of one of the T (t) targets

cell becoming exposed, and CN−T (t)+1 is a matrix containing the probabilities of a

dead cell becoming a target cell via cellular restoration. Writing D as the sum of

these two matrices is useful for writing MR, because we are now able to define MR

in the following manner:

MR =



IN+1 −BN+1 − CN+1 CN+1 0 0 . . . 0

BN IN −BN − CN CN 0 . . . 0

0 BN−1 IN−1 −BN−1 − CN−1 CN−1 . . . 0
...

...
...

. . . . . .
...

...
...

...
. . . . . . C2

0 0 0 . . . B1 I1 −B1 − C1


.
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MM contains the small transition matrices along the diagonal ofM with the transi-

tion probabilities from Lemma 1. The smaller transition matrices for fixed T values

which exist on the diagonals ofM will be denoted asMt; where the subscript is the

fixed number of target cells. Using the probabilities from Lemma 1, we can generate

a general description of a Mt matrix.

Mt =



0 0 0 0 . . . 0 0

0 2
τI

∆t − 2
τI

∆t 0 . . . 0 0

0 0 3
τI

∆t − 3
τI

∆t . . . 0 0
...

...
...

. . . . . .
...

...
...

...
. . . . . .

...

0 0 0 0 . . . −N−t
τI

∆t −N−t
τI

∆t



=


P00 P01 . . . P0(N−t)

P10 P11 . . . P1(N−t)
...

...
. . .

...

P(N−t)0 P(N−t)1 . . . P(N−t)(N−t)


Using the notation described above, we are able to write our finished transition

matrix,M as the sum of the matrices MR and MM, where MR is as described above,

and

MM =


M0 0 0 . . . 0

0 M1 0 . . . 0

0 0 M2 . . . 0
...

...
...

. . .
...

0 0 0 . . . MN

 .

Notice that all rows of any Mt matrix sum to 0. Since the remaining entries in

MM are all 0, we can see that any row in MM sums to 0. In the matrix MR, BN+1

and C1 are both Zero-matrices, so adding matrices row-wise sums to the identity

matrix, which has 1’s along the diagonal and 0 everywhere else. Thus, every row in

MR sums to 1. Since every row in MR sums to 1 and every row in MM sums to 0,

we can see that every row in M sums to 1+0 = 1. So, we have confirmed that M
meets the condition to be a transition matrix.
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To use M as our transition matrix, there is still one problem we need to address.

The way M is described above still contains a random variable V . Since we do not

want any random variables in our matrix, this is something that needs to be changed.

V represents the amount of virus that is present, and because the virus is produced

by infectious cells, we would expect the amount of virus to be a function of both the

number of infectious cells, and the production rate at which infectious cells produce

new virons. Thus, we let V = V(i) = p · i, where i = I(t). When we go to replace

V with p · i, we run into a new problem; what is the value of I(t)? Recall that the

exposed and infectious classes were grouped together, so at any point in the transition

matrix, if we have a exposed/infectious cells at time t and b, exposed/infectious cells

at time t + ∆t, how many infectious cells are there at time t? The term V only

appears on the main diagonal of M and in the BN−t off-diagonal matrices. Recall

also that each row of the transition matrix must sum to 1, so the value of V must be

the same in both places it appears in one row; this allows us to focus on the value

of I(t) on the main diagonal.

Let y = e+i, then y is the total number of exposed/infectious cells at time t, which

functions as the index of the rows ofMt. Consider the diagonal entry of an arbitrary

yth row of Mt. The value of this entry represents the probability of transitioning

from y exposed/infectious cells to y exposed/infectious cells in time ∆t, when there

are T (t) = t target cells. We make a table of all transitions of y exposed/infectious

cells to y exposed/infectious cells that have a non-zero probability.

We wish to find the expected value of i at time t when we transition from y to y

exposed/infectious cells. This is given by the below lemma.

Lemma 2 The expected number of infectious cells at time t when transitioning

from y exposed/infectious cells to y exposed/infectious cells is denoted E(i), and is

given by

E(i) =
y2

2y + 1
.

Implications of Lemma 2: Any time we know the combined number of exposed/infectious

cells, y, we can calculate the expected number of infectious cells. We may also use

this to replace the random variable V with the virus production rate per infectious

cell times the expected number of infectious cells, V (y) = p · y2

2y+1
. Thus, we are able
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Transition Events with a Fixed Number of Exposed/Infectious Cells, y

(e, i) at time t (e+ j, i+ k) at time t+ ∆t Event Description

(y, 0)
(y, 0) No change

(y − 1, 1) Exposed cell becomes infectious

(y − 1, 1)
(y − 1, 1) No change

(y − 2, 2) Exposed cell becomes infectious
...

...
...

(1, y − 1)
(1, y − 1) No change

(0, y) Exposed cell becomes infectious

(0, y) (0, y) No change

Table 4: Possible transition events starting with e+ i = y exposed/infectious cells.

to eliminate all random variables from our matrix. Lemma 2 also provides us with

the ability to approximate the number of infectious cells at any time point in our

stochastic simulations.

Proof/reasoning of Lemma 2: From table 4, we see that there are y + 1 different

states at time t, corresponding to i = 0, 1, ..., y. The first y of these states have

2 possible outcomes, no change or an exposed cell becoming infectious. The only

exception is for the case when i = y at time t, which only has one outcome because

there are no exposed cells to become infectious. Thus, there are 2y + 1 possible

events.

E(i) =
2

2y + 1
(0) +

2

2y + 1
(1) + ...+

2

2y + 1
(y − 1) +

1

2y + 1
y

=
2

2y + 1
(0 + 1 + ...+ y − 1) +

y

2y + 1

=
�2

2y + 1
· (y − 1)y

�2
+

y

2y + 1

=
y2

2y + 1
.

(44)

Recall that given a transition probability matrix, M, and a vector describing the

state of the disease at time t0, which we will call X(t0), one may determine the vector
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describing the likely state of the disease at time t0 + n∆t, X(t0 + n∆t) by

X(t0 + n∆t) =MnX(t0).

To carry out these sorts of computations, we need to know the form of the vector

X(t) that describes the state of the disease at time t. Since X(t) will be multiplied

by M, and M is a
(N + 1)(N + 2)

2
× (N + 1)(N + 2)

2
matrix, we know that X(t)

must be a vector of length
(N + 1)(N + 2)

2
. This makes sense because there are

(N + 1)(N + 2)

2
possible states of the form (t, y, d), where t = T (t), y = e + i, and

d = D(t); and X(t) is a vector containing the probabilities of being in each of these

states.

Recall also that M is a block-diagonal matrix, where each sub-matrix on the

diagonal is similar to a transition probability matrix where the number of target

cells is fixed. If the fixed number of target cells is T (t), then the size of sub-matrix

corresponding to this number of target cells is (N − T (t)) × (N − T (t)). There

should be a corresponding section of the vector X(t) that has a length of N − T (t),

as demonstrated in figure 2.

Form of Transition Matrix and Disease-State Vector




 [ ]

. . . [ ]


·




[]
...[]


Figure 2. Basic form of Transition Matrix and Disease-State Vector.

The boxed areas indicate regions corresponding to a fixed number of

target cells.
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The initial state vector, X(t0) should be able to specify exactly what state of the

disease we are starting with. Since we want to begin with certainty as to which

state we are in at t0, we know that X(t0) should be a vector containing one 1 at the

entry that represents part of our vector that defines the initial disease state, and 0’s

everywhere else. Thus, if we start with N − 3 target cells, then the vector X(t0)

should contain only 0’s except for the third to last section of the vector. This section

of the vector should be the same size as the third to last block of the matrix M.

This matrix has a size of (N − (N − 3) + 1)× (N − (N − 3) + 1) or 4× 4, thus the

corresponding part of X(t0) has four entries.

If there are N − 3 target cells, then there are 3 cells remaining that fall into some

other class; namely the exposed/infectious class, or the dead class. There could be 0,

1, 2, or 3 exposed/infectious cells. Since y+ d = 3 in this case, we have four possible

states of the form (t, y, d): (N − 3, 0, 3), (N − 3, 1, 2), (N − 3, 2, 1), or (N − 3, 3, 0).

In fact, in general, if there are N − n target cells, then there can be 0, 1, 2, ..., n

exposed/infectious cells, forming n + 1 possible states that are represented by an

n+ 1 length section of X(t0).

Since the section of X(t0) that corresponds to T (t) has the same number of rows

as MT (t), we would expect the rows of that part of X(t0) and the rows of MT (t)

to represent the same thing. Say, we wanted to start with 1 exposed/infectious cell.

Since there are N − 3 target cells, this means that there are 2 dead cells. The rows

of MT (t) represent the number of exposed/infectious cells before the time ∆t has

passed. So, having 1 exposed/infectious cell would put us in the second row, because

the first row refers to having 0 exposed/infectious cells. Thus, the corresponding

part of X(t0) is


0

1

0

0

.
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Thus, if we wanted our initial disease state to beN−3 target cells, 1 exposed/infectious

cell, and 2 dead cells, then we have

X(t0) =



0

0
...

0

1

0

0
...

0


.

4. Numerical Simulations

Numerical Simulation of the Deterministic Model

Figure 3. An example of the Deterministic Solutions’ trajectories

reaching an endemic equilibrium when R0 > 1.
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4.1. Stochastic Simulations. Using our transition matrix and a vector describing

an initial disease state, we can simulate the expected trajectory of the disease by

repeatedly multiplying the initial state vector by the transition matrix. Every time

we multiply by the transition matrix, we move forward by ∆t in time. As stated

previously ∆t must be chosen to be small enough so that multiply events do not

occur simultaneously. When ∆t is chosen to be too large, the simulation breaks

down and produces impossible results (such as probabilities as large as 10136), so

this problem is quite easy to spot. When ∆t is chosen to be too small, then the

probability of an event occurring during the time ∆t is too small and the simulation

indicates that there is no change from the initial state, even after a large number of

iterations. Thus, there is an ideal range for the value of ∆t. Due to our complexity,

the ideal size of ∆t depends on the number of cells that are being simulated, so a

relationship between N and ∆t needs to be established. In order to determine the

appropriate form of this relationship, we first collected data on the bounds of ∆t for

each N to produce the following graph.

If we let ∆t = 10−i for some i ∈ N, then the ideal region for i appears to follow

an approximately linear path in relation to N . We let ∆t be on the larger end of

the ideal range for two reasons: problems due to ∆t being too large are easy to

spot and a larger ∆t saves computation. This linear path is approximated from the

points (100, 9.5) and (30, 8) from figure 4, and we obtain −( 3
140
N + 103

14
). So, we let

∆t = 10−b
3

140
N+ 103

14 c to simulate our stochastic model.

There are several patterns that appear in the stochastic simulations that occur at

different time scales. We will begin with the smallest time scale and work our way

to a larger scale.

Simulation using 80000 or less iterations :

We begin by looking at what occurs when we simulateMn·X(0) for 0 ≤ n ≤ 80000.

This produces a wave-like pattern, which can be seen in figure 5.

We observe that as the probability of one state begins to decline, the probability

of one other state rises. This propagates the most likely state down to an eventual

end state, at which point, the probability of this last state appears to approach 1.
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Ideal ∆t for N Cells

Figure 4. Scatterplot of the boundaries for ∆t for 0 ≤ N ≤ 100 with

function for the ideal ∆t.

Upon close examinations of the most probable states at any given time, we see

that it is easy to predict the course of the simulation, given the initial vector. We

give an example of a simulation with a relatively small number of cells. In figure

5, we see that there are five states with non-zero probabilities. The initial state

(the spike with probability 1 seen at iteration 0) can be represented by the ordered

triplet (4, 21, 0), which is of the form (t, y, d). The next state that emerges after

approximately 1000 iterations is (3, 22, 0). The next state the peaks in probability is

(2, 23, 0), then (1, 24, 0), and finally, the last state that appears is (0, 25, 0). So, we

have the following sequence between states:

(4, 21, 0)→ (3, 22, 0)→ (2, 23, 0)→ (1, 24, 0)→ (0, 25, 0).
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State Probabilities of 25 cells over Time

Figure 5. Probability of each state for 25 cells over 8000 iterations

(approximately 2.88 seconds) starting at the disease state (4,21,0).

Notice that the initial number of dead cells is always the most likely number of

dead cells, meaning that if the initial disease state is (t0, y0, d0), then states with non-

zero probabilities will be of the form (tn, yn, d0) for 0 ≤ n ≤ 80, 000. One can also

see that the target cells tend to become exposed/infectious cells while the number

of dead cells remain constant. Thus, on this time scale, we see that initial states of

the form (t0, y0, d0) go to (0, y0 + t0, d0) within 0 to 80000 iterations. This pattern

can be viewed with a larger number of cells and appears regardless of initial disease

state.

Without looking further, we might be led to believe that given an initial disease

state of (t0, y0, d0), that the disease approaches the state (0, y0 + t0, d0) as t → ∞;
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State Probabilities of 100 cells over Time

Figure 6. Probability of each state for 100 cells over 80000 iterations

(approximately 0.43 seconds) starting at the disease state (60,5,35)

and approaching the state (0,65,35).

however, this does not appear to be the case.

Simulations using 80000 to 600000 iterations:

If we look at time values beyond 80000 iterations, we see that the probability of the

(0, y0 + t0, d0) state decreases, as the probability of (0, y0 + t0 − 1, d0 + 1) increases.

This new transition in probabilities occurs much slower, and the next state does

not fully surpass the (0, y0 + t0, d0) state until approximately t0 + 550000∆t for the

simulations displayed in figure 7.
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State Probabilities of 25 cells over Time

Figure 7. Probability of each state for 25 cells over 550000 iterations

(approximately 3.3 minutes) starting at the disease state (2,8,15).

In the simulation in figure 7, we use N = 25 cells. The first several spikes

demonstrate the pattern described above. The initial state (2, 8, 15), transitions

to (0, 10, 15), which completes the sequence of states described above. The end of

this sequence is recognizable, because the state that it leads to, the state (0, 10, 15)

with all target cells having become infected occurs with very high probability. This

high probability is sustained for some time, but as one can see in the above figure,

that a new state (0, 9, 16) eventually surpasses this peak disease state in probability,

which is in turn surpassed by the state (0, 8, 17).

Subsequently, if we focus on a larger time scale, we see a new wave of high-

probability states begin, forming a progression from (0, 8, 17) to (0, 7, 18), (0, 6, 19),

(0, 5, 20), (0, 4, 21), (0, 3, 22), (0, 2, 23), (0, 1, 24) and eventually (0, 0, 25). Once there
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are 0 target and 0 exposed/infectious cells, the probability of state (0, 0, d0 + t0 + y0)

appears to approach 1. Only the start of this progression can be seen in figure 7,

however, this full pattern can be seen in figure 8. It becomes very computationally

expensive to run simulations involving more than 8 million iterations, especially for

large N , thus it is unclear if this the state (0, 0, d0 + t0 + y0) persists, or if new state

with higher probabilities eventually arise. This is a source for future research.

State Probabilities of 5 cells over Long-Term

Figure 8. Probability of each state for 5 cells over 8000000 iterations

(approximately 48 minutes) starting at the disease state (4,0,1).

5. Sensitivity Analysis

Sensitivity analysis allows us to determine which parameters are most influential

to the model output. We use this information to examine biological implications such

as model corroboration, research prioritization, model simplification, identification
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of critical areas, and baseline parameter estimates [44, 34]. We will start the Latin

Hypercube Sampling (LHS) method which will give us the necessary information to

rank our parameters’ degree of importance through the Partial Ranck Correlation

Coefficient (PRCC) method.

LHS is a stratified sampling without replacement technique, first introduced by

McKay et. al. in 1979, that allows us to sample the entire parameter space more

efficiently than similar Monte Carlo methods. LHS splits each of the k parameter

distributions into N equally probable parts where N is at least greater than k+1, al-

though it is often much greater for the sake of accuracy. These distributions are used

to create the LHS input matrix. This matrix has N rows, one for each simulation,

and k columns, one for each parameter. The kth entry of each row randomly selects

an interval from the given parameter’s probability distribution without replacement.

This process is repeated to create N unique combinations of the parameters that

spans the entire parameter space.

From this, a N × 1 output matrix is generated where each entry is the output

value from the corresponding simulation. Both the input and output matrices are

then rank transformed according to the magnitude of the values along a column.

The rank transformed matrices replace the raw data with values from one to N.

We complete this transformation in order to compute the PRCC values which are

explained below [33].

Before choosing PRCC, it is important to check for monotonicity between param-

eters and outputs. If we lack this, PRCC values are not accurate. If monotonicity

does not hold, it is sometimes possible to truncate the LHS parameter ranges into

monotonic regions [21].

PRCC uses the tank transformed data, not the raw data, to provide a measure of

the linear association between a specific parameter and the output after the linear

effects from the remaining inputs are removed. PRCC values range from -1 to 1,

where a positive sign indicates a direct relationship between the parameter and the

output value while a negative sign indicates an inverse relationship between the two.

The magnitude of the PRCC value represents the importance of the parameter to

the model output. The further the value is from zero, the more influential it is [33].

The E Cases output measure is defined by βTV − E

τE
. When we look at these

graphs shown in figure 9, we are considering the relationship between the given
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Monotonicity Plots

Figure 9. The title of the given section of graphs is the output mea-

sure for the given case and is along every y-axis. The parameter above

every individual graph lies on the x axis.
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Monotonicity Plots Cont.

Figure 10. The set up is the same at the above graphs.

parameter and the difference between cells entering the E compartment, βTV , and
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PRCC Plots

Figure 11. On the y axis we have the PRCC values and along the x

axis each bar corresponds with the given parameter

the cells exiting the the E compartment,
E

τE
. The parameter lies on the x axis in

the shown graphs. It is important to note that all these plots are monotonic, so we

can go on to consider the PRCC values as accurate. From figure 11, the parameters’

degree of influence on the E Cases output measure ranked from least to greatest are:

c <
1

τI
< β < p <

1

τE
< rD.

1

τE
,

1

τI
and c have an inverse relationship with the

output while β, rD and p have a direct relationship on the data. It is interesting to

note that the parameters with positive PRCC values all fall into the numerator of

R0 while the parameters with negative PRCC values fall into the denominator.

The number of infectious cases is measured by E
τE
− I

τI
, this is referred to as I Cases

in the associated plots shown in 9. From figure 11, the parameters that impact the

number of infectious cases listed from least to most impact are: 1
τE

< c < β <

p < 1
τI
< rD, where the parameters rD, p, and β are directly proportional to the

number of infectious cases and the parameters 1
τI

and c are inversely proportional to

the number of infectious cases. We notice that for the number of infectious cases,

parameters that are directly proportional to I cases that also appear in R0 are the
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parameters that appear in the numerator of R0; namely p and β. Similarly, the

parameters that are inversely proportional to I cases that also appear in R0 are the

parameters that appear in the denominator of R0; specifically 1
τI

and c.

The number of infection induced deaths is calculated using I
τI

which is shown in

figure 10. The parameters that impacts the number of infection induced deaths,

written as I deaths, ranked from least to most impactful to get I
τI
< 1

τE
< c < p <

β < rD, this is again from figure 11. Parameters that are directly proportional to the

number of infection induced deaths are rD, β, p, and 1
τE

, while parameters that are

inversely proportional to the number of infection induced deaths are c and 1
τI

. The

same relationship can be seen between the proportionality of parameters and R0 in

E cases and I cases can be seen in I deaths.

The number of virons cleared is given by cV , shown in figure 10, is effected by the

following parameters, ranking from least to the most impactful, as shown in figure

11:
1

τE
< β <

1

τI
< rD < p < c. The parameters c, p, rD, β, and

1

τE
are all directly

proportional to the amount of virus cleared, whereas 1
τI

is inversely proportional to

the number of virons cleared. Since c is directly proportional to this measure, we

do not see the same pattern related to R0 as we did in the previous measures. This

change follows our assumption, however, due to the amount of virus cleared not being

directly related to the trajectory of the virus. When V clear is very high, it could

either be due to the host being very efficient at clearing out the virus, or it could

be because the host is sustaining the virus for a long time. Thus, the value of V

clear is not clearly related to whether the state of the virus is approaching endemic

or disease-free equilibrium.

Sensitivity analysis revealed that rD, p, and β are directly proportional to all

four measures of the disease.
1

τI
was found to be inversely proportional to all four

measures of the disease, and clearance rate, c, was found to be inversely proportional

to the number of exposed cases, the number of infectious cases, and the number of

disease-induced deaths.

In the monotonicity plots, we can observe that the plot corresponding to
1

τE
is not

strictly monotonic. Sensitivity analysis using PRCC requires monotonicity, thus this

may be a source of error in our analysis.
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The ranking of how much each parameter affects the number of exposed cases,

infectious cases, cell deaths, and virons cleared is consistent regardless of the number

of runs used. However, the magnitude of the PRCC values does change depending

on the number of runs used. In some cases, this difference is extreme; such as when

comparing the PRCC values of
1

τE
and β for the number of virons cleared using 100

runs to the PRCC values of
1

τE
and β for the number of virons cleared using 2000

runs. When using 100 runs,
1

τE
has a PRCC value of 0.033 and β has a PRCC value

of 0.523, making for a 0.490 difference. When using 2000 runs,
1

τE
has a PRCC value

of 0.192 and β has a PRCC value of 0.493, making a difference of 0.301. The degree

to which the difference between the PRCC values of
1

τE
and β changes depending

on the number of runs is concerning and may be the result of the non-monotonicity

of 1
τE

. Since the largest number of simulations used (in this case N = 2000) should

be the most accurate, we will examine the results when that number of runs is used.

For information regarding the 100, 500, and 1000 runs, see the appendix.

For 2000 simulations, the PRCC values of each parameter all have p < 1.2 · 10−9,

so each parameter significantly effects the number of expose cases, infectious cases,

deaths due to infection, and virons cleared.

6. Discussion

The Basic Reproduction Number, R0 was calculated to be
βpN

c 1
τI

. The numerator

of R0, βpN , contains values related to the transmission and production of the virus,

and the denominator, c 1
τI

, contains values related to the death and clearance of the

virus. Thus, when the production and transmission of the virus is greater than the

death and clearance of the virus, we see a spread in infectious and a tendency to

the locally asymptotically stable endemic equilibrium. On the other hand, when

production and transmission is less than the death and clearance of the virus, the

disease tends to the locally asymptotically stable disease-free equilibrium. The goal

in influenza treatment then, would be to manipulate the conditions of the disease in

order to produce a situation that approaches the disease-free equilibrium. Thus, it
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is important to determine what parameters contribute the most to hallmarks of the

disease.

Partial Rank Correlation Coefficients were used to determine how different pa-

rameters contributed to important measures of the disease including, the number

of exposed cases, the number of infectious cases, the number of infection-induced

deaths, and the number of virons cleared. Health professionals would ideally like

to minimize the first three of these measures. Interestingly, it was found that cellu-

lar restoration had the strongest positive relationship with the number of exposed

cases, the number of infectious cases, and the number of cell deaths due to infec-

tion. This finding may indicate that in some cases it would be helpful to slow down

cellular restoration as it is positively associated with the measures we wish to min-

imize. No causation is established in this study, however, the detrimental role of

cellular restoration on the trajectory of the spread of influenza has been documented

in other cases [15]. In particular, chronic cases of influenza cannot occur without

cellular restoration, so this parameter clearly plays a role in the perpetuation of the

influenza infection.

It was also noted from the sensitivity analysis that parameters that were directly

proportional to the number of exposed cases, the number of infectious cases, and the

number of disease-induced deaths tend to appear in the numerator of R0, whereas

parameters that are indirectly proportional to these measures tend to appear in the

denominator ofR0. This makes sense because each of these three measure impact the

trajectory of the disease (whether it tends to endemic state or disease-free), which is

precisely what R0 measures.

Results from the stochastic simulations indicate that influenza first spreads ex-

tremely rapidly, achieving a state in which all target cells are either exposed or

infectious very quickly. Comparatively, it takes a much longer time for the exposed

and/or infectious cells to die. To illustrate; for a population of 5 cells with initially

0 exposed/infectious cells it takes approximately 10-11 seconds for all the original

target cells to become exposed/infectious, and it is not until at least 3 minutes have

passed since the initial time that the first cells begin to die. These findings indicate

that any treatment for influenza intended to curtail the spread of the virus within

the host would need to be administered and be effective very soon after initial expo-

sure to the influenza virus. These findings are supported by biological evidence that
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early administration of antiviral treatment for patients with influenza is an important

factor of recovery [56].

7. Future Directions

In the future, due to the dependence of initial time and spatial dependence of

the infection, it is imperative to account for the spatial component of within-host

virus kinetics by utilizing a system of Partial Differential Equations. It would also

be helpful to develop a more efficient method for simulating the stochastic model in

order to better understand the end behavior of this model.

It is also important to compare the models developed in this article with data

collected regarding the spread of influenza within-host. Doing so would allow us

to verify the accuracy of our model as well as refine our models using parameter

estimation. Currently, we are using values for our parameters that previous studies

have used in their models [6, 7, 54]; however, it may be more beneficial to use collected

biological data to estimate our parameters through a process known as parameter

estimation. For details about how we would approach parameter estimation, see the

appendix.

It would be possible to utilize the results from the stochastic simulations to de-

termine the time until peak infection (when the maximum number of exposed and

infectious cells is achieved). This time appears to depend both on the number of cells

present, N , as well as the initial state. In particular, it may be useful to examine how

the initial number of infectious cells impacts the time until peak infection and if/how

the relationship is mediated by N . The tools developed in this study are sufficient

to investigate this question, but due to the computationally expensive nature of the

simulations, this question remains unanswered.



54 Cassandra Williams, Krista Wurscher

8. Appendix

8.1. PRCC Tables.

Number of Exposed Cases with 100 Runs

PRCC Values ECases β rD
1
τE

1
τI

p c

0.8187650246 β 0 -6.785742 -3.480713 3.746287 -0.120890 5.128212

0.9736998142 rD 6.785742 0 3.305029 10.53203 6.664851 11.91395

0.9314292228 1
τE

3.480713 -3.305029 0 7.227001 3.359823 8.608925

0.5353914372 1
τI

-3.746287 -10.53203 -7.227001 0 -3.867178 1.381925

0.8245864934 p 0.120890 -6.664851 -3.359823 3.867178 0 5.249103

0.373773754 c -5.128212 -11.91395 -8.608925 -1.381925 -5.249103 0

Table 5: PRCC values and z-values from Sensitivity Analysis for the number of

Exposed cases after 100 runs.

Number of Exposed Cases with 500 Runs

PRCC Values ECases β rD
1
τE

1
τI

p c

0.8350660832 β 0 -17.80147 -9.483408 6.876220 -3.052344 9.009770

0.9816410302 rD 17.80147 0 8.318066 24.67769 14.74913 26.81124

0.947821772 1
τE

9.483408 -8.318066 0 16.35963 6.4310637 18.49318

0.6444732506 1
τI

-6.876220 -24.67769 -16.35963 0 -9.928564 2.133550

0.8852335403 p 3.052344 -14.74913 -6.431064 9.928564 0 12.062114

0.5577896879 c -9.009770 -26.81124 -18.49318 -2.133550 -12.06211 0

Table 6: PRCC values and z-values from Sensitivity Analysis for the number of

Exposed cases after 500 runs.
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Number of Exposed Cases with 1000 Runs

PRCC Values ECases β rD
1
τE

1
τI

p c

0.8151506752 β 0 -24.54984 -12.57757 10.90514 -3.069671 13.27076

0.97781069 rD 24.54984 0 11.97227 35.45497 21.48017 37.82059

0.9363062818 1
τI

12.57757 -11.97227 0 23.48271 9.507898 25.84833

0.5732090415 1
τI

-10.905138 -35.45497 -23.48271 0 -13.97481 2.365620

0.8565097409 p 3.069671 -21.48017 -9.507898 13.97481 0 16.34043

0.497528456 c -13.27076 -37.82060 -25.84833 -2.365620 -16.34043 0

Table 7: PRCC values and z-values from Sensitivity Analysis for the number of

Exposed cases after 1000 runs.

Number of Exposed Cases with 2000 Runs

PRCC Values ECases β rD
1
τE

1
τI

p c

0.8068706569 β 0 -25.79477 -14.02252 10.34646 -4.476775 12.64307

0.9791609255 rD 25.79477 0 11.77224 36.14122 21.31799 38.43784

0.9411410029 1
τE

14.02252 -11.77224 0 24.36898 9.545748 26.66560

0.5738147717 1
τI

-10.34646 -36.14122 -24.36898 0 -14.82323 2.296618

0.8665625053 p 4.476775 -21.31799 -9.545748 14.82323 0 17.11985

0.5005341624 c -12.64307 -38.43784 -26.66560 -2.296618 -17.11985 0

Table 8: PRCC values and z-values from Sensitivity Analysis for the number of

Exposed cases after 2000 runs.

8.2. Parameter Estimation. In cases when parameters are difficult to estimate

experimentally, or when we are concerned about parameter accuracy, one might be

interested in estimating the value of the parameter mathematically. There are sev-

eral methods for parameter estimation, including Maximum Likelihood Estimation,

Bayesian Estimation, and Least Squares.

Bayesian Estimation may be the most ideal type of parameter estimation for this

problem because it assumes that parameters have specific distributions, rather than

having a deterministic value. In reality, our parameters will be depending on host and

situation. The problem with Bayesian Estimation by itself, it is requires an educated

guess as to a prior distribution, which may require some knowledge of hyperparame-

ters for the prior distribution. We will use Maximum Likelihood Estimation in order
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Number of Infectious Cases with 100 Runs
PRCC Values ICases β rD

1
τE

1
τI

p c

0.8472567402 β 0 -6.964773 4.965806 -2.916505 -0.378176 4.152177

0.9792463986 rD 6.964773 0 11.93058 4.048267 6.586596 11.11695

0.4700769672 1
τE

-4.965806 -11.93058 0 -7.882312 -5.343983 -0.813629

0.9326953513 1
τI

2.916505 -4.048267 7.882312 0 2.538329 7.068682

0.8623432695 p 0.378176 -6.586596 5.343983 -2.538329 0 4.530353

0.5585956599 c -4.152177 -11.11695 0.813629 -7.068682 -4.530353 0

Table 9: PRCC values and z-values from Sensitivity Analysis for the number of

infectious cases after 100 runs.

Number of Infectious Cases with 500 Runs
PRCC Values ICases β rD

1
τE

1
τI

p c

0.8365559793 β 0 -17.75696 12.29364 -8.860972 -1.900536 9.352198

0.9817173522 rD 17.75696 0 30.05060 8.895991 15.85643 27.10916

0.4011149139 1
τE

-12.29364 -30.05060 0 -21.15461 -14.19417 -2.941439

0.9441677021 1
τI

8.860972 -8.895991 21.15461 0 6.960436 18.21317

0.8694655814 p 1.900536 -15.85643 14.19417 -6.960436 0 11.25273

0.5460298962 c -9.352198 -27.10916 2.941439 -18.21317 -11.25273 0

Table 10: PRCC values and z-values from Sensitivity Analysis for the number of

infectious cases after 500 runs.

to find estimators for hyperparamaters, such as the mean of the distribution of the

parameter we wish to estimate. Maximum Likelihood Estimation was chosen over

Least Squares Estimation, because Least Squares assumes that errors are normally

distributed around 0; and since there may be some systematic error in the method

of data collection, this may not be a reasonable assumption a priori.

8.2.1. Maximum Likelihood Estimation. Maximum Likelihood Estimation is useful

for estimating parameters of a distribution that are most likely to provide the ob-

served data. This type of estimation requires forming a Likelihood Function, which

is the joint distribution function of each observation [30]. Given n observations, the
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Number of Infectious Cases with 1000 Runs
PRCC Values ICases β rD

1
τE

1
τI

p c

0.8315170275 β 0 -25.046955 16.31431 -12.40345 -2.388506 14.042700

0.9808026026 rD 25.04695 0 41.36126 12.64350 22.65845 39.08965

0.4301893193 1
τE

-16.31431 -41.36126 0 -28.71776 -18.70282 -2.271609

0.9414034042 1
τI

12.40345 -12.64350 28.71776 0 10.01494 26.44615

0.861809058 p 2.388506 -22.65845 18.70282 -10.014945 0 16.43121

0.5095921386 c -14.04270 -39.08965 2.271609 -26.44615 -16.43121 0

Table 11: PRCC values and z-values from Sensitivity Analysis for the number of

infectious cases after 1000 runs.

Number of Infectious Cases with 2000 Runs
PRCC Values ICases β rD

1
τE

1
τI

p c

0.8128467366 β 0 -24.86361 15.42654 -12.41065 -2.127387 13.07770

0.9781273761 rD 24.86361 0 40.29015 12.452960 22.73622 37.94131

0.4155834083 1
τE

-15.42654 -40.29015 0 -27.83719 -17.55393 -2.348834

0.934515402 1
τI

12.41065 -12.45296 27.83719 0 10.28326 25.48835

0.8428499052 p 2.127387 -22.73622 17.55393 -10.28326 0 15.20509

0.4989149404 c -13.07770 -37.94131 2.348834 -25.48835 -15.20509 0

Table 12: PRCC values and z-values from Sensitivity Analysis for the number of

infectious cases after 2000 runs.

Number of Deaths due to Infection with 100 Runs
PRCC Values IDeath β rD

1
τE

1
τI

p c

0.9407753838 β 0 -7.561800 7.656622 9.969193 3.228404 4.614269

0.993537033 rD 7.561800 0 15.21842 17.53099 10.79020 12.17607

0.5438874125 1
τE

-7.656622 -15.21842 0 2.312571 -4.428218 -3.042353

0.2606645725 1
τI

-9.969193 -17.53099 -2.312571 0 -6.740789 -5.354924

0.8527486582 p -3.228404 -10.79020 4.428218 6.740789 0 1.385865

0.785927044 c -4.614269 -12.17607 3.042353 5.354924 -1.385865 0

Table 13: PRCC values and z-values from Sensitivity Analysis for the number of

deaths due to infection after 100 runs.
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Number of Deaths due to Infection with 500 Runs
PRCC Values IDeath β rD

1
τE

1
τI

p c

0.9197543749 β 0 -18.60324 15.13875 18.63044 5.698412 10.69252

0.9922511265 rD 18.60324 0 33.74199 37.23368 24.30165 29.29576

0.5519881377 1
τE

-15.13875 -33.74199 0 3.491687 -9.440340 -4.446228

0.3785686213 1
τI

-18.63044 -37.23368 -3.491687 0 -12.93203 -7.937915

0.8407547826 p -5.698412 -24.30165 9.440340 12.93203 0 4.994111

0.7187265837 c -10.69252 -29.29576 4.446228 7.937915 -4.994111 0

Table 14: PRCC values and z-values from Sensitivity Analysis for the number of

deaths due to infection after 500 runs.

Number of Deaths due to Infection with 1000 Runs
PRCC Values IDeath β rD

1
τE

1
τI

p c

0.9217810715 β 0 -26.06837 21.11024 27.77618 8.389259 16.04781

0.9922063259 rD 26.06837 0 47.17861 53.84455 34.45763 42.11618

0.5732780552 1
τE

-21.11024 -47.17861 0 6.665937 -12.72098 -5.062429

0.3389729128 1
τI

-27.77618 -53.84455 -6.665937 0 -19.38692 -11.72837

0.8407918016 p -8.389259 -34.45763 12.72098 19.38692 0 7.658554

0.7063273652 c -16.047813 -42.116183 5.062429 11.72837 -7.658554 0

Table 15: PRCC values and z-values from Sensitivity Analysis for the number of

deaths due to infection after 1000 runs.

Number of Deaths due to Infection with 2000 Runs
PRCC Values IDeath β rD

1
τE

1
τI

p c

0.9163586754 β 0 -26.12393 20.29580 26.30186 8.599075 15.34169

0.9916862511 rD 26.12393 0 46.41973 52.42580 34.72301 41.46563

0.5743929833 1
τE

-20.29580 -46.41973 0 6.006065 -11.69672 -4.954103

0.3663822842 1
τI

-26.30186 -52.42580 -6.006065 0 -17.70279 -10.96017

0.8272994399 p -8.599075 -34.72301 11.69672 17.70279 0 6.742620

0.7047181159 c -15.34169 -41.46563 4.954103 10.96017 -6.742620 0

Table 16: PRCC values and z-values from Sensitivity Analysis for the number of

deaths due to infection after 2000 runs.



Within-Host Modeling of the Transmission of Influenza 59

Number of Virons Cleared with 100 Runs
PRCC Values Vclear β rD

1
τE

1
τI

p c

0.522608818 β 0 -5.354223 3.686859 -1.179973 -7.023793 -12.02889

0.8795292887 rD 5.354223 0 9.041083 4.174251 -1.669569 -6.674662

0.03333335911 1
τE

-3.686859 -9.041083 0 -4.866832 -10.71065 -15.71574

0.6380352065 1
τI

1.179973 -4.174251 4.866832 0 -5.843820 -10.84891

0.9247978822 p 7.023793 1.669569 10.71065 5.843820 0 -5.005093

0.9824390488 c 12.02889 6.674662 15.71574 10.84891 5.005093 0

Table 17: PRCC values and z-values from Sensitivity Analysis for the number of

virons cleared after 100 runs.

Number of Virons Cleared with 500 Runs
PRCC Values Vclear β rD

1
τE

1
τI

p c

0.4579386643 β 0 -12.28207 4.578262 -5.329070 -17.25895 -28.10644

0.8561042677 rD 12.28207 0 16.86033 6.953001 -4.976876 -15.82437

0.1997799901 1
τE

-4.578262 -16.86033 0 -9.907332 -21.83721 -32.68470

0.6830528232 1
τI

5.329069 -6.953001 9.907332 0 -11.92988 -22.77737

0.921096069 p 17.25895 4.976876 21.83721 11.92988 0 -10.84749

0.9796390198 c 28.10644 15.82437 32.68470 22.77737 10.84749 0

Table 18: PRCC values and z-values from Sensitivity Analysis for the number of

virons cleared after 500 runs.

Number of Virons Cleared with 1000 Runs
PRCC Values Vclear β rD

1
τE

1
τI

p c

0.471311629 β 0 -17.67633 7.747615 -8.051663 -24.70053 -39.64880

0.8632206436 rD 17.67633 0 25.42395 9.624670 -7.024193 -21.97247

0.1622547445 1
τE

-7.747615 -25.42395 0 -15.79928 -32.44814 -47.39642

0.7031317985 1
τI

8.051663 -9.624671 15.79928 0 -16.64886 -31.59714

0.9248272022 p 24.70053 7.024193 32.44814 16.64886 0 -14.94827

0.9798160961 c 39.64880 21.97247 47.39642 31.59714 14.94827 0

Table 19: PRCC values and z-values from Sensitivity Analysis for the number of

virons cleared after 1000 runs.
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Number of Virons Cleared with 2000 Runs
PRCC Values Vclear β rD

1
τE

1
τI

p c

0.4925516387 β 0 -18.71137 7.684263 -8.508295 -25.19609 -40.97937

0.880954189 rD 18.71137 0 26.39564 10.20308 -6.484718 -22.26800

0.19181046 1
τE

-7.684263 -26.39564 0 -16.19256 -32.88036 -48.66363

0.7266771262 1
τI

8.508295 -10.20308 16.19256 0 -16.68780 -32.47108

0.9317276171 p 25.19609 6.484718 32.88036 16.68780 0 -15.78328

0.9830270668 c 40.97937 22.26800 48.66363 32.47108 15.78328 0

Table 20: PRCC values and z-values from Sensitivity Analysis for the number of

virons cleared after 2000 runs.

likelihood function would take to following form:

L(θ) = f(x1|θ) · f(x2|θ) · ... · f(xn|θ) =
n∏
i=1

f(xi|θ)

where observations are assumed to be independent and identically distributed [30,

38]. We wish to find the value of the parameter θ which provides the highest like-

lihood of getting the data that was observed. This can be accomplished through

some simple calculus; however, the likelihood function is not always the most ideal

because it is difficult to take the derivative of a repeated product. Instead, we find

the log-likelihood function,

l(θ) = log(L(θ)) =
n∑
i=1

log(f(xi|θ))

and find the maximum of this new function. As logarithms are monotonic functions,

argmax(l(θ)) = argmax(L(θ)). So, to find the maximum we set l′(θ) = 0. In some

cases, θ may be a vector of the form


θ1

θ2

...

θp

 where θ1, θ2, ..., θp are each parameters of

the probability distribution f . In this case, we would need to take p partial derivatives

and set each equal to 0. Like so:
∂l

∂θ1

= 0,
∂l

∂θ2

= 0,...,
∂l

∂θp
= 0. Upon solving for
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θi and confirming that the result is the argmax(l(θi)); the resulting expression is the

estimator of the parameter θi [30, 38].

8.2.2. Bayesian Estimation. As opposed to Maximum Likelihood Estimation, in

Bayesian Estimation, each parameter that we hope to estimate is considered a ran-

dom variable [30, 19]. We begin with a prior distribution, g(θ), which is an edu-

cated guess as to the distribution of the parameter, θ. There is also the option for

noninformative prior in the case where we don’t have any conditions for the prior

distribution that our parameter should be. The prior distribution for θ will involve

hyper-parameters, such as what we expect the mean of our parameter to be. For

our purposes, these hyper-parameters will be informed by our maximum likelihood

estimation. We will then use data to inform and adjust our prior distribution and

form what is known as a posterior distribution. The posterior distribution may be

thought of as the distribution of the parameter θ, given our knowledge of the data

x1, x2, ..., xn; and is written as g(θ|x1, x2, ..., xn). By implementing Bayes’ Theorem,

we can re-write the posterior distribution in terms of the prior [18, 30, 19].

g(θ|x1, x2, ..., xn) =
f(x1, x2, ..., xn|θ)g(θ)

f(x1, x2, ..., xn)
=

(
∏n

i=1 f(xi|θ)) g(θ)∫
Ω

(
∏n

i=1 f(xi|θ)) g(θ)dθ

where Λ is the parameter space. Since the denominator does not depend on θ, we

may write

g(θ|x1, x2, ..., xn) ∝ f(x1, x2, ..., xn|θ)g(θ).

Once the posterior distribution is determined, θ may be estimated by finding its

expected value

θ̂ = E(θ) =

∫
Λ

θg(θ|x1, x2, ..., xn)dθ.
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