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ABSTRACT. Gradient sensing for cells is crucial to understanding many biological pro-
cesses, including prenatal development and wound healing. We seek to generalize a cur-
rently relevant mathematical model for gradient sensing through cellular communication
by extending the communication method for an arbitrary kernel in arbitrary dimension. By
replacing specific matrix multiplication with n-dimensional convolution, we find that we
can use Taylor polynomials and properties of the communication process to derive better
approximations for our newly generalized model. Numerical simulations are then used in
order to qualify the differences between these approximations of communication. We find
that substantial differences exist between methods at short scales, but find that for larger
groups of cells in large time-scale, the general method is incredibly close to the current
model while being simpler to compute via Fourier transforms.

1. INTRODUCTION

Chemotaxis is the ability for groups of cells to move according to a chemical gradient.
Essentially, chemotactic cells are able to sense the changing concentration of attractant
and/or repellent and move accordingly. For a given gradient, it has been shown that cells
behave differently depending on the size of the group of cells. That is, single cells are
known to do random walks, but when a large enough collection has gathered, the cells
move according to the gradient. Due to behaviour, it is theorized that cells are able to
communicate with one another.

The Local Excitation, Global Inhibition (LEGI) model is a well-established model for
gradient sensing developed initially by ?. The model is a system of four equations that
describes, for a one-dimensional chain of cells, the concentration of some chemical c̃, the
number of active receptors r̃ on each cell, and the amount of active local x̃ and global ỹ
molecules in each cell. The number of r̃ for each cell is dependent on the concentration
of c̃ around that cell, and while a cell has receptors it activates x̃ and ỹ at a rate of β̃. x̃
is a local molecule, it will never leave the cell, while ỹ is a global molecule that is passed
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between cells at a rate of γ̃. Both x̃ and ỹ are activated and deactivated at the same rates, but
the exchange of ỹ between cells leads to differences in x̃ and ỹ. This difference between x̃
and ỹ is how each cell senses the local gradient.

This study serves to analyze and improve upon the standard LEGI model by implement-
ing a general communication via a convolution term into a nondimensionalized version of
the model, as well as generalizing the model into higher dimensions. By implementing
numerical simulations in MATLAB we have tested differences between various approxi-
mations of this convolution model under a variety of conditions. This report outlines the
development of our generalized nondimensional model from the original LEGI model and
details simulations for a fixed system of cells with different communication methods and
concentration gradients.

2. PROBLEM STATEMENT

2.1. Original Model. The LEGI model is described by a system of four differential equa-
tions, presented by ? as follows:

(1)
∂c̃
∂t̃

= D∇
2c̃−

m

∑
n=1

δ(
~̃z
L
−
~̃zn

L
)
dr̃n

dt̃
,

(2)
dr̃n

dt̃
= α̃c̃n− µ̃r̃n + η̃n,

(3)
dx̃n

dt̃
= β̃r̃n− ν̃x̃n + ξ̃n,

(4)
dỹn

dt̃
= β̃r̃n +

m

∑
n′=1

M̃nn′ ỹn′+ χ̃n,

(5) M̃ = δn,n′(−ν̃−2γ̃)+(δn−1,n′+δn+1,n′)(γ̃).

Here, ~̃z is a position variable, t̃ is a time variable, D̃ is the diffusion constant, m is the
number of cells, δ is the discrete impulse function, α̃ and µ̃ are the binding and unbinding
rates of receptors (the number of which is given by r̃) respectively, and β̃ and ν̃ are the
activation and deactivation rates of both x̃ and ỹ, respectively. M̃ is a communication
matrix for ỹ, and γ̃ is the rate at which ỹ is transferred between cells. Lastly, η̃, ξ̃ and χ̃ are
zero-mean Gaussian white noise terms given by

(6) η̃n = α̃ ¯̃cnδFn,
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(7) < ξ̃n(t), ξ̃n′(t
′)>= δn′,n(β̃ ¯̃rn + ν̃ ¯̃xn)δ(t− t ′),

< χ̃n(t), χ̃n′(t
′)>= [δn′,n (β̃ ¯̃rn + ν̃ ¯̃yn +2γ̃ ¯̃yn + γ̃ ¯̃yn−1 + γ̃ ¯̃yn+1),

−δn′,n−1(γ̃ ¯̃yn−1 + γ̃ ¯̃yn),(8)

−δn′,n+1(γ̃ ¯̃yn+1 + γ̃ ¯̃yn)]δ(t− t ′).

Where F is the free energy associated with unbinding ? ?.
We now nondimensionalize these equations. In these new dimensionless equations, a is

the length of a cell, c0 is the average value of c̃ and L = ma is the total length of the cell
chain. These dimensionless terms are defined as follows:

z =
z̃
L
, t =

t̃D
L2 , c =

c̃
c0
,

α =
α̃a2

D
, µ =

µ̃a2

D
, β =

β̃a2

D
, ν =

ν̃a2

D
,

r =
r̃
c0
, x =

x̃
c0
, y =

ỹ
c0
.

We now look to rewrite equations ?? through ?? using these dimensionless terms. Doing
so rescales the equations and results in the below dimensionless equations, where λ= L2

a2 =

m2 and ε = L2

Dc0
:

(9)
∂c
∂t

=
∂2c
∂z2 −

m

∑
n=1

δ(~z−~zn)
drn

dt
,

(10)
drn

dt
= λαcn−λµrn + εηn,

(11)
dxn

dt
= λβrn−λνxn + εξn,

(12)
dyn

dt
= λβrn +λ

m

∑
n′=1

Mnn′yn′+ εχn.

(13) M = δn,n′(−ν−2γ)+(δn−1,n′+δn+1,n′)(γ)
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2.2. Problem Summary. We look to analyze a generalized version of this non-dimensionalized
LEGI model in the case of very large clusters of cells and in arbitrary dimension. To do
this, we generalize the model to a continuous one, i.e. where there are infinitely many
cells. We show the extent to which this model agrees with the LEGI model, as well as the
cases in which it disagrees. We hope to provide an accurate and computationally simple
model for gradient sensing in arbitrary dimension.

3. CELL COMMUNICATION GENERALIZED AND IN HIGHER SPATIAL DIMENSIONS

Our next step, was to generalize the LEGI model, using a discrete convolution-based
communication term in place of the matrix M from (??). This is due to the matrix M
allowing only for communication between each cell and its immediate neighbors. For a
process that is modeled in discrete time, the previous model may not be physically accu-
rate for a given time step. To compensate for this, we introduce the ability for cells to
communicate further in a single time step.

Equation (??) features the matrix M, which regards both deactivation of y at rate ν and
communication at rate γ. In order to generalize this term using convolution, we need to
change parts of the differential equation itself. While deactivation continues to happen at
the same rate, the communication term requires a fundamental change. We propose a new
model for communication by replacing M with a convolution with kernel w. The resulting
differential equation without noise looks as follows:

(14)
dyn

dt
= λ(βrn−νyn + γ(w∗ y)n).

This equation holds for all n, barring those on the boundary. In this case, we have found
properties that this convolution must satisfy and, as a result, realistic properties of the
kernel w.

The convolution must be such that there is no net change in system-wide y as a result
of communication. That is to say, the kernel of this convolution must sum to zero across
all spatial indices once boundary conditions have been accounted for. This said, there
should not be disproportionate communication in either direction, so for the average cell
not affected by boundary conditions, w should have even symmetry about 0. The original
model can be replicated by such a w that looks like

(15) w =−2δ(n)+δ(n−1)+δ(n+1).

Where δ is the discrete impulse function. Other simple ideas for w are now more easily
considered. For example, if you want a possibility of two-cell-long communication, where
it is much more common for communication to occur at a one-cell distance, you may come
up with
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(16) w =−2δ(n)+
4
5
(δ(n−1)+δ(n+1))+

1
5
(δ(n−2)+δ(n+2)).

We now wish to look at the natural extension of this discrete convolution model to a
continuous one, allowing also for arbitrary dimension.

The one-dimensional LEGI model is presented as (??) - (??). The first three of these
differential equations are of little interest in this generalization, as they are not specific to
any dimension and are trivially extended to continuous space. Equation ??, however, is of
interest as it only allows for a very specific kind of one-dimensional communication. We
have, as a result, altered only (??) yielding

(17)
dyn

dt
= λ(βrn−νyn +(w∗ y)n)+ εχn.

Where w is a kernel satisfying the following properties:
• w is an even function in all spatial dimensions,
• w has a small support relative to the length of the system,
• w integrates (or sums, in the discrete case) to zero over its support.

This convolution in spacial dimension z, in the continuous case, is defined as

(18) w∗ y =
∫

∞

−∞

w(u)y(z−u) du.

Following the method used in ?’s Mathematical Biology, we now expand y into a Taylor
series centered at z. Because the support of w is relatively small, we are justified in using
a rather small order approximation for y. Here, we specifically choose a second order
approximation:

(19)
∫

∞

−∞

w(u)y(z−u) du≈
∫

∞

−∞

w(u)
(

y(z)−uy′(z)+
u2

2
y′′(z)

)
du.

Breaking this up into three integrals and taking the u-independent terms out, we get

(20) y(z)
∫

∞

−∞

w(u) du− y′(z)
∫

∞

−∞

uw(u) du+ y′′(z)
∫

∞

−∞

u2

2
w(u) du.

From the properties of w, we know this first integral is zero. We also know that w is
even, so its product with u is odd, meaning its integral over a symmetric interval is also
zero. This leaves only the second order term. The final integral will also evaluate to a
single number dependent only on the kernel. We call this number Ω1, allowing us to
simply write
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(21) w∗ y≈ y′′(z)
∫

∞

−∞

u2

2
w(u) du = Ω1y′′(z),

and (??) generalizes to

(22)
∂y
∂t
≈ λ(βr(z, t)−νy(z, t)+Ω1y′′(z))+ εχ.

We can apply the same general method to generate the LEGI model’s natural extension
to two dimensions. This means we must use the two-dimensional definition of convolution
in space dimensions x1 and x2 given by

(23) w∗ y =
∫∫

R2
w(u1,u2)y(z1−u1,z2−u2) du1du2.

We also must use the multivariable Taylor expansion about (z1,z2), which is given to
order two by

(24) y(~z)−~u ·∇y(~z)+
1
2
~uT H(y(~z))~u.

Where H(y(~z)) is the Hessian matrix of y. Note that the first and second terms here
vanish similar to (??). Only the last term survives, leaving

(25) w∗ y≈ 1
2

∫∫
R2

w(~u)
(

u2
1yz1z1 +u2

2yz2z2 +2u1u2yz1z2

)
d~u.

It is of interest that this can be split into three separate integrals, the first to of which
vanish simply by the fact that in one dimension they integrate as w alone. The last term
also does not survive, as the integral in either spatial dimension is that of an odd function
multiplied by an even one. As a result, order two is not enough. We must have a term
with an even power of u factor that also has representation of each spatial dimension. This
can only be achieved by a third order term or higher. However, all third order terms also
vanish due to the even symmetry of w. This means we must look at a fourth order Taylor
approximation. Most of these terms will drop out, and only terms with two z1 derivatives
and two z2 derivatives remain. This reduces our problem to a combinatorial one used to
determine which terms exist and remain. That work is spared here, but results in

(26)
1
4!

∫∫
R2

w(~u)
(

6u2
1u2

2yz1z1z2z2

)
= Ω2yz1z1z2z2.

This leads to a final equation:
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(27)
∂y
∂t
≈ λ(βr(~z, t)−νy(~z, t)+Ω2yz1z1z2z2)+ εχ.

When looking at an m-dimensional system, it follows from the two-dimensional reason-
ing that one must expand y to at least the 2mth term of its Taylor series. As all terms prior
to this term integrate to zero, as do a portion of the 2mth terms. These terms must have
exactly two derivatives of each of the spatial dimensions, and as these mixed partials are
all equal, we can represent them by yz1z1...zmzm . The number of terms that look like this are
determined by the multinomial coefficient:

(28)
(

2m
2,2, . . . ,2

)
=

2m!
2!2! . . .2!

=
2m!
2m .

If one accounts for the fact that these Taylor series terms are preceded by a 1
2m! , it is

clear that, for arbitrary dimension m,

(29) Ωm =
1

2m

∫
· · ·

∫
Rm

w(~u)u2
1 . . .u

2
m d~u.

This gives us a very simple general estimation for arbitrary dimension:

(30)
∂y
∂t
≈ λ(βr(~z, t)−νy(~z, t)+Ωmyz1z1...zmzm)+ εχ.

Naturally, the fact that we are truncating a Taylor series leads to the question of error.
Clearly we are being inexact, but under what conditions is this error small enough to be
disregarded?

It is also important to note that we are also creating another source of error in how we
compute the derivatives of y. If one takes Equation ??, applies a central second order
finite difference approximation to y, and takes Ω1 to be γa2, then one retrieves (refnormy)
exactly. However, is this a sufficient approximation? If we expand the Taylor series further,
this question must be asked for each extra term.

For simplicity, we look at the second question in the one-dimensional case first. It is
true that, for a−→ 0,

(31) y′′(z) =
y(z+a)−2y(z)+ y(z−a)

a2 +O(a2).

However, we can take better finite difference approximations to minimize error. For
example:
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(32) y′′(z) =
−1
12 y(z+2a)+ 4

3y(z+a)− 5
2y(z)+ 4

3y(z−a)− 1
12y(z−2a)

a2 +O(a4).

3.1. Fourth Derivative Term. The approximation of the convolution term can always be
improved by adding more terms from the Taylor expansion. The next interesting addition
is the fourth derivative term:

(33)
∂y
∂t
≈ λ(βr(z, t)−νy(z, t)+Ω1y′′(z)+φy(4)(z))+ εχ,

(34) φ =
1
4!

∫
∞

−∞

w(u)u4du.

This term is significant in any conditions that result in a large y(4)(z). This can be
due to noise or a sharp change in the concentration gradient. In cases where this term is
significant, one can approximate y(4)(z) using centered finite difference:

(35) y(4)(z) =
y(z+2a)−4y(z+a)+6y(z)−4y(z−a)+ y(z−2a)

a4 +O(a2).

The constant φ is dependent on the convolution kernel w. As w is an arbitrary kernel, we
are unable to determine the value of φ, relative to Ω.

4. RESULTS

Should one generalize y communication to the aforementioned convolution model, one
may naturally ask what are the differences are between this general convolution and the
original communication method (??). We look at the differences between the communica-
tion (??), the higher order finite difference approximation for the second derivative (??),
and lastly observe the effect of adding a fourth derivative term ().

As the kernel w is not determined, we look at a range of values for φ with relation to an
experimentally realistic γ value. This value was set to γ

4 for the sake of our simulations.
We examine at the effect it has on the noiseless system first.

Should the initial concentration be linear, we expect that the addition of a higher order
approximation or a fourth derivative term is highly inconsequential for any number of
cells. This is due to the fact that y tends to quickly become linear, making for zero second
and fourth derivatives.

Thus, initial concentrations most affected by this change are expected to be ones with
large derivatives, especially in the case of a low diffusion constant. This motivated the use
of initial concentrations such as e5z and z5.

We use a simulation with details provided in Appendix ?? to attain the behavior of the
three communication methods for one-dimensional cell chains. The initial concentration
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and number of cells were varied. We looked to compare, specifically, methods of commu-
nication based on the maximum difference between y values, the only differing term. We
also look to scale these maximums relative to the maximum value of y for the system, as
this is consistent between all communication methods for a fixed d and number of cells.
This also gives a relative size of the difference as compared to y itself. We define two new
terms,

S2 = 100
max|y1− y2|

max(y1)
,

S3 = 100
max|y1− y3|

max(y1)
,

where y1 is y computed by second order finite difference second derivative communica-
tion, y2 is y computed by fourth order finite difference second derivative communication,
and y3 is y computed with a second and fourth derivative communication term. These
terms state the maximum difference between these alternative communication models and
the original LEGI model. They are multiplied by 100 as to present the data in percentages.
The data for S2 and S3 are presented in Tables ?? through ??.

We find that in the cases of linear initial concentration, there is very little difference
between the three possible methods of communication, should there be no noise. If, how-
ever, the concentration is given by a function with larger high-order derivatives, such as
ez, it is clear that the difference in method does, in fact, make a difference in the commu-
nication between cells. Specifically, it makes the greatest difference towards the ends of a
one-dimensional cell chain, although there is an existent difference between the methods
throughout space.

The greatest of these differences was seen between the standard method and the fourth
derivative method for initial concentration z5, followed very closely by e5z and lastly 1

2z.
As y changes in space in a manner that depends in some way on this concentration, it is
intuitively clear that a high fourth derivative in the initial concentration would make for
a larger difference between the standard and fourth derivative method. A linear y has no
second nor fourth derivative, thereby diffusion-influenced slight changes in y accounts for
all of the difference between methods.

As should be expected, the better second derivative approximation does affect, in some
manner, the value of y, but it is not nearly as large of a contribution as a higher order term.

We also see that this difference is highly dependent on the number of cells in either case.
This is very much expected mathematically, as the size of a cell a relative to L becomes
very small as the number of cells increases. We know that our convolution approximations
become much closer to the actual convolution’s value as this occurs.

We see that a smaller diffusion constant allows for larger differences between these
methods, than higher diffusion constants. This is likely due to the fact that in the case of
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higher D, y is affected more substantially by the changing concentration than the commu-
nication between cells.

While this data gives us insight into the maximum long-time effects of differing meth-
ods of communication on the system, we also take interest in short-time effects of this
communication. As such, we look at the setup in which the concentration is initialized to
zero everywhere. We then, initialize y to be begin with an initial value of zero in each cell,
except the center cell, denoted z0, which has an initial value of one. Since c and r are zero
everywhere for every timestep, the only manners in which y changes are by deactivation
and communication. In the very earliest timesteps, this change is heavily dominated by
communication, as γ is 100 times larger than ν. In the early moments, we look to see the
properties of communication between cells with respect to both distance and time.

To do this, we look at the autocorrelation of a certain method’s y in space at each point
in time. This is done by application of the Wiener-Kinchin theorem, which is justified by
the finite length of y. That is

r1 = F −1(F (y1)F (y1)),

r2 = F −1(F (y2)F (y2)),

r3 = F −1(F (y3)F (y3)),

where (.̄) denotes the complex conjugate. Graphs of r1, r2 and r3 at the third timestep
(9ms into simulation) is shown in Figure ??. This serves, qualitatively, as a way to see the
relative size of the differences between the three communication methods in early stages
of communication.

From this, we find a correlation length at each time by stating that the autocorrelation
is nearly proportional to exp(−(z− z0)/C) and we find a C such that the autocorrelation
at z0 +C is closest e−1. We look at C for each method of communication as a function of
time, and we are able to determine some differences between them. This data can be seen
in Figure ??.

We find from this that the correlation lengths for the three methods are remarkably
close, and in fact never different by more than one cell length to the nearest cell length. At
moments where they are different, however, it is always true that the higher order second
derivative approximation method has the highest C, followed by the standard method, and
lastly by the fourth derivative approximation method. With this in mind, we look to see
what direct effect this has on early stage spread of y.

To do this we look at the first 50 timesteps of our simulation in which one timestep is
3 milliseconds, where the differences are most apparent. We look to see, at these times,
how many cells contain a higher y value than a certain tolerance T . We find that, in fact,
the fourth derivative method provides y to the most cells at all times (for T of varying
sizes), with the standard method behind it and the higher order second derivative method
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in last; this is the opposite order to the sizes of the correlation length. We see that the
largest differences occur very early in the simulation, with as many as ten more cells
communicating with the fourth derivative approximation than the standard method very
early on. These differences persist long after 20 timesteps but become less obvious for all
T . This data for a given T is shown in Figure ??.

5. DISCUSSION AND CONCLUDING REMARKS

Motivated by this work is similar work in higher dimensions with this general model,
as well as potentially the use of this general model when predicting behavior of higher
numbers of cells. This is justified by the fact that a convolution is much faster for the
purpose of simulation due to the ability to apply fast Fourier Transforms. It also motivates
the question as to whether this general model better describes small chains of cells than
the standard LEGI model. This noted, these differences may only be seen in cases with
high noise and shallow initial concentrations of an exponential or high degree polynomial
variety, as the differences between y values for these methods of communication are quite
small relative to the values of y itself in most cases.

We also see that the most notable difference between communication methods; the num-
ber of cells aware of communicant y as a function of time; is most affected in the short
timescale. Long-term effects are of a smaller scale, and it is likely always valid to use any
convolution method or approximation for a high number of cells, and long-term gradient
sensing model. There may be motivation now for determination of which of these methods
is most accurate in very rapid gradient modulation scenarios for actual cells.
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APPENDIX A. APPENDIX 1: NUMERICAL METHODS

We solved Equation ?? using the Crank-Nicolson method, while Heun’s method was
used for the remaining three equations. These methods were then interfaced in a loop
using a different time step for both methods, with a smaller time step for the Heun’s method
iterations. We use a = 10µm, α̃ = .1s−1, µ̃ = ñu = 1s−1, β̃ = γ̃ = 100s−1.
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APPENDIX B. TABLES AND FIGURES

Initial Concentration D(µm2s−1) S2 S3

1
2z

50 0.0993 0.3077

500 0.0576 0.1770

5000 0.0169 0.0520

z5
50 0.2989 0.9914

500 0.1453 0.4646

5000 0.0411 0.1313

e5z
50 0.2459 0.8108

500 0.1218 0.3879

5000 0.0347 0.1104
TABLE 1. Deterministic Communication differences for 10 cells



14 Brian Frost-LaPlante and Collin Victor

Initial Concentration D(µm2s−1) S2 S3

1
2z

50 0.0228 0.0765

500 0.0174 0.0591

5000 0.0112 0.0394

z5
50 0.1098 0.3519

500 0.0778 0.2497

5000 0.0426 0.1402

e5z
50 0.0968 0.3108

500 0.0673 0.2167

5000 0.0357 0.1182
TABLE 2. Deterministic Communication differences for 50 cells

Initial Concentration D(µm2s−1) S2 S3

1
2z

50 0.0100 0.0339

500 0.0074 0.0255

5000 0.0043 0.0156

z5
50 0.0517 0.1685

500 0.0376 0.1235

5000 0.0212 0.0719

e5z
50 0.0479 0.1557

500 0.0343 0.1124

5000 0.0186 0.0632
TABLE 3. Deterministic Communication Differences for 100 cells
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FIGURE 1. Autocorrelation on the third timestep

FIGURE 2. Correlation length over time
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FIGURE 3. Number of cells over tolerance level of T = 1E−8
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