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ABSTRACT. In this report we outline the results that we found regarding the parameters of a pruned
walk, as well as the behavior after repeated pruning. Specifically, looking at parameters after re-
peated pruning of mean zero walks, as well as representation as a Galton Watson process. Horton
and Tokunaga self similarity were also considered.

1. INTRODUCTION

In our results, we are primarily concerned with establishing the ways in which the pruned walks
of a geometric random walk behave. In order to do this, we examine the structure and parameters
of a random walk pruned once, and then extend this to walks pruned many times. We were able to
uncover unique properties about these walks, including accordance with Horton Law, and classifi-
cation as a Galton Watson process if the walk’s mean is less than or equal to zero. Moreover, we
have preliminary results regarding Tokunaga self similarity. Throughout our paper, we have built
upon the results from the 2016 OSU REU group (Anna-Sophia Hirst, Rachel Linder, and Daniel
Malmuth), both in checking and extending their ideas.

2. TREES

In order to understand the relationship between our random walk and the associated level set
tree, we first need to examine some of the basic properties of nonbinary rooted trees.

2.1. Structure of Trees.

Definition 2.1. A tree, T, is a connected simple non-cyclic graph. It consists of a sequence of points
called vertices, V , and lines connecting them called edges, E. No pair of vertices are connected
by more than one edge, and no sequence of vertices are connected cyclically. T = (V,E).

The second tree in Figure 1 may also illustrate the parent child relationship present in rooted
trees. Each edge connected to the root is the roots child, and the root is the parent. After this, for
any edge e, every edge connected to e that is not a parent of e are called the children of e, and e is
their parent. [1]
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FIGURE 1. Two trees. The tree on the right is rooted.

2.2. Pruning.

Definition 2.2. Pruning is the operation of removing all of the leaves from a tree, followed by a
series reduction.

Definition 2.3. A series reduction consists of merging all edges with one child with their children.

For the purposes of this paper, consider series reduction to happen automatically after any prun-
ing.

FIGURE 2. Pruning a tree by cutting off leaves and performing a series reduction.

2.3. Horton Strahler Ordering and Tokunaga Indexing.

Definition 2.4. The Horton-Strahler Order of an edge is the minimum number of prunings required
to completely eliminate it from the tree.

Similarly, the Horton-Strahler Order of a tree, denoted Ω, is the minimum number of prunings
required to completely eliminate the tree. The Horton-Strahler order of any vertex is the Horton-
Strahler order of that vertex’s parent edge. For the purposes of this paper, a branch is the full
sequence of an edge and all it’s parent or child edges of the same order.

Definition 2.5. Tokunaga indexing is a valuable way of describing how edges of differing orders
merge together. Let Ti j =

Ni j
N j

denote the average number of branches of order i < j per branch of
order j in a finite tree order Ω≤ j.
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FIGURE 3. Example of how to order the edges of a tree

2.4. Self-Similarity.

Definition 2.6. Self Similarity occurs when statistical structures in trees are preserved under prun-
ing.

We can think of this in relation to Horton orders, as well as how branches of different orders
merge into each other.

Definition 2.7. We can define Horton Self Similarity by the following:

Nr

Nr+1
= Rb

A tree will be Horton Self Similar, assuming it satisfies at least one of the following (and is finite
and positive):

Root Law : lim
k→∞

(Nk)
−1/k

= R R > 0

RatioLaw : lim
k→∞

Nk

Nk+1
= R R > 0

GeometricLaw : lim
k→∞

Nk ∗Rk = N0 N0 > 0
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Where we define:

Nk = lim
N→∞

N(Pk)
k
N

Tokunaga Self Similarity is used to look at branching statistics.

Definition 2.8. A tree is self similar in regard to branching statistics if E
(

τ
j
i(i+k)

)
=: Tk.

This means that for a particular branch order i+ k we can expect a certain number of mergings
with branches order k smaller (order i) .

Definition 2.9. We acheive Tokunaga Self Similarity if:

Tk+1

Tk
= c ⇐⇒ Tk = ack−1

2.5. The Geometric Random Walk.

Definition 2.10. A Geometric random walk is a stochastic process with a transition kernel K(x)
given by

K(x) = p1g1(x)+αδ0 + p2g2(−x)

where

gi(x) =
∞

∑
a=1

ri(1− ri)
a−1

δa(x) i = 1,2

Note that p1 is the probability of going up, p2 is the probability of going down, α= (1− p1− p2)
is the probability you stay the same height, g1(x) gives the distance up with a geometric random
variable r1, and g2(x) gives the distance down with a geometric random variable r2.

3. RESULTS

In this section we will outline our main theorems and results regarding the parameters of our
random walk and tree branching statistics.

Theorem 3.1. The distribution of the pruned geometric random walk on Z will also be geometric,
with the following parameters:

r(1)1 =
p2r1

p1 + p2

r(1)2 =
p1r2

p1 + p2

p(1)1 =
r(1)2 (1− r(1)1 )

1− (1− r(1)1 )(1− r(1)2 )

p(1)2 =
r(1)1 (1− r(1)2 )

1− (1− r(1)1 )(1− r(1)2 )
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FIGURE 4. The teal line represents the random walk, and the pink line is our level
set tree.

Proof. Recall that the kernel of our walk is given by

K(x) = p1g1(x)+αδ0 + p2g2(−x)

where

gi(x) =
∞

∑
a=1

ri(1− ri)
a−1

δa(x) i = 1,2

The characteristic equation of the kernel, found by taking the Fourier transform, is:

K̂(x) = p1

(
r1eis

1− (1− r1)eis

)
+α+ p2

(
r2eis

1− (1− r2)eis

)
Let our difference in heights of local minimums be:

d j =
ξ+

∑
j=1

Yj−
ξ−

∑
j=1

Z j
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FIGURE 5. The pruned tree of our original random walk is the level set tree of the
path connecting the minima of our random walk.

The Y j sum is the total distance up before going down, and the Z j is the total distance down

before reaching the next minimum. We also must acknowledge that ξ+ = geom
(

p2
p1+p2

)
and

ξ− = geom
(

p1
p1+p2

)
.

Once we calculate these two expectations:

E
(

eis(∑
∞
j=1 Y j−∑

∞
j=1 Z j)

)
= E

(
eis∑

∞
j=1 Y j

)
E
(

e−is∑
∞
j=1 Z j

)
E
(

eis∑
∞
j=1 Y j

)
=

(
p2r1

p1+p2

)
eis

1−
(

1− p2r1
p1+p2

)
eis

=⇒ geo
(

p2r1

p1 + p2

)

E
(

e−is∑
∞
j=1 Z j

)
=

(
p1r2

p1+p2

)
e−is

1−
(

1− p1r2
p1+p2

)
e−is

=⇒ geo
(

p1r2

p1 + p2

)
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Then we know the characteristic equation of d j is:

E
(

eis
(

∑
ξ+
j=1 Y j−∑

ξ−
j=1 Z j

))
=

(
p2r1

p1+p2

)
eis

1−
(

1− p2r1
p1+p2

)
eis
·

(
p1r2

p1+p2

)
e−is

1−
(

1− p1r2
p1+p2

)
e−is

This implies that:

r(1)1 =
p2r1

p1 + p2
, r(1)2 =

p1r2

p1 + p2

Take k ≥ 1.

p(xu− xd = k)

=
∞

∑
j=k+1

p(xu = j)p(xd = j− k)

=
∞

∑
j=k+1

(1− r(1)1 ) j−1r(1)1 · (1− r(1)2 ) j−k−1r(1)2

=
r(1)2 (1− r(1)1 )

1− (1− r(1)1 )(1− r(1)2 )
· r(1)1 (1− r(1)1 )k−1

=⇒ p(1)1 =
r(1)2 (1− r(1)1 )

1− (1− r(1)1 )(1− r(1)2 )

p(xu− xd =−k) =
∞

∑
j=k+1

p(xu = j− k)p(xd = j)

=
∞

∑
j=k+1

(1− r(1)1 ) j−k−1r(1)1 (1− r(1)2 ) j−1r(1)2

=
r(1)1 (1− r(1)2 )

1− (1− r(1)1 )(1− r(1)2 )
· r(1)2 (1− r(1)2 )k−1

=⇒ p(1)2 =
r(1)1 (1− r(1)2 )

1− (1− r(1)1 )(1− r(1)2 )

�

Corollary 3.2. The parameters of a pruned geometric random walk, where we guarantee that each
step will be nonzero in height, will be geometric with the following parameters. Note that p1 = p
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and p2 = 1− p.

r(1)1 = pr2

r(1)2 = pr2

p(1)1 =
p2r1r2− pr1r2 + pr2

p2r1r2− pr1r2 + pr2 + r1

p(1)2 =
p2r1r2− pr1r2− pr1 + r1

p2r1r2− pr1r2 + pr2− pr1

Proof. Recall that from the above theorem, and substituting in p1 = p and p2 = 1− p, we have:

r(1)1 =
p2r1

p1 + p2

=
(1− p)r1

1− p+ p
= (1− p)r1

r(1)2 =
p1r2

p1 + p2

=
pr2

1− p+ p
= pr2

p(1)1 =
r(1)2 (1− r(1)1 )

1− (1− r(1)1 )(1− r(1)2 )

=
pr2(1− (1− p)r1)

1− (1− (1− p)r1)(1− pr2)

=
p2r1r2− pr1r2 + pr2

p2r1r2− pr1r2 + pr2 + r1

p(1)2 =
r∗1(1− r∗2)

1− (1− r∗2)(1− r∗1)

=
(1− p)r1(1− pr2)

1− (1− (1− p)r1)(1− pr2)

=
p2r1r2− pr1r2− pr1 + r1

p2r1r2− pr1r2 + pr2− pr1

�
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Corollary 3.3. The parameters of a the pruned symmetric geometric random walk will be geomet-
ric and symmetric with the following parameters. Note that r = r1 = r2, p = p1 = p2.

r(1)1 = r(1)2 =
r
2

p(1)1 = p(1)2 =

(
1− r

2

)(
2− r

2

)
α
(1) =

r
4− r

Proof.

r(1)1 =
p2r1

p1 + p2
=

pr
2p

=
r
2

r(1)2 =
p1r2

p1 + p2
=

pr
2p

=
r
2

p(1)1 =
r(1)2

(
1− r(1)1

)
1−
(

1− r(1)1

)(
1− r(1)2

)
=

r
2

(
1− r

2

)
1−
(
1− r

2

)(
1− r

2

)
=

(
1− r

2

)(
2− r

2

)
p(1)2 =

r(1)1

(
1− r(1)2

)
1−
(

1− r(1)1

)(
1− r(1)2

)
=

r
2

(
1− r

2

)(
1− r

2

)(
1− r

2

)
=

(
1− r

2

)(
2− r

2

)
α
(1) = 1− p(1)1 − p(1)2

=
r

4− r

�

Lemma 3.4. The pruned walk of any geometric random walk with mean zero will be symmetric
geometric.

Proof. Recall that for a mean zero random walk we have p1
r1

= p2
r2

=⇒ p1r2 = p2r1.
If we divide both sides of this equality by p1 + p2 we get that p2r1

p1+p2
= p1r2

p1+p2
, which we can recall
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is the same as saying that r(1)1 = r(1)2 by definition of r(1)1 and r(2)2 . This implies that:

r(1)1 = r(1)2

r(1)1 − r(1)1 r(1)2 = r(1)2 − r(1)1 r(1)2

r(1)1 − r(1)1 r(1)2

1− (1− r(1)1 )(1− r(1)2 )
=

r(1)2 − r(1)1 r(1)2

1− (1− r(1)1 )(1− r(1)2 )

r(1)1 (1− r(1)2 )

1− (1− r(1)1 )(1− r(1)2 )
=

r(1)2 (1− r(1)1 )

1− (1− r(1)1 )(1− r(1)2 )

Of course, we already know that this is the same as saying that p(1)1 = p(1)2 .
Since we have both r(1)1 = r(1)2 and p(1)1 = p(1)2 , we fulfill the definition of a symmetric walk. �

Lemma 3.5. For any number of prunings n ≥ 1 of a geometric random walk with mean zero, the
nth pruned walk will be geometric symmetric with the following parameters:

r(n) = 2−nr

p(n) =
1−2−nr
2−2−nr

α
(n) =

r
2n+1− r

Proof. By Lemma 3.4, we know that the pruned walk of any geometric random walk with mean
zero will be symmetric geometric. After this, by further prunings will also be symmetric geometric
by Corollary 3.3. �

Lemma 3.6. For any symmetric geometric random walk, the both α(n) and r(n) approach towards
zero as n approaches infinity.

Proof. Recall that

α
(n) =

r
2n+1− r

r(n) = 2−nr

Now observe that for a fixed geometric parameter r, and number of prunings n:

lim
n→∞

α
(n) = lim

n→∞

r
2n+1− r

= lim
n→∞

r
2n+1

1− r
2n+1

= 0
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Similarly, we have:

lim
n→∞

r(n) = lim
n→∞

2−nr

= lim
n→∞

r
2n

= 0

�

Lemma 3.7. The ratio of maximums to minimums in a geometric random walk is p1 p2
p1+p2

. For a
symmetric geometric random walk, this simplifies to 1−α

4 .

Proof. For a particular point to be a maximum, we need the following to occur.

(1) To have previously gone up with probability p1
(2) To then plateau for n steps total, for a probability of (1− p1− p2)
(3) To finally go down with a probability of p2

For all of these to happen, we need to multiply the probability of each of these conditions together,
and sum over all possible n.

∞

∑
n=0

p1(1− p1− p2)
n p2 = p1 p2

∞

∑
n=0

(1− p1− p2)
n

= p1 p2
1

1− (1− p1− p2)

=
p1 p2

p1 + p2

For symmetric, recognize that p1 = p2 =
1−α

2 . Substitute this value into the probability of a maxi-
mum as stated above to obtain:

p1 p2

p1 + p2
=

1−α

2
1−α

2
1−α

2 + 1−α

2

=
(1−α)2

4
(1−α)

=
1−α

4

�

Theorem 3.8. A geometric random walk with mean zero satisfies the Horton Ratio Law, with R =
4.
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Proof. Since our original random walk has mean zero, we know that all following pruned walks
will be symmetric. Because of this, we have that:

lim
k→∞

Nk

Nk+1
= lim

k→∞

(
lim

N→∞

N(PN)
k
N

N

N(PN)
k+1

)

= lim
k→∞

N(PN)
k

N(PN)
k+1

= lim
k→∞

Number o f order k branches
Number o f order k+1branches

= lim
k→∞

Number o f local minimumsa f ter k−1 prunings
Number o f local maximumsa f ter k−1 prunings

= lim
k→∞

1
1−αk−1

4

= lim
k→∞

4
1−αk−1

= 4

�

Definition 3.9. A Galton-Watson Process is a tree branching process in which at each edge, off-
spring are created with probability qk of having k offspring at each stage.

Definition 3.10. By looking at the expected number of children, we can classify a Galton-Watson
Process to be either subcritical, critical, or supercritical.

∞

∑
k=0

kpk


< 1 Subcritical
= 1 Critical
> 1 Supercritical

Theorem 3.11. The Galton Watson Process associated with the geometric random walk is subcrit-

ical if the mean is less than zero, meaning p(1)1

r(1)1

<
p(1)2

r(1)2

. The Galton Watson Process will be critical

if the mean is equal to zero, meaning p(1)1

r(1)1

=
p(1)2

r(1)2

.

Proof. Our tree will converge to critical Galton-Watson if we are able to satisfy the following:

∞

∑
k=0

kpk = 1

Since we know p(1)1 = 1− p0 we can temporarily rewrite pk as

pk = p(1)1 (1+geom(1− r(1)2 ))
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When we sum over all k, we obtain:

∞

∑
k=0

kpk = 0p0 + p(1)1

(
1+

1

1− r(1)2

)

= p(1)1

(
2− r(1)2

1− r(1)2

)

=
(1− r(1)1 )

(1− r(1)2 )

(2r(1)2 − (r(1)2 )2)

(r(1)1 + r(1)2 − r(1)1 r(1)2 )

=
1− r(1)1

(1− r(1)2 )

(r(1)2 + r(1)2 (1− r(1)2 )

(r(1)2 + r(1)1 (1− r(1)2 ))

From this, we can see that this sum is 1 iff p1
r1

= p2
r2
⇐⇒ r(1)1 = r(1)2 This means that we achieve

Critical Galton Watson only if our geometric random walk is mean zero.

For the subcritical case, consider the case of having p1
r1

< p2
r2

, which is equivalent to stating that

p1r2 < p2r1. Start by analyzing r(1)1 and r(1)2 .
Recall that r(1)1 = p2r1

p1+p2
and r(1)2 = p1r2

p1+p2
. Since we know p1r2 < p2r1, we can say that:

r(1)1 =
p2r1

p1 + p2
<

p1r2

p1 + p2
= r(1)2

From this, we can prove that p(1)1
r∗1(1)

<
p(1)2

r(1)2

.

p(1)1

r(1)1

=
r(21− r(1)1 )

r1(1)
(

1− (1− r1(1))(1− r(1)2 )
)

<
r(1)1 (1− r(1)1 )

r(1)2

(
1− (1− r(1)1 )(1− r(1)2 )

)
<

r(1)1 (1− r(1)2 )

r(1)2

(
1− (1− r(1)1 )(1− r(1)2 )

) =
p(1)2

r(1)2

Finally, we can prove that a distribution of this variety will be Subcritical Galton Watson. Meaning,
∞

∑
k=0

kpk < 1

From our results above when we found the value of this sum, we know that:
∞

∑
k=0

kpk =
1− r(1)1

1− r(1)2

r(1)2 + r(1)2 (1− r(1)2 )

r(1)2 + r(1)1 (1− r(1)2 )
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Since we know r(1)2 < r(1)1 :

(1− r(1)1 (r(1)2 + r(1)2 (1− r(1)2 ))< (1− r(1)2 )(r(1)2 + r(1)1 (1− r(1)2 ))

This implies that

∞

∑
k=0

kpk =
1− r(1)1

1− r(1)2

r(1)2 + r(1)2 (1− r(1)2 )

r(1)2 + r=1 (1)(1− r(1)2 )
< 1

which satisfies the conditions for subcritical Galton-Watson. �

Theorem 3.12. For a random walk mean zero, after a large amount of prunings, we eventually
converge to a binary Galton-Watson process.

Proof. For a symmetric walk, show that as we do n→∞ prunings, we achieve (assuming symmet-
ric):

p(n)0 → 1/2

p(n)2 → 1/2

p(n)k → 0

To establish the first:

lim
n→∞

p(n)0 = lim
n→∞

1
2− r(n)

= lim
n→∞

1
2− r

2n

=
1

2−0

=
1
2

To establish the second:

lim
n→∞

p(n)2 = lim
n→∞

p∗1(r
(n))2−2(1− r(n))

= lim
n→∞

r(n)(1− r(n))
(−r(n))2 +2r(n)

= lim
n→∞

1− r(n)

2− r(n)

=
1
2
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To establish the third:

lim
n→∞

p(n)k = lim
n→∞

p∗1(r
(n))k−2(1− r(n))

= lim
n→∞

r(n)(1− r(n))
2r(n)− (r(n)2

)
(r(n))k−2(1− r(n))

= lim
n→∞

(r(n))k−1(1− r(n))2

r(n)(2− r(n))

= lim
n→∞

(r(n))k−2(1− r(n))2

2− r(n)

=
0(1−0)

2−0
= 0

�

Theorem 3.13. The lengths of edges of any order is distributed geometrically with parameter
r(1)1 + r(1)2 − r(1)1 r(1)2 .

Proof. Let ξ be the point that starts an excursion, with height 0. Let k be any value, and let ξk be
the first minimum with height less than k. Let Z be the first maximum after ξ, and let Zk be the
last maximum before ξk. Let Y be the horizontal distance between Zk and ξk. Finally, let L be the
height of the lowest extreme point in the excursion.

FIGURE 6. Visual representation of ξ, ξk, Z, Zk, L, and Y

Then we have

P(L > k) = P(Z > k,ξk ≤ 0) = P(ξk ≤ 0|Z > k)P(Z > k)

Because the height of Z is geometrically distributed with parameter r(1)1 , we have

P(Z > k) = (1− r(1)1 )k
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Let a be the height of Zk, so that Y = a−ξk and

Y ∼ Geom(r(1)2 )

where it is given that Y ≥ (a− k). We then calculate that

P(ξk ≤ 0|Zk = a) = P(Y ≥ a|Zk = a,Y ≥ a− k)

= P(Y ≥ a|Y ≥ a− k)

= (1− r(1)2 )k

Knowing this, we then calculate

P = (ξk ≤ 0|Zk > k) =
∞

∑
a=k+1

P(ξk ≤ 0|Zk = a)

=

[
∞

∑
a=k+1

P(Zk = a|Zk > k)

]
(1− r(1)2 )k

= P(Zk > k|Z > k)(1− r∗2)
k

= (1− r(1)2 )k

Referring to what we determined previously, we can rewrite

P(L > k) = P(Z > k,ξk ≤ 0)

= P(ξk ≤ 0|Z > k)P(Z > k)

= (1− r(1)2 )k(1− r(1)1 )k

= ((1− r(1)2 )(1− r(1)1 ))k

= (1− (r(1)1 + r(1)2 − r(1)1 r(1)2 ))k

From which we determine that

L∼ Geom(r(1)1 + r(1)2 − r(1)1 r(1)2 )

Therefore, the distribution of lengths of edges of any order is geometric with parameter r(1)1 +

r(1)2 − r(1)1 r(1)2 . For mean-zero walks, this simplifies to

L∼ Geom(2r(1)− (r(1))2)

�

Corollary 3.14. The lengths of branches of order k from a mean-zero walk is distributed geomet-

rically with parameter r(1)
2k−1 −

(r(1))2

22k .

Proof. a branch of order k corresponds exactly to a leaf of the walk pruned k−1 times. as edges,
the distribution of lengths of leaves of walks pruned k−1 times is

L(k)∼ Geom(
r∗

2k−1 −
(r(1))2

22k )
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�

Theorem 3.15. The Toknaga indices for the level set tree of a mean-zero random walk is given by
Tjk =

2k− j(
2− r(1)

2k

)

Proof. Let {ek
n}( j) be a complete sequence of n edges with order k, such that every edge has a

parent/child relationship to the one before and after it, after j prunings. In other words, {ek
n}( j) is

an order k branch after j prunings. Let N be the distribution of number of edges in {ek
n}( j), let S

be the distribution of number of side branches of any order between each edge, and let T be the
distribution of side branches emerging from the top edge. If E j

k is the distribution of number of
side branches in {ek

n}( j), then

E(E j
k ) = (E(N)−1)(E(S))+E(T )

The expected total length of {ek
n}( j) is given by

E(L(k)) =
1

r(1)
2k−1 −

(r(1))2

22k

The expected length of {ek
n}( j)’s edges is given by

E(L( j)) =
1

r(1)
2 j−1 −

(r(1))2

22 j

Then is is simple to calculate

E(N) =
E(L(k))

E(L( j))
=

1
r(1)

2k−1−
(r(1))2

22k

1
r(1)

2 j−1−
(r(1))2

22 j

=
r(1)
2 j−1 −

(r(1))2

22 j

r(1)
2k−1 −

(r(1))2

22k

=
1

2 j−1 − r(1)
22 j

1
2k−1 − r(1)

22k

let sk( j)
i be the likelihood that a vertex has exactly one child of order k and i children of order less

than k and greater than j. Immediately, we have that

sk( j)
i = q( j)

i+1Hk(dk
j )

i

Where dk
j is the likelihood that any given child of an order k edge is of order less than k and greater

than j. Consider any edge in {ek
n}( j) before the last. It is given that there is at least two children,

one of order k, as {ek
n}( j) continues. it is also given that all other children will be of orders below

k, and as there have been j prunings, all children will be of order greater than j. Therefore, the
likelihood that any given non-terminal edge of {ek

n}( j) has i children is given by

P(S = i) =
sk( j)

i

(1−q( j)
0 )Hk(dk

j )
i
=

q( j)
i+1

(1−q( j)
0 )
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So the expected number of side children from an edge is given by

E(S) =
∞

∑
i=2

(i)q( j)
i+1

(1−q( j)
0 )

=
∞

∑
i=1

(i−1)q( j)
i

(1−q( j)
0 )

=
1

1−q( j)
0

∞

∑
i=1

iq( j)
i −

∞

∑
i=1

r(1)(1− r(1))i−1

=
q( j)

0

1−q( j)
0

It has been shown that

q0 =
1

2− r(1)

so

q( j)
0 =

1
2− r( j+1)

=
1

2− r(1)
2 j

giving

E(S) =
q( j)

0

1−q( j)
0

=

1

2− r(1)

2 j

1− 1

2− r(1)

2 j

=
1

1− r(1)1
2 j

finally, let tk( j)
i be the likelihood that a vertex of a tree pruned j times has 2 children of order k,

as well as i children with order greater than j and less than or equal to k. Immediately, we calculate

tk( j)
i = qi+2H2

k (d
k+1
j )i

One knows that, for the top edge, it is given that there will be at least 2 branches of order k, and
that all other branches will be of orders between j and k, with k inclusive, therefore, the likelihood
that any given non-terminal edge of {ek

n}( j) has i children is given by

P(T = i) =
tk( j)
i

(1−q( j)
0 )H2

k (d
k+1
j )i

=
q( j)

i+2

(1−q( j)
0 )
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We then find

E(T ) =
∞

∑
i=2

(i)q( j)
i+2

(1−q( j)
0 )

=
∞

∑
i=1

((i−1)−1)q( j)
i

(1−q( j)
0 )

=
∞

∑
i=1

((i−1))q( j)
i

(1−q( j)
0 )

−
∞

∑
1

q( j)
i

(1−q( j)
0 ))

= E(S)−1

Therefore,

E(E j
k ) = (E(N)−1)(E(S))+E(T )

=
1

2 j−1 − r(1)
22 j

1
2k−1 − r(1)

22k

1

1− r(1)
2 j

−1

To find the number of side branches of order j merging into a branch of order k, calculate

Tjk = E(E j−1
k )−E(E j

k )

This works because we are calculating the number of side branches with order from j to k−1, and
subtracting away the number of side branches with orders from j+1 to k−1. this is equal to

Tjk =
2k

2 j

1
2−2 − r(1)

2 j−2

1
2−1 − r(1)

2k

1− r(1)
2 j

(1− r(1)
2 j )(1− r(1)

2 j−1 )
− 2k

2 j

1
2−1 − r(1)

2 j

1
2−1 − r(1)

2k

1− r(1)
2 j−1

(1− r(1)
2 j )(1− r(1)

2 j−1 )

= 2k− j


(

22− 22r(1)
2 j

)(
1− r(1)

2 j

)
−
(

2− r(1)
2 j

)(
1− 2r(1)

2 j

)
(

2− r(1)
2k

)
(1− r(1)

2 j )(1− 2r(1)
2 j )


= 2k− j

 2− 3r(1)
2 j + 2(r(1))2

22 j(
2− r(1)

2k

)
(1− r(1)

2 j )(1− 2r(1)
2 j )


= 2k− j

 (1− r(1)
2 j )(1− 2r(1)

2 j )(
2− r(1)

2k

)
(1− r(1)

2 j )(1− 2r(1)
2 j )


=

2k− j(
2− r(1)

2k

)
�
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4. CONCLUSION

In the future, we wish to refine the contents of this paper and publish in a scholarly journal.
before this is done, we will have to check our results for Tokunaga and Horton self similarity. We
also wish to explore the ties between these results and abstract algebra. Finally, we are curious as
to how similar results may be found for other symmetric discrete random walks.
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