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ABSTRACT. We seek to improve the accuracy of the Lorentz model by incorporating a distribution
of parameters. Relevant background information is included along with a derivation of the Lorentz
model. The forward problem in the frequency domain demonstrates the difference between the
distributed and deterministic models. Using a least squares cost formulation and χ2 significance
test, we explore the inverse problem for saltwater data. In the forward problem of the time domain,
Generalized Polynomial Chaos is applied to our random Lorentz model, eliminating dependence on
the random variable. We discretize the model and Maxwell’s equations using the Finite Difference
Time Domain (FDTD) method according to the one dimensional Yee Scheme. Results are presented
from the inverse problem using both single frequency sinewaves and ultra-wideband (UWB) pulses
as interrogating signals. Lastly, we use the two dimension Yee Scheme to perform stability analysis
for the random Lorentz model and our FDTD approximation.

1. INTRODUCTION

Electromagnetic interrogation of dispersive materials is of current interest in industry for its
potential as a non-invasive method in identifying weaknesses or compositions in materials. An ex-
ample is determining a material’s dispersive properties through the analysis of a single transmitted
ultra-wideband (UWB) pulse. Several different methods have been suggested that expand on the
common Lorentz polarization model, some employing linear combinations of poles or normally
distributed poles to fit data [4]. In this paper, however, we explore placing beta distributions on the
dielectric parameters in the model.

First we present necessary background information including Maxwell’s equations, the consti-
tutive equations, and a derivation of the Lorentz model. Next we define random polarization and
determine which parameters to distribute. Then using Fourier transforms, we explore the frequency
domain through complex permittivity and present a couple inverse problems. For analysis in the
time domain, we use Polynomial Chaos and the Finite Difference Time Domain (FDTD) method
to discretize in one dimension according to the Yee Scheme. After examining two inverse time do-
main problems that compare interrogation signals, we finish by proving the stability of the random
Lorentz model and its discretization.
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2. BACKGROUND

2.1. Maxwell’s Equations. We begin by presenting Maxwell’s equations that describe the behav-
ior of electromagnetic waves in free space. D and B are the electric and magnetic flux densities, E
and H are the electric and magnetic fields, J is the conduction current density, and ρ is the charge
density.

∂D
∂t

+ J = ∇×H(1a)

∂B
∂t

=−∇×E(1b)

∇ ·D = ρ(1c)

∇ ·B = 0(1d)

Next, we incorporate the constitutive laws that adapt Maxwell’s equations for propagation in
materials. Additionally, ε̃ is electric permittivity and is equal to the product of the permittivity of
free space and relative permittivity (ε̃ = ε0ε). Magnetic permeability is given by µ, the material’s
polarization and conductivity are P and σ, and Js is the source current.

D = ε̃E +P(2a)

B = µH +M(2b)

J = σE + Js(2c)

To find the equations defining electromagnetic waves in a material, we substitute the constitutive
equations into Maxwell’s curl equations:

(3) ε̃
∂E
∂t

= ∇×H− J− ∂P
∂t

= ∇×H−σE− Js−
∂P
∂t

(4) µ
∂H
∂t

=−∇×E− ∂M
∂t

.

Next, we restrict our discussion to the one dimensional case with waves propagating in the
z-direction. Because electromagnetic waves are transverse with the electric and magnetic fields
oscillating perpendicular to each other, we choose E and H to oscillate in the x and y directions,
respectively. Prior to interrogation, there are no fields or polarizations present so our initial condi-
tions are:

(5) E(0,z) = H(0,z) = P(0,z) = 0.

Our boundary conditions include the interrogating signal, f (t), at z = 0 and a reflective surface
at z = z0:

(6) E(t,0) = f (t) and E(t,z0) = 0.
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We also assume that our material is non-conducting with no magnetization or source current
(σ = 0, M = 0, µ = µ0 and Js = 0):

(7) ε̃
∂Ex

∂t
=−

∂Hy

∂z
− ∂Px

∂t

(8) µ0
∂Hy

∂t
=−∂Ex

∂z
.

where µ0 is the magnetic permeability of free space. From now on, we drop the subscripts so that
E = Ex, P = Px, and H = Hy.

2.2. Lorentz Model. There are several models that describe polarization in materials. In this
paper, we focus on the Lorentz model for which the physical assumption is that we can treat
electrons in the material as simple harmonic oscillators (ie. electrons attached to little springs)
[1]. We can then write down the second order differential equation for a damped, driven oscillator
where ν is the damping coefficient, ω0 is the natural resonant frequency, and x is the displacement:

(9) mẍ+2mνẋ+mω
2
0x = Fdriving.

Recall that polarization can be defined as the electric dipole moment density and that the dipole
moment between two equal charges is the product of their charge and displacement (~p = q~x).
Then letting N be the electron density and ~Fdriving = q~E, we convert (9) into a differential equation
relating the polarization and electric field:

(10) P̈+2νṖ+ω
2
0P = ε0ω

2
pE with ω

2
p = Nq2/mε0.

It is helpful to note that ν and ωp can be expressed in terms of a time constant τ and static
permittivity εs where ν = 1

2τ
and ω2

p = ω2
0(εs−ε∞) [2]. Using either Fourier or Laplace transforms,

we can solve for the polarization as a convolution of the electric field:

P =
∫ t

0
g(t− s,x)E(s,x)dx(11a)

g =
ε0ω2

p

ν0
e−νt sinν0t and ν0 =

√
ω2

0−ν2.(11b)

The function g is the dielectric response function (DRF) and is responsible for how the polar-
ization reacts to past electric fields. In other words, it encompasses the polarization’s memory
of the electric field. Plugging equation (10) into (2a) and taking the Fourier transform, we get
D̂ = ε0ε(ω)Ê where ε(ω) is the complex permittivity given by

(12) ε(ω) = ε∞ +
ω2

p

ω2
0−ω2 + i2νω

.

For multiple poles, the permittivity merely includes a summation:

(13) ε(ω) = ε∞ +
∞

∑
i=1

ω2
p,i

ω2
0,i−ω2 + i2νiω

.
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2.3. Random Polarization. In this paper, we research the effects of altering the original Lorentz
model by applying a probability distribution to one of the parameters. In order to use distributions
of parameters with Maxwell’s equations, we define the random Lorentz model similar to (10)
and (12), but where the distributed parameter is now a random variable and P is the random
polarization:

(14) P̈ +2νṖ +ω
2
0P = ε0ω

2
pE

(15) ε(ω) = ε∞ +
ω2

p

ω2
0−ω2 + i2νω

.

Next, we define the macroscopic polarization of (7) as the expected value of the random polariza-
tion where the undetermined parameter η is a random variable defined over [a,b] with probability
density function dF(η) [5]:

(16) P(t,z) =
∫ b

a
P (t,z;η)dF(η).

(A) ν Distribution: U(0.5ν,1.5ν) (B) ω2
0 Distribution: U(0.75ω2

0,1.25ω2
0)

FIGURE 1. Solutions for Unforced Differential Equation

First, we determine which parameters to vary: ν, ω0, and/or ωp. However, placing a distribution
on ωp doesn’t change the form of the Lorentz model, it only scales the amplitude. To decide
between ν and ω0, we place a uniform distribution on each parameter and plot the solutions of the
homogeneous differential equation using Monte Carlo sampling and common parameter values.
The results are shown in Figure 1.

The distribution on ω0 makes an appreciable difference in both amplitude and phase, while
distributing ν hardly affects the solution. Thus, it would be more interesting and useful to distribute
ω0. But because ω0 always appears as ω2

0, we choose to vary ω2
0 for simplicity.
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3. FORWARD SIMULATION FREQUENCY DOMAIN

3.1. Complex Permittivity and Index of Refraction. Now we consider the frequency domain
formulation of the random Lorentz model. First we break (12) into its real and imaginary parts,
ε = εr + iεi:

εr = ε∞ +
ω2

p(ω
2
0−ω2)

(ω2
0−ω2)2 +4ν2ω2

(17a)

εi =
2ω2

pνω

ω2
p(ω

2
0−ω2)

.(17b)

There is also a simple relationship between the complex permittivity and complex index of
refraction [1]:

(18) ñ =

√
εε0µ
ε0µ0

=
√

ε

where we hold the previous assumption that µ = µ0.
The real part of ñ = n + ik is the standard index of refraction that determines the speed of

propagation, while the imaginary part is the extinction coefficient which determines the attenuation
of a wave. Squaring both sides of (18) and equating real and imaginary parts, we arrive at a simple
relation:

εr = n2− k2(19a)

εi = 2kn.(19b)

Experimental data is often measured in terms of index of refraction and attenuation, so these rela-
tions are useful in applying the Lorentz model.

(A) Complex Permittivity (B) Complex Index of Refraction

FIGURE 2. Example Plots
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3.2. Analytic Integration. Because ω2
0 is a random variable, we must integrate over the proba-

bility distribution to find the expected permittivity. In the case of a uniform distribution over [a,b],
we can directly integrate (17a) and (17b) with respect to ω2

0:

1
b−a

∫ b

a
εrdω

2
0 = ε∞ +

ω2
p

2(b−a)

(
ln((ω2

0)
2−2ω

2
0ω

2 +ω
4 +4ν

2
ω

2)∣∣∣b
a

(20a)

1
b−a

∫ b

a
εidω

2
0 =

ω2
p

(b−a)
arctan

(
ω2−ω2

0
2νω

)∣∣∣b
a
.(20b)

For the general case of using Jacobi polynomials with a beta distribution, one must resort to Monte
Carlo sampling or numerical integration in order to compute the expected value.

Remark 3.1. In this paper, we set the foundation for all Jacobi polynomials P(α̂,β̂) and their cor-
responding beta distributions β(α̂+1, β̂+1). However, our simulations consider only the specific
case of the Legendre polynomials with uniform distributions given by α̂ = β̂ = 0.

4. FREQUENCY DOMAIN INVERSE PROBLEM

4.1. Optimization. The complex permittivity equations relate how a signal will propagate in a
Lorentz material with given parameters. The frequency inverse problem involves recovering the
parameters by fitting experimental data. Using a least squares cost formulation, we optimize using
Matlab’s lsqnonlin function. Letting the permittivity and conductivity be concatenated in a single
vector V , the residue and cost are defined as:

R =Vdata−Vf it(21)

F = RT R.(22)

If the permittivity and conductivity are on the same order of magnitude, they don’t need to be
scaled.

We want to show whether distributed permittivities can be distinct from deterministic permit-
tivites. For example, [10] discusses how the Lorenz-Lorentz model for permittivity is actually
equivalent to the shifted Lorentz model with equivalence when the inequality ωp2

6νω0
� 1 is satisfied.

To be sure the permittivites are distinct, we apply a deterministic fit to a distribution. For compar-
ison, we plot the deterministic permittivity with the same parameters as the distribution. Results
are shown in Figure 3 where the distribution’s range is the radius over the midpoint (range = b−a

b+a ).

Remark 4.1. To avoid repeating units throughout the paper, we establish the units for the param-
eters in the Lorentz model: ω0 and ωp have units of rad/sec, τ has units of sec, and ν has units of
1/sec. Additionally, all frequencies are given in rad/sec.

TABLE 1. Results for Saltwater Fits

Source ε∞ ν (1×1013) ω0 (1×1014) Range ωp (1×1014) Cost
Det. Fit 1.7931 2.7547 6.3568 – 1.7333 0.1704
Dist. Fit 1.7901 1.6112 6.3608 .0855 1.6067 0.0655
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(A) ν = 3 (B) ν = 3

(C) ν = 13 (D) ν = 13

FIGURE 3. Parameters: ωp = 50,ω0 = 110, and range = .25

4.2. χ2 Testing. As expected, the deterministic permittivity was unable to fit the distributed per-
mittivity. To see how they compare, we fit actual saltwater data from [11]. The fits and results are
shown in Figure 4 and Table 1.

To determine if there is statistical significance between the fits, we use the hypothesis testing
presented in [3]. First we let q = (ν, ω2

0, ωp, range) ∈ Q where Q is the parameter set. Then,
we define Q0 to be the set {Q0 ∈ Q : r = 0} and let q̂` and q̄` denote minimizers of Q0 and Q,
respectively. We construct the hypotheses H0 : r = 0 and HA : r 6= 0 so that a rejection of the null
hypothesis correlates to a difference in the fits. Finally, we define the test statistic:

(23) U` =
` [F̀ (q̂`)− F̀ (q̄`)]

F̀ (q̄`)

where ` is the number of data points and F̀ is the minimized cost.
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FIGURE 4. Fits for saltwater data

We proceed by using a significance level α and χ2(s) distribution with s degrees of freedom to
obtain the threshold τ so that P

(
χ2(s)> τ

)
= α. We compare U` with τ, such that if U` > τ we

reject the null hypothesis H0. Because the parameter r is the only degree of freedom (s = 1), we
refer to Table 2.

TABLE 2. χ2 distribution with 1 degree of freedom

α = .25 τ = 1.32
α = .10 τ = 2.71
α = .05 τ = 3.84
α = .01 τ = 6.63
α = .001 τ = 10.83

Our simulations return F̀ (q̂) = 0.1704 and F̀ (q̄) = 0.0655 with ` = 79. Plugging those values
into (23) we get U` = 126.584. Because U` >> τ, we reject H0. Thus, we can conclude that a
distributed model provides a statistically significantly better fit than a deterministic model.

4.3. Bimodal Data. We also consider fitting bimodal data. First, we create data using a distri-
bution with the parameters given in Table 3. Because real data requires repeated measurements,
instrument errors can be propagated. For this reason, we add normally distributed noise with µ = 0
and σ = .001 to the derivatives of the bimodal data. Then we optimize with uni-modal, bi-modal,
and bi-discrete fits. Results are given in Table 3. As expected, the bi-modal fit best matches the
data with F = 0.1118. We had hoped that the uni-modal and bi-discrete fits would be comparable,
but the uni-modal cost was 10 times larger. We assumed that a single beta distribution with α̂ and
β̂ as parameters would give better results, but it only made slight improvements. The cost of the
best fit was still 7 times larger than the bi-discrete fit.
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FIGURE 5. Fits for bimodal data

TABLE 3. Bimodal Fit Comparison

Source ε∞ ν ω0 Range ωp ν2 ω0,2 Range ωp,2 Cost
Data 1.000 13.000 110.000 0.200 50.000 20.000 150.000 0.300 70.000 –
Uni-modal 0.986 14.659 134.811 0.539 83.861 – – – – 4.763
Bi-modal 0.978 15.079 110.918 0.179 53.817 20.573 151.327 0.262 68.229 0.1118
Bi-discrete 0.970 17.693 111.580 – 55.571 27.731 151.144 – 71.073 0.4894

5. POLYNOMIAL CHAOS

5.1. Polynomial Expansion. Now we consider the time domain formulation of the random Lorentz
model, using Polynomial Chaos to deal with the random variable ω2

0. Polynomial Chaos is a
method of solving random differential equations by expressing quantities as orthogonal polyno-
mial expansions in the random variable [12]. We expand in the normalized Jacobi polynomials,
but because they are defined on [-1,1] it is necessary to scale our distribution. Letting ω2

0 = m+ rξ

so that ξ is defined on [-1,1], we identify m and r as the center and radius of the distribution.
Random polarization can now be expressed as a function of ξ,

(24) P (ξ, t) =
∞

∑
i=0

αi(t)φi(ξ).

All orthogonal polynomials also satisfy the following recurrence relationship,

(25) ξφn(ξ) = anφn+1(ξ)+bnφn(ξ)+ cnφn−1(ξ)
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where the coefficients for the Jacobi polynomials are:

an =
2(n+ α̂)(n+ β̂)

(2n+ α̂+ β̂)(2n+ α̂+ β̂+1)

bn =
β̂2− α̂2

(2n+ α̂+ β̂)(2n+ α̂+ β̂+2)

cn =
2(n+1)(n+ α̂+ β̂+1)

(2n+ α̂+ β̂+1)(2n+ α̂+ β̂+2)
.

Plugging (24) into (14) and replacing ω2
0 with m+ rξ gives,

(26)
∞

∑
i=0

α̈i(t)φi(ξ)+2να̇i(t)φi(ξ)+(rξ+m)αi(t)φi(ξ) = ε0ω
2
pEφ0(ξ).

Then separating and using the recurrence relation (25), we have

(27)
∞

∑
i=0

[α̈i(t)+2να̇i(t)+mαi(t)]φi(ξ)

+ r
∞

∑
i=0

αi(t) [aiφi+1(ξ)+biφi(ξ)+ ciφi−1(ξ)] = ε0ω
2
pEφ0(ξ).

Taking the weighted inner product with respect to φ j(ξ) for p orthogonal polynomials, we have

(28)
p−1

∑
i=0

[α̈i(t)+2να̇i(t)+mαi(t)]
〈
φi,φ j

〉
+ r

p−1

∑
i=0

αi(t)
[
ai
〈
φi+1,φ j

〉
+bi

〈
φi,φ j

〉
+ ci

〈
φi−1,φ j

〉]
= ε0ω

2
pEφ0(ξ)

where
〈
φi,φ j

〉
for the normalized Jacobi polynomials is defined as:

(29)
〈
φi,φ j

〉
:=

∫ 1

−1
φi(ξ)φ j(ξ)w(ξ)dξ =

{
0 if i 6= j
1 if i = j.

Because we’ve projected onto a finite number of basis polynomials, we can now express our
system in matrix notation:

(30) ~̈α+2ν~̇α+A~α = ~f

where A = rM+mI, ê1 is the first standard column unit vector,

M =


b0 c1 0 · · · 0

a0 b1 c2
...

0 . . . . . . . . . 0
... ap−3 bb−2 cp−1
0 · · · 0 ap−2 bp−1

 and ~f = ê1ε0ω2
pE.
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Letting ~̇α =~β we express (30) as a system of differential equations:

~̇α =~β(31a)
~̇
β =−A~α−2νI~β+~f .(31b)

5.2. Eigenvalues. It may also be convenient to combine (31) into a single first order matrix equa-

tion by letting~x =
(
~α
~β

)
:

(32) ~̇x = B~x+
(
~0
~f

)
where B =

(
~0 I
−A −2νI

)
where B is a 2p×2p matrix. We now show that you can find an expression for the 2p eigenvalues
of B.

Let~v =
[
~xT~yT ]T be a nonzero eigenvector of Ā, where ~x,~y ∈ Cp. Then for some λ ∈ λ(B), we

have

(33)
(

~0 I
−A −2νI

)(
~x1
~x2

)
= λ

(
~x1
~x2

)
.

Next we separate the equations and eliminate ~x2:

(34) ~x2 = λ~x1, −A~x1−2ν~x2 = λ~x2⇒−A~x1−2νλ~x1 = λ
2~x1.

Now replace A with rM+mI and solve for M~x1:

(35) M~x1 =
λ2 +2νλ+m

−r
~x1.

This is exactly the eigenvalue equation for the recursion matrix M, so λ2+2νλ+m
−r ∈ λ(M). It is

known that the eigenvalues of any Jacobi recursion matrix are exactly the roots of the correspond-
ing pth order Jacobi polynomial [9]. Letting xr denote the p roots, we have:

(36)
λ2 +2νλ+m

−r
= xr.

Solving the quadratic for each of the p roots gives the 2p eigenvalues of the B matrix:

(37) λ =−ν±
√

ν2− (m+ rxr).

In Figure 6 we plot the real and positive imaginary parts of all λ∈ λ(B) for a uniform distribution
with test values of ν = 2.5×106, ω0 = 2.5×107, m = ω2

0, and r = .25ω2
0. Notice that the negative

imaginary parts are just complex conjugates. Also, realize that the real part is−ν for any p and that
the complex part is bound above and below as p increases. Because xr ∈ [−1,1], our result predicts
bounds of i

√
m− r−ν2 and i

√
m+ r−ν2 or imag(λ) ∈ [2.15×107,2.79×107] which agree with

Figure 6.
We assumed complex eigenvalues for the previous analysis. If the eigenvalues were real, we

would have a two pole Debye model defined by a first order differential equation. For this reason,
the parameters must satisfy r < m−ν2, providing a bound on the distribution radius.
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FIGURE 6. Scatter Plot of Eigenvalues

6. FORWARD SIMULATION TIME DOMAIN

6.1. FDTD Discretization. Combining Maxwell’s equations with our results from Polynomial
Chaos, we have the four equations that completely determine propagation through a dielectric
material. We repeat them here as a reference:

ε∞ε0
∂E
∂t

=−∂H
∂z
−β0(38a)

∂H
∂t

=− 1
µ0

∂E
∂z

(38b)

~̇α =~β(38c)
~̇
β =−A~α−2νI~β+~f .(38d)

It is important to note that ∂P
∂t is the time change in macroscopic polarization or the time change

of the expected value of our random polarization. Since only the 0th Jacobi polynomial is constant,
we identify β0 = ∂P

∂t with the other polynomials and coefficients determining uncertainties. This
explains our substitution in (38a).

To model these equations, we discretize them according to the one-dimensional Yee Scheme
[13]. The Yee Scheme implements a staggered grid where the electric field and random polarization
are evaluated at integer time steps and spatial steps, while the magnetic field is evaluated at half
integer time steps and spatial steps. We consider the domain z ∈ [0,z0] for t ∈ [0,T ], choosing
integers J and N to discretize so that ∆z = z0

J and ∆t = T
N . Let z j = j∆z and tn = n∆t. If U is a field

variable, we define the grid function to be

Un
j ≈U(x j, tn).
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Our discrete initial conditions and boundary conditions are:

E0
j =~α0

j =
~β0

j = 0 for 0≤ j ≤ J, Hn
j = 0 for 0≤ j ≤ J and n≤ 0,

En
0 = f (tn) and En

J = 0 for 0≤ n≤ N.

First we approximate derivatives with finite differences and constant terms with averages:

ε∞ε0
En+1

j −En
j

∆t
=−

H
n+ 1

2
j+ 1

2
−H

n+ 1
2

j− 1
2

∆z
−

β
n+1
0, j +βn

0, j

2
(39a)

H
n+ 1

2
j+ 1

2
−H

n− 1
2

j+ 1
2

∆t
=− 1

µ0

En
j+1−En

j

∆z
(39b)

~αn+1
j −~αn

j

∆t
=
~βn+1

j +~βn
j

2
(39c)

~βn+1
j −~βn

j

∆t
=−A

~αn+1
j +~αn

j

2
−2νI

~βn+1
j +~βn

j

2
+

ê1ε0ω2
p

2

[
En+1

j +En
j

]
.(39d)

Equations (39a), (39c), and (39d) are defined for {1 ≤ j ≤ J− 1, 0 ≤ n ≤ N− 1} and (39b) is
defined for {0≤ j ≤ J−1, 0≤ n≤ N−1}.

Because~α,~β, and E are defined at the same time steps, we have a coupled system of equations.
Solving (39a)-(39c) for the next time step, we get

En+1
j = En

j +
∆t

ε∞ε0∆z

[
H

n+ 1
2

j+ 1
2
−H

n+ 1
2

j− 1
2

]
−

∆têT
1

2ε∞ε0

[
~βn+1

j +~βn
j

]
(40a)

H
n+ 1

2
j+ 1

2
= H

n− 1
2

j+ 1
2
+

∆z
µ0∆z

[
En

j+1−En
j
]

(40b)

~αn+1
j =~αn

j +
∆t
2

[
~βn+1

j +~βn
j

]
.(40c)

Now, we insert (40a) into (39d) and multiply by 2∆t:

(41) 2~βn+1
j −2~βn

j =−∆tA
[
~αn+1

j +~αn
j

]
−2νI∆t

[
~βn+1

j +~βn
j

]
+ ê1ε0ω

2
p∆t
(

2En
j +

∆t
ε0ε∞∆z

[
H

n+ 1
2

j+ 1
2
−H

n+ 1
2

j− 1
2

]
−

∆têT
1

2ε0ε∞

[
~βn+1

j +~βn
j

])
.

Then inserting (40c) into (41), we can simplify and collect terms such that

(42)
[

2I +
∆t2A

2
+2ν∆tI +C

]
~βn+1

j =

[
2I−

(
∆t2A

2
+2ν∆tI +C

)]
~βn

j −2∆tA~αn
j + ê1G

with C =

ω2
p∆t2

2ε∞
0 0

0 0 0
0 0 0

 and G = 2ε0ω2
p∆tEn

j +
ω2

p∆t2

ε∞∆z

[
H

n+ 1
2

j+ 1
2
−H

n+ 1
2

j− 1
2

]
.
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Then let

(43) Ā =
∆t2

2
A+2ν∆tI +C

such that

(44)
(
2I + Ā

)
~βn+1

j =
(
2I− Ā

)
~βn

j −2∆tA~αn
j + ê1G.

Inverting 2I+ Ā allows us to solve for~βn+1. Then using back substitution with (40c) and (40a), we
can solve for~αn+1 and En+1.

6.2. Invertibility of 2I+ Ā. To solve (44) for~βn+1, we must show that 2I+ Ā is always invertible.

Theorem 6.1. For the Jacobi polynomials, 2I + Ā is invertible if m > r.

Proof. First, we recall that a diagonally dominant matrix is invertible where diagonally dominant
matrices satisfy

(45) |aii|> ∑
j 6=i
|ai j| f or all i.

It was shown in [6] that the recurrence matrix M is diagonally dominant as long as m > r, which
is a physical restriction since all parameters must be positive. It is also clear that every other term
of 2I + Ā is diagonally dominant as well, since all terms are positive and appear on diagonals.
Therefore, 2I + Ā is invertible if m > r. �

6.3. Simulation Convergence. We now show that the Polynomial Chaos method converges quickly
in p. We assume the material parameters τ = 7×10−16, ω0 = 1.8×1016, and ωp = 2×1016 from
[2]. Choosing the interrogating signal as a sine wave with angular frequency of 6× 1015 and du-
ration of 5 periods, we plot the signals at t = 1.4× 10−5 ns for four different p values in Figure
7.

The signals for p = 3 and p = 4 are indistinguishable on the plots. The approximate relative
errors of p = 2 and p = 3 compared to p = 4 are .56% and 0.014%, respectively. Thus, an expan-
sion of three polynomials accurately approximates the convergence for large p. However, due to
the high resonant frequencies of Lorentz materials, time steps and simulations must be very short.
Therefore, small discrepancies might lead to more significant errors on a larger simulation.

7. TIME DOMAIN INVERSE PROBLEM

7.1. Parameters. In this section, we apply our forward simulation to the time domain inverse
problem. It was proven in [5] that unique solutions exist for inverse problems posed with distribu-
tions over parameters. Specifically, we wish to reconstruct the parameters of a material from noisy
data collected by a receiver a distance of .252 µm into the material. We borrow parameter values
from [2]. Assuming ε0 = 1 and that the interrogating signal is known, only three parameters need
to optimized: τ,ω0, and ωp. Recall that τ and ν are related by the expression τ = 1

2ν
; we use tau

for simulation purposes.
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(A)

(B)

FIGURE 7. P-Convergence of Forward Simulation at t = 1.4×10−5 ns.
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(A) Cost Function for Constant τ

(B) Cost Function for Constant ωp

FIGURE 8
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FIGURE 9. Convergence of Direct Algorithm

7.2. Optimization. Letting the column vector V denote the received signal, we define the cost and
residue (F and R) as in (21) and (22). To understand the cost function’s dependence on parameters,
we made two surface plots in Figures 8a and 8b, fixing a different parameter in each. Notice that
changes in τ don’t affect the cost function nearly as much as changes in ω0 or ωp. This behavior
determines our optimization strategy.

We use both Finkel’s Direct program [8] and Matlab’s lsqnonlin function. Direct takes the
n-dimensional rectangular region determined by given bounds and iteratively divides into smaller
rectangles, checking for possible minimums. In this way, Direct is able to find the global minimum
for functions with several local minima. On the other hand, Matlab’s lsqnonlin function uses
gradient methods to converge quickly to the nearest local minimum.

Our strategy is to obtain an approximate solution using Direct to optimize ω0 and ωp, and
then finish optimizing all three parameters with lsqnonlin. We justify this approach by fitting
deterministic data with a deterministic fit so that an exact solution exists. We set the bounds as τ ∈
[4.44×10−16,8.89×10−16],ω0 ∈ [1.26×1016,2.16×1016], and ωp ∈ [1.62×1016,2.52×1016].

In Figure 9, we plot the true minimum along with the minimums found by Direct for a given
number of function evaluations. Here τ is fixed at the correct value, so Direct only optimizes ω0
and ωp. It had no problem finding the right valley, but took many evaluations to converge; F = 132
after 250 evaluations. Next, we tested our method running Direct for 100 evaluations before using
lsqnonlin. We quickly found the solution of τ = 7×10−16,ω0 = 1.8×1016, and ωp = 2×1016

with F = 3×10−20. We also tried optimizing all three parameters using Direct, but F = 1,800,000
after 300 evaluations.
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For the first inverse problem, we consider how the deterministic model fits a distribution for
single frequency signals. Data is created from a distribution with a range of 0.25 and normally-
distributed noise. We run simulations where noise had mean 0 with standard deviations of 0, 1, and
2. Because some frequencies require longer measurements, we include normalized cost defined as
the average cost per data point. Note that on average, adding noise with a standard deviation of σ

increases the normalized cost by σ2. Results are given in Table 4.

TABLE 4. Simulation Results for Single Frequency Signals

Noise Dev. Ang. Freq. τ (1×10−16) ω0 (1×1016) ωp (1×1016) Cost Norm. Cost
0 8e15 6.9537 1.7532 1.9683 513 0.085
0 1e16 6.8925 1.7500 1.9640 1174 0.196
0 3e16 6.7148 1.7861 2.0140 585 0.146
1 8e15 6.9402 1.7537 1.9687 6416 1.069
1 1e16 6.9066 1.7501 1.9640 7311 1.218
1 3e16 6.7061 1.7867 2.0133 4515 1.129
2 8e15 6.9778 1.7503 1.9642 23269 3.878
2 1e16 6.9498 1.7473 1.9595 25429 4.238
2 3e16 6.6906 1.7854 2.0142 16141 4.035

The deterministic model fits the data fairly well, but the optimized parameters change for differ-
ent fits. One can also see that τ varied more for different amounts of noise than ω0 and ωp. This
suggests that the inverse problem would provide more accurate estimations of ω0 and ωp than τ. In
Figure 10a, we apply both deterministic and distributed fits for the 8×1015 frequency signal with
noise of σ = 2 for comparison. Results are given in Table 5. Even though our method accurately
recovered the true values of the material, the distributed fit was unable to significantly improve on
the deterministic fit.

TABLE 5. Fit Comparison: Freq= 8×1015 and σ = 2

Source τ (1×10−16) ω0 (1×1016) Range ωp (1×1016) Cost Norm. Cost
Data 7 1.8 .25 2 – –
Det. Fit 6.9489 1.7543 – 1.9697 23971 3.995
Dist. Fit 6.9819 1.8049 .2438 1.9984 23591 3.932
Dist. Error -0.26% 0.27% -2.48% -0.08% – –

For the second inverse problem, we create data from the same distribution and attempt to apply
deterministic and distributed fits. However, we now use a UWB as our interrogating signal:

(46) f (t) =
n

∑
i=1

αisin( fit)

where fi is a vector of angular frequencies linearly spaced from 1×1014 to 1×1016 and αi are
weights determined by the beta distribution β(1,3). Figure 10b shows the deterministic and dis-
tributed fits for noise with σ = 2. Results are given in Table 6. It is clearly harder for the determin-
istic model to fit a UWB than a single frequency signal.
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(A) Single Frequency Fits, σ = 2

(B) UWB Fits, σ = 2

FIGURE 10. Close Comparison of Fits
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TABLE 6. Fit Comparison: UWB with σ = 2

Source τ (1×10−16) ω0 (1×1016) Range ωp (1×1016) Cost Norm. Cost
Data 7 1.8 .25 2 – –
Det. Fit 6.4433 1.7757 – 2.0135 25825 4.304
Dist. Fit 7.0650 1.7999 0.2493 1.9998 23441 3.907
Dist. Error 0.93% -0.006% -.28% -0.01% – –

The data supports the suggestion above that the distributed model struggles with estimating
τ from the data. This is expected since a large change in τ corresponds to a small change in
the cost function. Also, the distributed fit did make an appreciable difference over the cost of the
deterministic fit. This agrees with our simulations in the frequency domain where the deterministic
model was unable to fit the distributed permittivity over a spectrum of frequencies.

8. STABILITY

8.1. 2D Random Lorentz Model. Here we show the stability of the random Lorentz model in a
two dimensional domain D , similar to the work for the random Debye model in [7]. However, the
analysis could easily be generalized to three dimensions. First, we give Maxwell’s Equations for
two dimensions along with the random Lorentz differential equation written as a system of first
order equations. To do this, we define the scalar curl operator on a vector field U = (Ux,Uy)

T as

curl U =
∂Uy
∂x −

∂Ux
∂y , and the vector curl operator on the scalar field V to be curl V =

(
∂V
∂y ,−

∂V
∂x

)T
.

µ0
∂H
∂t

=− curl E(47a)

ε0ε∞

∂E
∂t

= curl H−J(47b)

∂P
∂t

= J(47c)

∂J
∂t

=−2νJ −ω
2
0P + ε0ω

2
pE(47d)

Next we define the vector spaces,

H(curl,D) = {u ∈
(
L2(D)

)2
; curl u ∈ L2(D)}(48)

H0(curl,D) = {u ∈ H(curl,D),n×u = 0}(49)

where (·, ·)2 and || · ||2 denote the L2 inner product and norm. Realize that the boundary restriction
of H0 for an electric field is equivalent to a perfect conducting (PEC) boundary condition. This
PEC condition is necessary so that Green’s formula for the curl operator holds.

(curl H,u) = (H,curl u) , ∀u ∈ H0(curl,D)(50)

We also introduce the Hilbert space VF = (L2(Ω))2⊗ (L2(D))2 where Ω is the distribution [a,b]
on ω2

0. The inner product and norm are defined as follows:
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(u,v)F = E[(u,v)2]

‖u‖2
F = E[‖u‖2

2].

Multiplying (47a) by v ∈ L2(D), (47b) by u ∈ H0(curl,D), (47c) and (47d) by w1,w2 ∈(
L2(D)

)2, and integrating over the domain D , we arrive at the weak formulation:(
µ0

∂H
∂t

,v
)

2
= (−curl E,v)2(51a) (

ε0ε∞

∂E
∂t

,u
)

2
= (curl H,u)2− (J,u)2(51b) (

∂P
∂t

,w1

)
F
= (J ,w1)F(51c) (

∂J
∂t

,w2

)
F
= (−2νJ ,w2)F +

(
−ω

2
0P ,w2

)
F +

(
ε0ω

2
pE,w2

)
F .(51d)

We now have all the tools to prove stability for the 2D random Lorentz model.

Theorem 8.1. Let D ⊂ R2 and suppose that E ∈ C(0,T ;H0(curl,D))∩C1(0,T ;(L2(D))2), P ∈
C1(0,T ;

(
L2(D)

)2
), and H(t) ∈ C1(0,T ;L2(D)) are solutions of the weak formulation (51) for

the Maxwell-Lorentz system (47) along with PEC boundary conditions. Then the system exhibits
energy decay

E(t)≤ E(0) ∀t ≥ 0,(52)

where the energy E(t) is defined as

E(t) =
(∥∥∥√µ0 H(t)

∥∥∥2

2
+
∥∥∥√ε0ε∞ E(t)

∥∥∥2

2
+
∥∥∥ ω0

ωp
√

ε0
P (t)

∥∥∥2

F
+
∥∥∥ 1

ωp
√

ε0
J (t)

∥∥∥2

F

) 1
2

.(53)

Proof. We choose v=H, u=E, w1 = P , and w2 = J in (51), multiply (51c) by ω2
0

ε0ω2
p
, and multiply

(51d) by 1
ε0ω2

p
. Then add all four equations together, utilizing our definition of energy and Green’s

formula.

1
2

dE2(t)
dt

=−
(

curl E,H
)

2
+
(

H,curl E
)

2
−
(

J,E
)

2
+

(
ω2

0
ε0ω2

p
J ,P

)
F

+

(
−2ν

ε0ω2
p

J ,J

)
F

+

(
−ω2

0
ε0ω2

p
P ,J

)
F

+(E,J )F

=−
∥∥∥√ 2ν

ε0ω2
p

J
∥∥∥2

F
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After massive cancellation, we are left with

(54)
dE2(t)

dt
=−2

∥∥∥√ 2ν

ε0ω2
p

J
∥∥∥2

F
.

Rearranging, we get

(55)
dE(t)

dt
=
−1

E(t)

∥∥∥√ 2ν

ε0ω2
p

J
∥∥∥2

F
≤ 0.

Therefore the energy, E(t), is decreasing and E(t)≤ E(0) ∀t > 0. �

8.2. Maxwell-PC Lorentz-FDTD.

8.2.1. Discretization. For our discrete approximation to converge to the true solution, it must be
consistent and stable. Consistency is guaranteed by FDTD. To show the stability of the Lorentz-
FDTD model in two dimensions, we borrow notation from [7] that will ease the proof. First,
consider the space (x,y) ∈ [0,a]× [0,b] for t ∈ [0,T ]. Choose integers L, J, and N to discretize
the space so that ∆x = a/L, ∆y = b/J, and ∆t = T/N. Let x` = `∆x, y j = j∆y, and tn = n∆t. We
stagger three discrete meshes in the x and y directions, and two discrete meshes in the time domain:

τ
Ex
h :=

{(
x`+ 1

2
,y j

)
|0≤ `≤ L−1,0≤ j ≤ J

}
(56)

τ
Ey
h :=

{(
x`,y j+ 1

2

)
|0≤ `≤ L,0≤ j ≤ J−1

}
(57)

τ
H
h :=

{(
x`+ 1

2
,y j+ 1

2

)
|0≤ `≤ L−1,0≤ j ≤ J−1

}
(58)

τ
E
t := {(tn) |0≤ n≤ N}(59)

τ
H
t :=

{(
tn+ 1

2

)
|0≤ n≤ N−1

}
.(60)

The field variables are discretized as follows:

Ex,Px ∈ τ
Ex
h , Ey,Py ∈ τ

Ey
h , H ∈ τ

H
h , Ex,Ey,Px,Py ∈ τ

E
t , H ∈ τ

H
t .

Let xα,yβ be a node on any spatial mesh, and tγ a node on either temporal mesh. If U is a field
variable, we define the grid functions as

U γ

α,β ≈U(xα,yβ, t
γ).

We define the time difference operator and time averaging operator as

δtU
γ

α,β :=
U

γ+ 1
2

α,β −U
γ− 1

2
α,β

∆t
(61)

U γ

α,β :=
U

γ+ 1
2

α,β +U
γ− 1

2
α,β

2
(62)
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and the spatial difference operators in the x and y direction as

δxU
γ

α,β :=
U γ

α+ 1
2 ,β
−U γ

α− 1
2 ,β

∆x
(63)

δyU
γ

α,β :=
U γ

α,β+ 1
2
−U γ

α,β− 1
2

∆y
.(64)

Next, we define the L2 normed spaces

VE :=
{

F : τ
Ex
h × τ

Ey
h −→ R2 | F = (Fx

l+ 1
2 , j
,Fy

l, j+ 1
2
)T ,‖F‖E < ∞

}
(65)

VH :=
{

U : τ
H
h −→ R |U = (Ul+ 1

2 , j+
1
2
),‖U‖H < ∞

}
(66)

with the following discrete norms and inner products

‖F‖2
E = ∆x∆y

L−1

∑
`=0

J−1

∑
j=0

(
|Fx

`+ 1
2 , j
|2 + |Fy

`, j+ 1
2
|2
)
,∀ F ∈ VE(67)

(F,G)E = ∆x∆y
L−1

∑
`=0

J−1

∑
j=0

(
Fx

`+ 1
2 , j

Gx
`+ 1

2 , j
+Fy

`, j+ 1
2
Gy

`, j+ 1
2

)
,∀ F,G ∈ VE(68)

‖U‖2
H = ∆x∆y

L−1

∑
`=0

J−1

∑
j=0
|U`+ 1

2 , j+
1
2
|2,∀U ∈ VH(69)

(U,V )H = ∆x∆y
L−1

∑
`=0

J−1

∑
j=0

U`+ 1
2 , j+

1
2
V`+ 1

2 , j+
1
2
,∀U,V ∈ VH .(70)

Finally, we define discrete curl operators on the staggered L2 normed spaces as

curlh : VE −→ VH

curlh F := δxFy−δyFx

curlh : VH −→ VE

curlhU := (δyU,−δxU)T .
(71)

We require that PEC conditions hold for all F ∈ VE so that

Fx
`+ 1

2 ,0
= Fx

`+ 1
2 ,J

= 0, 0≤ `≤ L(72)

Fy
0, j+ 1

2
= Fx

L, j+ 1
2
= 0, 0≤ j ≤ J.(73)

Then discrete integration by parts shows that Green’s curl identity holds for our discrete system
as well:

(74) (curlhE,H)H = (E,curlhH)E .

The definitions are tedious, but we see that all discrete operators, spaces, and inner products are
closely related to the continuous case, as discussed in the previous section.
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8.2.2. 2D Yee Scheme. Utilizing the operators defined in (61)–(64), we can write out the discrete
forms of (47):

δtHn
`+ 1

2 , j+
1
2
=

1
µ0

(
δyEn

x
`+ 1

2 , j+
1
2

−δxEn
y
`+ 1

2 , j+
1
2

)
(75a)

ε0ε∞δtE
n+ 1

2
x
`+ 1

2 , j
= δyH

n+ 1
2

`+ 1
2 , j
−~β

n+ 1
2

0,x
`+ 1

2 , j
(75b)

ε0ε∞δtE
n+ 1

2
y
`, j+ 1

2
=−δxH

n+ 1
2

`, j+ 1
2
−~β

n+ 1
2

0,y
`, j+ 1

2

(75c)

δt~α
n+ 1

2
x
`+ 1

2 , j
=~β

n+ 1
2

x
`+ 1

2 , j
(75d)

δt~α
n+ 1

2
y
`, j+ 1

2
=~β

n+ 1
2

y
`, j+ 1

2

(75e)

δt
~β

n+ 1
2

x
`+ 1

2 , j
=−ω

2
0~α

n+ 1
2

x
`+ 1

2 , j
−2ν~β

n+ 1
2

x
`+ 1

2 , j
+ ê1ε0ω

2
pEn+ 1

2
x
`+ 1

2 , j
(75f)

δt
~β

n+ 1
2

y
`, j+ 1

2
=−ω

2
0~α

n+ 1
2

y
`, j+ 1

2

−2ν~β
n+ 1

2

y
`, j+ 1

2

+ ê1ε0ω
2
pEn+ 1

2
y
`, j+ 1

2

.(75g)

However, we can simplify the work by writing the equations in vector notation, where we recall
that F ∈ VE are defined on τ

Ex
h × τ

Ey
h and U ∈ VH are defined on τH

h :

δtHn +
1
µ0

(curlhEn) = 0(76a)

ε0ε∞δtEn+ 1
2 =

(
curlhHn+ 1

2

)
− êT

1
~β

n+ 1
2

(76b)

δt~α
n+ 1

2 =~β
n+ 1

2
(76c)

δt
~β

n+ 1
2 =−ω

2
0~α

n+ 1
2 −2ν~β

n+ 1
2
+ ê1ε0ω

2
pEn+ 1

2 .(76d)

We must also define another space and inner product for the random polarization in vector
notation as~α and~β are now 2× p matrices:

Vα :=
{
~α : τ

Ex
h × τ

Ey
h −→ R2×Rp

∣∣∣~α = [α0, . . . ,αp−1],αk ∈ VE ,‖~α‖α < ∞

}
where the discrete L2 grid norm and inner product are defined as

‖~α‖2
α =

p−1

∑
k=0
‖αk‖2

E , ∀~α ∈ Vα

(~α,~β)α =
p−1

∑
k=0

(
αk,βk

)
E
, ∀~α,~β ∈ Vα.
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8.2.3. Energy Decay and Stability. We choose both spacial steps to be equal (∆x = ∆y = h), and
require that the usual CFL condition for two dimensions holds:

(77)
√

2c∞∆t ≤ h.

Theorem 8.2 (Energy Decay for Maxwell-PC Lorentz-FDTD). If the stability condition (77) is
satisfied, then the Yee scheme for the 2D TE mode Maxwell-PC Lorentz system given in (75) satis-
fies the discrete identity

(78) δtE
n+ 1

2
h =

−1

En+ 1
2

h

∥∥∥∥∥
√

2ν

ε0ω2
p

~β
n+ 1

2

h

∥∥∥∥∥
2

α

for all n where

(79) En
h =

µ0(Hn+ 1
2 ,Hn− 1

2 )H +
∥∥√ε0ε∞ En∥∥2

E +

∥∥∥∥∥
√

ω2
0

ε0ω2
p
~αn

∥∥∥∥∥
2

α

+

∥∥∥∥∥
√

1
ε0ω2

p

~βn

∥∥∥∥∥
2

α

1/2

defines a discrete energy.

Proof. Multiplying both sides of (76b) by ∆x∆yEn+ 1
2 and summing over all nodes on τ

Ex
h ×τ

Ey
h , we

obtain

(80) ε0ε∞(δtEn+ 1
2 ,En+ 1

2 )E = (curlh Hn+ 1
2 ,En+ 1

2 )E − (êT
1
~β

n+ 1
2
,En+ 1

2 )E

which is equivalent to

(81)
ε0ε∞

2∆t

[
‖En+1‖2

E −‖En‖2
E

]
= (curlhHn+ 1

2 ,En+ 1
2 )E − (êT

1
~β

n+ 1
2
,En+ 1

2 )E .

Next, we take the average of (76a) at n and n+ 1, multiply by ∆x∆yHn+ 1
2 , and sum over τH

h to
get

(82) µ0(δtH
n+ 1

2 ,Hn+ 1
2 )H +(curlhEn+ 1

2 ,Hn+ 1
2 )H = 0

which is equivalent to

(83)
µ0

2∆t

[
(Hn+ 3

2 ,Hn+ 1
2 )H− (Hn+ 1

2 ,Hn− 1
2 )H

]
+(curlhEn+ 1

2 ,Hn+ 1
2 )H = 0.

Multiplying (76c) by ∆x∆y~α
n+ 1

2 and summing over τ
Ex
h × τ

Ey
h , we get

(84)
(

δt~α
n+ 1

2 ,~α
n+ 1

2

)
α

=

(
~β

n+ 1
2
,~α

n+ 1
2

)
α

.

We multiply by ω2
0

ε0ω2
p

and rewrite as

(85)
ω2

0
2∆tε0ω2

p

[
‖~αn+1||2α−‖~α

n‖2
α

]
=

ω2
0

ε0ω2
p

(
~β

n+ 1
2
,~α

n+ 1
2

)
α

.
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Lastly, we multiply (76d) by ∆x∆y~β
n+ 1

2
and sum over τ

Ex
h × τ

Ey
h to obtain

(86)(
δt
~β

n+ 1
2 ,~β

n+ 1
2

)
α

=−ω
2
0

(
~α

n+ 1
2 ,~β

n+ 1
2

)
α

−2ν

(
~β

n+ 1
2
,~β

n+ 1
2

)
α

+

(
ê1ε0ω

2
pEn+ 1

2 ,~β
n+ 1

2

)
α

.

We multiply by 1
ε0ω2

p
and rewrite as

(87)
1
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,~β
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2

)
α

+
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ê1En+ 1

2 ,~β
n+ 1

2

)
α

.

Adding (81), (83), (85), and (87), then using the definition (79), we have

1
2∆t

{
(En+1

h )2− (En
h )

2}=− 2ν

ε0ω2
p

(
~β

n+ 1
2
,~β

n+ 1
2

)
α

(88)

where we noticed that

(ê1En+ 1
2 ,~β

n+ 1
2
)α = (êT

1
~β

n+ 1
2
,En+ 1

2 )E .

We can rewrite (88) in the form

(89)
En+1

h −En
h
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2
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h +En

h
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√

2ν
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∥∥∥∥∥
2

α

.

We prove that (79) is a discrete energy (or positive definite function) by rewriting as

(90) (En
h )

2 = µ0‖H
n‖2

H + ε0ε∞(En,AhEn)E +
1

ε0ω2
p

(
ω0~α

n
,ω0~α

n)
α

+
2ν

ε0ω2
p

(
~β

n+ 1
2

h ,~β
n+ 1

2

h

)
α

where Ah is positive definite when the CFL condition is satisfied. The work follows exactly as in
[7]. �

9. CONCLUSION AND FUTURE WORK

We showed in the frequency domain that applying a distribution to ω2
0 can produce significantly

better fits than the deterministic Lorentz model. Then, we used Polynomial Chaos and finite dif-
ferences with the first order Yee Scheme to discretize our system in the time domain. Through
simulations it was shown that the Polynomial Chaos method converged quickly for the number
of polynomials used in the expansion. For the inverse problem, we compared a single frequency
interrogating signal with a UWB pulse. The distributed model only fit better than the deterministic
model over a range of frequencies as implied by the complex permittivity plots in the frequency
domain. Finally, we showed stability of the random Lorentz model and convergence of the dis-
cretization.

There were several areas of this work that could be explored further. Even though we laid the
mathematical groundwork for the beta distribution, we focused primarily on uniform distributions
in our simulations. The simulations and results could be extended fully to beta distributions. Since
the high frequencies of the Lorentz model require very small time steps, we would like to increase
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the duration of the simulations to see if it provides better differentiation between models. We
also mentioned the importance of accurately estimating the true parameters of a material from
noisy data. We would need to run many simulations to gather statistical data in order to make any
significant conclusions.
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