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Abstract. While quite a bit of study has been put towards classifying the dynamics of
the Hénon map over the real and complex numbers, little is known about its action on the
p-adic plane Q2

p. In this paper, we present a partition of the map’s parameter space and
compile several results describing the Hénon map’s dynamics when parametrized by values
in each region of the partition. Similarly to the Euclidean case, there exists a region of the
parameter space under which a conjugacy to the Smale horseshoe arises, and another region
under which the Hénon map induces a trapped attracting set. We conclude by defining and
conjecturing the existence of a p-adic strange attractor.

1. Introduction

Since Hénon [7] introduced his namesake mapping as an object of study in 1976, it has
been the object of no small amount of study in the Euclidean contexts of R2 and C2. While a
surprising number of features have been found in the deceptively simple plane automorphism
(see for instance Robinson [12] for a survey of results), the two it is likely most known for
are its horseshoe dynamics in one region of its parameter space and the strange attractor it
admits in another. While the horseshoe dynamics have been known for quite a while, the
existence of a strange attractor admitted by the Hénon map was not proven for any values in
the parameter space until Benedicks and Carleson’s work in 1991 [4], which was followed up
by Mora and Viana’s proof of the existence of an infinite class of parameter values inducing
a strange attractor [10]. While some work has been put into the arithmetic aspects of the
Hénon map by Silverman [14], Ingram [8] and others, there is little to be found on the
dynamics of the Hénon map over non-Archimedean fields. In this paper, we initiate the
project of classifying the dynamics over such a field, in particular the field of p-adic numbers
Qp. In the spirit of Devaney-Nitecki [5] and Bedford-Smillie [2], we begin by performing a
filtration in order to establish which regions of the parameter space may be of dynamical
interest. We then prove that the p-adic Hénon map does indeed take on Horseshoe dynamics
for certain values in the parameter space using elementary means, inspired loosely by the
methods of Benedetto, Briend and Perdry [3]. We also compile many miscellaneous results
regarding the dynamics over several regions in the parameter space, with some of these
results number-theoretic in nature. Finally, like Hénon before us, we define and conjecture
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the existence of a strange attractor for some values of the parameter space, and compile
some preliminary results inspired in part by Anashin and Khrennikov’s work on Algebraic
Dynamics [1] characterizing what such an attractor may look like and under which conditions
one may be found. We hope our work leads to further research on the p-adic Hénon map, in
particular towards confirming the existence of such an attractor.

We begin with a discussion of the field Qp and its aspects most relevant to our work. For
a more in-depth survey of p-adic analysis, we refer to Gouvêa [6] or Robert [11].

1.1. Absolute values over fields. An absolute value over a field K is a function |·| :
K → R+ that satisfies the conditions that |x| = 0 if and only if x = 0, |xy| = |x||y|, and
|x+ y| ≤ |x|+ |y|.

1.2. The field of p-adic numbers. For a fixed prime number p, and a non-zero rational
x ∈ Q, we can write x = pv m

n
, where m and n are integers not divisible by p. The p-adic

absolute value |·|p : Q → R is defined by |x|p = p−v if x 6= 0 and |x|p = 0 if x = 0. The
completion of Q with respect to |·|p is called the field of p-adic numbers, denoted by Qp, and
|·|p can be extended uniquely to Qp. From now on we will only refer to the p-adic absolute
value, so we will omit the p and write |·|p as |·|.

Similarly, the p-adic valuation vp : Qp → R is defined: vp(x) = v when x 6= 0 and
vp(x) =∞ when x = 0.

Proposition 1.1. The absolute value |·| obeys the strong triangle inequality: |x + y| ≤
max{|x|, |y|}.

Proposition 1.2. The absolute value |·| obeys the strongest wins property. If |x| 6= |y|, then
|x+ y| = max{|x|, |y|}.

In addition, Qp is totally disconnected, complete with respect to |·|, and locally compact.
Because Qp is complete and locally compact, it has also has the property that every closed
and bounded subset is compact.

1.3. Ring of p-adic integers. Let Zp = {x ∈ Qp : |x| ≤ 1}. Then Zp is a subring of Qp

and is called the ring of p-adic integers. Similarly, let pZp = {x ∈ Qp : |x| < 1}. Then pZp
is the unique maximal ideal of Zp. Because pZp is a maximal ideal, Zp/pZp is a field which
we call the residue field of Zp. In addition, Zp/pZp ∼= Z/pZ.

Define the reduction map · : Zp → Zp/pZp as the natural map that takes p-adic integers
to their respective residue class in Zp/pZp.

1.4. Hensel’s Lemma. Hensel’s Lemma, or sometimes called the p-adic version of Newton’s
method, gives conditions for when polynomials with p-adic integer coefficients have roots and
is stated as follows:

If f(x) is a polynomial in Zp[X], and there exists a p-adic integer b ∈ Zp such that
|f(b)| ≤ 1

p
and |f ′(b)| = 1, then there exists a unique root β ∈ Zp such that f(β) = 0, and

|β − b| ≤ 1
p
.

There is a stronger version of Hensel’s lemma that gives more general conditions for when
polynomials have roots and is sometimes useful. The stronger version is stated as follows:
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If f(x) is a polynomial in Zp[X], and there exists a p-adic integer b ∈ Zp such that
|f(x)| ≤ 1

pn
and k = vp(f

′(b)) < n
2
, then there exists a unique root β ∈ Zp such that

f(β) = 0, |β − b| ≤ 1
pn−k

, and vp(f ′(β)) = vp(f
′(x)) = k.

1.5. Vector space Qn
p . Analogously to the real case, Qn

p can be given vector space structure
over Qp with component wise scalar multiplication. For α = (α1, α2, ..., αn) ∈ Qn

p , the sup-
norm ‖·‖p : Qn

p → R+ is defined by ‖α‖p = max{|α1|, |α2|, ..., |αn|}. From now on we will
refer only to the p-adic sup-norm, so we will omit the p and write ‖·‖p as ‖·‖.

1.6. The Hénon Map. The Hénon map over Q2
p is the function φ : Q2

p → Q2
p defined by:

φ(x, y) = (a+ by − x2, x)

For some a, b ∈ Qp, and b 6= 0. The function φ is invertible with inverse:

φ−1(x, y) = (y,
−a+ x+ y2

b
)

The Hénon map is a polynomial automorphism, meaning it is a polynomial bijection with a
polynomial inverse.

1.7. The filled Julia set. The forward filled Julia set of φ is the set:

J+(φ) = {(x, y) ∈ Q2
p| {φn(x, y)} is a bounded with respect to| · |p}

The backwards filled Julia set of φ is the set:

J−(φ) = {(x, y) ∈ Q2
p| {φ−n(x, y)} is a bounded with respect to| · |p}

The filled Julia set of φ is the intersection of the forward and backward filled Julia sets:

J(φ) = J+(φ) ∩ J−(φ)

2. Generalities

For the remainder of this paper, we standardize the following conventions:
• p is an odd prime.
• In general, when we introduce a point indexed by 0, α0 = (x0, y0), we take αk =

(xk, yk) to denote φk(α0) = φk(x0, y0) for k ∈ Z. We take φ0 : Qp → Qp to be the
identity function φ0(x, y) = (x, y).
• We let Dr(x0) ⊂ Qp denote the closed ball of radius r around the point x0 ∈ Qp, that
is

Dr(x0) = {x ∈ Qp | |x− x0|] ≤ r}.
We let Br(x0, y0) ⊂ Q2

p denote the closed ball of radius r around the point (x0, y0) ∈
Q2
p, that is

Br(x0, y0) = {(x, y) | ‖(x, y)− (x0, y0)‖ ≤ r}.
We let Dr1,r2(α) = Br1(πx(α)) × Br2(πy(α)) ⊆ Q2

p refer to the closed polydisc of
radius r1 in the first coordinate and radius r2 in the second, that is

Dr1,r2(x0, y0) = Dr1(x0)×Dr2(y0)

.
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• For some ball B = I× I ⊂ Q2
p where I = DR(z) ⊂ Qp, function f : I → I, and r ≤ R

we denote the "vertical tube of radius r around f through B" as

T Vr (f(t)) = T Vr (f) = {(f(t) + θ, t) | t ∈ I, |θ| ≤ r} =
⊔
t∈I

Dr,0(f(t), t)

For a point t0 ∈ I, we shall refer to the polydisc Dr,0(f(t), t) as that tube’s "cross-
section at t0." We use a mirrored definition for THr , the horizontal tube through
B, simply switching the first and second coordinates. As before, we assume that
Dr,0(f(t), t) is the closed polydisc.

The first of our basic results comes from [5], the proof of which is a routine calculation:

Proposition 2.1 (Devaney-Nitecki). φa,b(x, y) is topologically conjugate to φ−1a
b2
, 1
b

via the

linear map f(x, y) = (−by,−bx), or more precisely

f−1 ◦ φa,b ◦ f = φ−1a
b2
, 1
b

In addition, J(φa/b2,1/b) = f−1(J(φa,b)).

Lemma 2.2. Let T > 0. φ is Lipschitz continuous when restricted to BT (0) with Lipschitz
constant C+

T (a, b) = C+
T = max{|b|, T, 1}. More precisely, for all (x, y), (x′, y′) ∈ BT (0),

‖φ(x, y)− φ(x′, y′)‖ ≤ C+
T ‖(x, y)− (x′, y′)‖

Proof. Assume (x0, y0), (x′0, y
′
0) ∈ BT (0), and let δx = |x − x′|, δy = |y − y′|. By our choice

of norm ‖(x0, y0) − (x′0, y
′
0)‖ = max{δx, δy}. Let (x1, y1) = φ(x0, y0); (x′1, y

′
1) = φ(x0, y0)

and write ‖(x1, y1) − (x′1, y
′
1)‖ = ‖(b(y0 − y′0) − (x20, x

′
0
2), x0 − x′0)‖ = max{|(b(y0 −

y′0) − (x20 − x′0
2)|, δx}. By the strong triangle inequality, |(b(y0 − y′0) − (x20 − x′0

2)| ≤
max{|b|δy, |x0 +x′0|δx}. As |x0|, |x′0| ≤ T , the strong triangle inequality implies |x0 +x′0| ≤ T .
Putting all this together, we now have ‖(x1, y1) − (x′1, y

′
1)‖ ≤ max{|b|δy, T δx, δx} ≤

(max{|b|, T, 1}) (max{δx, δy}) = (max{|b|, T, 1}) ‖(x0, y0)− (x′0, y
′
0)‖. �

Lemma 2.3. We let A,B,C be metric spaces with respective distance metrics da, db, dc. For
f : B → C, g : A→ B where f, g are Lipschitz continuous with respective Lipschitz constants
cf , cg, h = (f ◦ g) : A→ C is Lipschitz continuous with Lipschitz constant cfcg.

Proof. By hypothesis, dc(f(x), f(y)) ≤ cfdb(x, y) and db(g(x), g(y)) ≤ cgda(x, y). Letting
w = g(x), z = g(y), we have that dc(h(x), h(y)) = dc(f(w), f(z)) ≤ cfdb(w, z) =
cfdb(g(x), g(y)) ≤ cfcgda(x, y). �

Corollary 2.4. Let T > 0 once more. φ−1 is Lipschitz continuous on BT (0) with Lipschitz
constant max{|1

b
|, T|b| , 1}.

Proof. By proposition 2.1, we have that φ−1a,b = g−1 ◦ φ a
b2
, 1
b
◦ g where g(x, y) = (−y

b
,−x

b
). We

note that the image of BT (0) under g is B T
|b|

(0), so by lemma 2.2, φ a
b2

has Lipschitz constant

max{|1
b
|, T|b| , 1}. g and g−1 have Lipschitz constants 1

|b| , |b| respectively, so by Lemma 2.3, we
conclude that (g−1 ◦ φ a

b2
, 1
b
◦ g) = φ−1a,b has Lipschitz constant max{|1

b
|, T|b| , 1} �

Though Bedford and Smillie’s paper [2] works in the space C2 rather than Q2
p, we can

apply similar methods to those they use on pages 56-57 to obtain filtration properties of φ.
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Proposition 2.5 (Adapted from Bedford-Smillie). We let R = max{|a|1/2, |b|, 1}. We
partition Q2

p into three sets S, S+ and S− where S = BR(0), S+ = {(x, y) ∈ Q2
p | |x| ≥

|y|; |x| > R}, and S− = {(x, y) ∈ Q2
p | |x| ≤ |y|; |x| > R}. We also let I = DR(0) ⊂ Qp and

note that S = I × I. The following filtration properties then hold:
1) φ(S+) ⊂ S+; φ−1(S−) ⊂ S−
2) For all (x, y) ∈ S±, limn→∞‖φ±n(x, y)‖ =∞
3) φ(S−) ∩ S+ 6= ∅ and φ−1(S+) ∩ S− 6= ∅
4) φ(S) ∩ S− = ∅ and φ−1(S) ∩ S+ = ∅
5) φ(S) ∩ S+ 6= ∅ if and only if max{|a|, |b|} > 1

6) φ−1(S) ∩ S− 6= ∅ if and only if |b| < max{|a|1/2, 1}
7) φ(S) ∩ S = ∅ if and only if |a| > max{|b|2, 1} and a is not a square in Qp

Proof. We show Claims 1) and 2) only for S−; the proof for S+ can be acquired either through
similar methods or an argument invoking proposition 2.1. We suppose (x0, y0) ∈ S− and
then have that (x−1, y−1) = (y0,

1
b
(x0 + y20 − a)). We note |y20| > |y0| ≥ |x0| and |y20| > |a| by

assumption, so |y−1| = |1/b||x0 + y20 − a| = |1/b||y20| > |y0| = |x−1|. Thus, (x−1, y−1) ∈ S−
and ‖(x−1, y−1)‖ > ‖(x0, y0)‖, so inductively, ‖(x−n, y−n)‖ → ∞.

To see that Claim 3) holds, we need only select (x0, y0) ∈ S− such that |y0| ≥ |x0| >
|by0|1/2 > |a|1/2. We note that such a selection is indeed possible, as we can always select
y0 such that |y0| > |b|2. We then have that |x1| = |a + by0 − x20| ≤ max{|a|, |by0|, |x20|}. We
have by assumption that |x20| > |a|, and as |x0| > |by0|1/2, we have that |x0| > |by0|. By
a strongest wins argument, we then have that |x1| = |x0|2 > |y1| = |x0|, so (x1, y1) ∈ S+.
We’ve thus identified points (x0, y0) ∈ S− ∩ φ−1(S+) and (x1, y1) ∈ S+ ∩ φ(S−).

Claim 4) is a simple corollary of Claim 1)– if φ(S)∩S− 6= ∅, we then have that S∩φ−1(S−) 6=
∅, which is a contradiction as it has been shown that φ−1(S−) ⊂ S−. An identical argument
shows φ−1(S) ∩ S+ = ∅.

To see the forward implication of claim 5), we show the contrapositive: If max{|a|, |b|} ≤ 1,
we then have that S = Z2

p, and φ has Zp coefficients, so φ(S) ⊂ S. To show the other
direction, we split into two cases. If |a| ≥ |b| with |a| > 1, we then have that |a| > R, so
φ(0, 0) = (a, 0) ∈ S+. If |b| > max{|a|, 1}, we then have that (b, 0) ∈ S and |b2| > R, so
φ(b, 0) = (b2, b) ∈ S+, thus establishing the two-way implication.

To see the forward implication of claim 6), we again prove the contrapositive: if |b| ≥
max{|a|1/2, 1}, then R = |b| and recalling that φ−1(x, y) = (y, −a

b
+ x

b
+ y2

b
), we see that as

|y|, |x|, |a| ≤ |b|,

‖φ(x, y)‖ ≤ max{|y|,
∣∣∣∣−ab

∣∣∣∣, ∣∣∣xb ∣∣∣,
∣∣∣∣y2b
∣∣∣∣} ≤ max{|b|,

∣∣∣∣−b2b
∣∣∣∣, ∣∣∣∣bb

∣∣∣∣, ∣∣∣∣b2b
∣∣∣∣} ≤ |b| = R

so φ−1(S) ⊂ S. To show the other direction of Claim 6), we suppose |b| < max{|a|1/2, 1} = R

and then have that |a
b
| > |a|

|a|1/2
= |a|1/2, and as |a| > |b|, |a

b
| > 1. Therefore φ−1(0, 0) =

(0, a
b
) ∈ S−, wrapping up our proof of claim 6).

Claim 7) will be a corollary of our later work. However, we can see now that φ(S) ∩ S =
∅ =⇒ |a| > max{|b|2, 1}, as claim 3) implies that for any such φ, we must have that φ(S) ⊂
S+ and φ−1(S) ⊂ S−, and claims 4 and 5 then combine to imply |a| > max{|b|2, 1}. �
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Figure 1. Regions I, II, and III

We note several consequences of proposition 2.5, the first two of which follow immediately
from claims 1) and 2)

Corollary 2.6. J+(φ) ⊆ S− ∪ S and J−(φ) ⊆ S+ ∪ S.
Corollary 2.7. J(φ) ⊆ S

The filtration properties of φ motivate our partition of the parameter space into three
regions.

Definition 2.8. As shown in figure 2.8, we partition our parameter space Qp × (Qp \ {0})
into three regions. Let

• Region I= {(a, b) | |a| ≤ 1, |b| = 1}
• Region II= {(a, b) | |a| ≤ max{|b|2, 1}, |b| 6= 1}
• Region III= {(a, b) | |a| > max{|b|2, 1}}

In particular, we see that when (a, b) is in Region III, both claim 5 and 6 hold; when (a, b)
is in Region II one and only one of the two do; and when (a, b) is in Region I, neither does.

Corollary 2.9. In Region III, one of J+(φ) and J−(φ) are unbounded.
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Proof. Without loss of generality, assume |b| < 1; the case |b| > 1 is identical with the indices
+ and − swapped. When |b| < 1, |a| ≤ 1, claim 5) of proposition 2.5 holds, but claim 4)
does not. Thus, points S− are mapped into S by φ, but φ(S) ( S–in other words, points
are mapped into S, but never out. This implies that

J+(φ) =
⋂
k≥0

φ−k(S).

As φ−1(S) ∩ S− 6= ∅, we then have by claim 2) of proposition 2.5 that J+(φ) is unbounded,
as all points in S− tend towards infinity upon iteration by φ. �

We shall investigate the (quite distinct!) dynamics for each region of the parameter space
after getting a few more preliminary statements out of the way.

Proposition 2.10. J+(φ), J−(φ), and J(φ) are closed. In addition, J(φ) is compact.

Proof. Suppose α /∈ J+(φ). Then by Proposition 2.5, φN(α) ∈ S+ for some N ≥ 0. Because
S+ is open, there exists some 0 < ε < 1 such that Bε(φ

N(α)) ⊂ S+. We want to choose a
δ > 0 such that β ∈ Bδ(α) implies φN(β) ∈ Bε(φ

N(α)), then by proposition 2.5 we will know
that β /∈ J(φ). Note that we can choose T > 1 such that {α, φ(α), φ2(α), ..., φN(α)} ⊂ BT (0).
Because φ is Lipschitz continuous on BT (0), there exists C > 1 such that for all z, z′ ∈ BT (0),
‖φ(z)−φ(z′)‖ ≤ C‖z−z′‖.Choose δ = ε

CN
. Then ‖φN(α)−φN(β)‖ ≤ CN‖α−β‖ < CNδ = ε.

Therefore J+(φ)c is open, so J+(φ) is closed. An identical argument with the appropriate
filtration for φ−1 shows that J−(φ) is also closed. In addition, by corollary 2.7 J(φ) is
bounded. As Q2

p has the Heine-Borel property, it follows that J(φ) is compact. �

Lemma 2.11. If A = r2 such that r ∈ Qp, then when |B| < |A| there exists r′ ∈ Qp such
that A+B = (r‘)2. Furthermore, we can choose r′ such that |r − r′| < |B

r
|.

Proof. We let A∗ = p−vp(A)A, B∗ = p−vp(A)B and r∗ = p−vp(r)r. As vp(A) = 2vp(r), we are
still assured (r∗)2 = A∗. As A∗ ∈ Z×p and |B∗| < |A∗|, we now have that A∗ + B∗ ∈ Zp,
so the polynomial F (z) = z2 − (A∗ + B∗) ∈ Zp[z], and furthermore has good reduction.
We apply the reduction map to obtain F (z) = z2 − A∗. As A∗ = (r∗)2, we have that
F (r∗) = 0 and F ′(r∗) = 2r∗ 6= 0. We then have by Hensel’s Lemma that there exists ζ ∈ Zp
such that F (ζ) = 0, implying ζ2 = A∗ + B∗. Furthermore, by the statement of Hensel’s
Lemma given by [11], as F (r∗) ≡ 0 mod B∗Zp and |F ′(r∗)| = 1, we can conclude that
ζ ≡ r∗ mod B∗Zp. Letting r′ = pvp(r)ζ, we now have (r′)2 = A+ B, and as |ζ − r∗| ≤ |B∗|,
we have |r − r′| ≤ |pvp(r)B∗| = |B

r
|. Finally, we note that as |B

r
| < |A

r
| = |r|, we have

that the neighborhoods containing the two roots B|B
r
|(±r) as stated in the proposition are

distinct. �

Remark 2.1. As we saw in the proof of the above lemma, we have that one possible value
of
√
A+B is in B|B

r
|(±r)–in general, when approaching square roots of these forms where

A is a constant and B is an indeterminate such that |A| > |B|, we shall take the positive
square root to be the one closest to the root of A we declare to be its "canonical" square
root. Further, as a corollary via the strongest wins property, we have that |

√
A+B| = |r|.
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Proposition 2.12. φ has period one points if and only if (b − 1)2 + 4a is a square in Qp.
φ has points of minimal period two if and only if −3(b− 1)2 + 4a is a square in Qp. When
those conditions are met, φ has fixed points:(

(b− 1)±
√

4a+ (b− 1)2

2
,
(b− 1)±

√
4a+ (b− 1)2

2

)
and minimal period two points:(

(1− b)±
√

4a− 3(b− 1)2

2
,
(1− b)∓

√
4a− 3(b− 1)2

2

)
Proof. This follows from simple calculations based on the fact that φ has fixed points if and
only if φ(x, y) = (x, y), and period two points if and only if φ2(x, y) = (x, y). �

3. Region I: Good Reduction

Definition 3.1. In the case where |a| ≤ 1 and |b| = 1, we say that phi has good reduction.
The motivation for this definition is that in the region |a| ≤ 1, |b| = 1, both φ and φ−1

reduces to a Henon map over F2
p.

Proposition 3.2. The following are equivalent:
(1) φ has good reduction.
(2) J(φ) = Z2

p.
(3) φ(Z2

p) = Z2
p.

(4) J(φ) is a polydisc.

Proof. Suppose φ has good reduction. Suppose |x| ≤ 1 and |y| ≤ 1. Then ‖φ(x, y)‖ =
max{|a + by − x2|, |x|}. Note that |a + by − x2| ≤ max{|a|, |by|, |x2|} ≤ 1, and |x| ≤ 1. So
‖φ(x, y)‖ ≤ 1. Iterating, we have ‖φn(x, y)‖ ≤ 1 for all n ≥ 1, so (x, y) ∈ J+(φ). Similarly,
‖φ−1(x, y)‖ = max{|y|, |−a

b
+ 1

b
x + 1

b
y2|} ≤ max{|y|, |a

b
|, |1

b
x|, |1

b
y2|} ≤ 1. Iterating the

argument, we have ‖φ−n(x, y)‖ ≤ 1. So (x, y) ∈ J−(φ). Therefore, (x, y) ∈ J−(φ)∩ J+(φ) =
J(φ).

Suppose |x| > 1 and |x| ≥ |y|. Then ‖φ(x, y)‖ = max{|a + by − x2|, |x|}. However,
|a+ by− x2| = |x2| = |x|2 > |x|. So ‖φ(x, y)‖ = |x|2. Moreover, ‖φn(x, y)‖ = |x|2

n

→∞. So
(x, y) /∈ J+(φ).

Similarly, suppose |y| > 1 and |y| ≥ |x|. Then ‖φ−1(x, y)‖ = max{|y|, |−a
b

+ 1
b
x+ 1

b
y2|} =

|y|2. Moreover, ‖φ−n(x, y)‖ = |y|2
n

→∞. So (x, y) /∈ J−(φ). Therefore J(φ) = Z2
p.

Suppose J(φ) = Z2
p. Then because J(φ) is invariant under φ, then φ(Z2

p) = Z2
p.

Suppose φ(Z2
p) = Z2

p. Then because (0, 0) ∈ Z2
p and ‖φ(0, 0)‖ = ‖(a, 0)‖ = |a|, then it must

be true that |a| ≤ 1. Also, if |b| > 1, and |y| = 1, then by strongest wins, |a+by−x2| = |by| =
|b| > 1, contradiction. So |b| ≤ 1. Note that φ−1(Z2

p) = Z2
p. So if (x, y) = (a + 1, 0) ∈ Z2

p,
then ‖φ−1(a+ 1, 0)‖ = |1

b
| ≤ 1. Therefore, |b| = 1, so φ has good reduction.

The proof that statements 1 through 3 are equivalent to the statement that J(φ) is a
polydisc follows after further study of regions II and III. �
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Proposition 3.3. If |a| < 1 and |b − 1| > 1
p
, then φ has fixed points. In addition, if −3 is

a quadratic residue mod p, then φ has minimal period two points.

Proof. Consider the functions g(z) = z2 − (4a + (b − 1)2) and f(z) = z2 − (4a + 3(b − 1)2)
and apply Hensel’s lemma. �

4. Region II: The Horseshoe

Theorem 4.1. We assume |a|1/2 > max{|b|, 1}. If a = γ2 for some γ ∈ Qp, then J(φ) is a
topological horseshoe, with the action of φ upon it conjugate to the 2-shift. Otherwise, J(φ)
is empty.

As much of the "usual machinery" assumes connectedness, it is inaccessible to us. As a
consequence, the proof of 4.1 is lengthy, with many moving parts to examine. We break it
up over the following sections:

(1) Preliminaries: In which we prove that J(φ) = ∅ when a is not a square in Qp

and establish some basic facts and necessary terminology regarding J(φ) –most
importantly that J(φ) is contained withing the union of two disjoint subsets of S
we name A+ and A−.

(2) Finite and Infinite Trajectory Pre-images In which we seek to obtain a
description of the points of S that follow a given trajectory through the sets A+,
A− for finitely many iterations. We then use that description to characterize the set
of points that follow a given infinite trajectory.

(3) Extending our results to φ−1 In which we use a conjugacy argument to find a
characterization of the points whose preimages follow a given trajectory through A+

and A−
(4) Proof the Main Theorem

4.1. Preliminaries. We begin by recalling that by Corollary 2.7, we have that J(φ) ⊂ S =
B|a|1/2(0). In fact, we can say something stronger.

Lemma 4.2. For (a, b) in Region II, J(φ) ⊆ H =
{

(x, y) ∈ Q2
p; |x| = |y| = |a|

1/2
}

Proof. First we will prove the proposition for the case |a|1/2 > |b| ≥ 1. Suppose ‖(x, y)‖ >
|a|1/2. Then ‖(x, y)‖ > |b| and ‖(x, y))‖ > |1

b
|. So by Proposition 2.5, (x, y) /∈ J(φ). Suppose

|x| < |a|1/2 and |y| ≤ |a|1/2. Then ‖φ(x, y)‖ = max{|a + by − x2|, |x|}. Since |x|2 < |a| and
|by| ≤ |b||a|1/2 < |a|1/2|a|1/2 = |a|, then by strongest wins |a+ by− x2| = |a|. So ‖φ(x, y)‖ =

|a| > |a|1/2. So after one iteration of φ we are in our previous case, so (x, y) /∈ J(φ).
Similarly, suppose |x| ≤ |a|1/2 and |y| < |a|1/2. Then ‖φ−1(x, y)‖ = max{|y|, |1

b
||−a+x+y2|}.

Since |y|2 < |a| and |x| ≤ |a|
1
2 < |a|, then by strongest wins max{|y|, |1

b
||−a + x + y2|} =

max{|y|, |a
b
|}. However, |y| < |a|1/2 = |a|

|a|1/2
< |a

b
|. So ‖φ−1(x, y)‖ = |a

b
| > |a|1/2, so

(x, y) /∈ J(φ).
Now when conjugating φ with f(x, y) = (−by,−bx), we know that φa,b ∼ φ−1a

b2
, 1
b

. Note that

|a|1/2 > |b| ≥ 1 if and only if | a
b2
| > 1 ≥ |1

b
|, and J(φ−1a

b2
, 1
b

) = J(f−1 ◦ φa,b ◦ f) = f−1(J(φa,b)).
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Therefore, J(φ a
b2
, 1
b
) ⊂ f−1(H) = {(x, y) ∈ Q2

p; |x| = |y| = | ab2 |
1/2}. Substituting a∗ = a

b2
and

b∗ = 1
b
, we get J(φa∗,b∗) ⊆

{
(x, y) ∈ Q2

p; |x| = |y| = |a∗|
1/2
}

where |a∗|
1
2 > 1 ≥ |b∗|. �

Proposition 4.3. For (a, b) in Region II, J(φ) 6= ∅ if and only if a = γ2 for some γ ∈ Qp.

Proof. Suppose |a|
1
2 > max{|b|, 1} and (x0, y0) ∈ J(φ). We then have that |xk| = |yk| = |a|1/2

for all k ∈ Z by Lemma 4.2. We let

f(z) = z2 − 1 +
by0 − x1
x20

We note that | by0−x1
x20
| = 1

|a| |by0 − x1| ≤
1
|a| max{|by0|, |x1|} = 1

|a| max{|b||a|
1
2 , |a|

1
2}. If |b| ≤ 1,

then 1
|a| max{|b||a|

1
2 , |a|

1
2} = |a|1/2

|a| = |a|−1/2 < 1. If |b| > 1, then 1
|a| max{|b||a|

1
2 , |a|

1
2} =

|b|
|a|1/2

< |a|1/2

|a|1/2
= 1, so | by0−x1

x20
| < 1. Thus, f ∈ Zp[z], so we may attempt to apply Hensel’s

lemma. By our observation above, by0−x1
x20

≡ 0 mod p. Thus, f(1) = 12 − 1 = 0 and

f ′(1) = 2 6= 0, so Hensel’s lemma ensures that there exists a root r ∈ Qp such that

f(r) = r2 − 1 +
by0 − x1
x20

= 0.

Noting that by0 − x1 = x20 − a, this simplifies to (rx0)
2 = a. Letting γ = rx0 ∈ Qp, this

proves the proposition. �

We have now completely characterized the dynamics when a is not a square. Henceforth,
we shall assume a = γ2 where γ ∈ Qp.

Proposition 4.4. φ−1(S) ∩ (S) = A+ t A− where A± = {(x, y) ∈ Q2
p | |
√
a+ by ∓ x| ≤ 1}

Proof. We can rephrase our characterization of the set φ−1(S)∩S as φ−1(S)∩S = {(x, y) ∈
S | φ(x, y) ∈ S} = {(x, y) ∈ Qp | ‖(x, y)‖, ‖φ(x, y)‖ ≤ |γ|}. We assume (x, y) ∈ S and
write φ(x, y) = (a + by − x2, x). We recall that |x| ≤ |γ| and thus have that (x, y) ∈
φ−1(S) ∩ (S) if and only if |a + by − x2| ≤ |γ|. By Lemma 2.11, a + by is a square in Qp

as |by| ≤ |bγ| < |γ2| = |a|. Keeping our conventions of Lemma 2.11, we let the root of
a+ by near γ be written as the positive square root. We now have that (x, y) ∈ φ−1(S)∩ (S)
if and only if |

√
a+ by − x||

√
a+ by + x| ≤ |γ|. We claim that one of |

√
a+ by − x| and

|
√
a+ by + x| has absolute value |γ|. To see this, we note that as |

√
a+ by| = |γ|, if

|
√
a+ by ± x| ≤ |γ|, by the strongest wins property, we must have that |x| = γ. We can

then write that |
√
a+ by ∓ x| = |

(√
a+ by ± x

)
∓ 2x|. By the strongest wins property (and

because p 6= 2), we then have that |
√
a+ by ∓ x| = |2x| = |γ| as desired. Without loss of

generality, we then assume that |
√
a+ by ∓ x| = γ, and have that (x, y) ∈ φ(S) ∩ S if and

only if

|
√
a+ by ± x| ≤ |γ|

|
√
a+ by ∓ x|

= 1,
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establishing that

φ(S) ∩ S = {(x, y) ∈ S | |
√
a+ by ± x| ≤ 1}

= {(x, y) ∈ S | |
√
a+ by − x| ≤ 1} t {(x, y) ∈ S | |

√
a+ by + x| ≤ 1}

We let `±0 (t) = ±
√
a+ bt and let A+ = {(x, y) ∈ S | |

√
a+ by − x| ≤ 1} = T V1 (`+0 ) and

A− = {(x, y) ∈ S | |
√
a+ by + x| ≤ 1} = T V1 (`−0 ) �

Proposition 4.5. φ(S) ∩ S = B+ tB− where B± = TH|b| (ω
±
0 ) and ω±0 (t) = ±

√
a− t.

The proof of proposition 4.5 is much the same as that of proposition 4.4 and is thus
omitted. The difference in the width of B± from that of A± comes from the b−1 factor in
our operative inequality |−a+x+y2

b
| ≤ |γ|, or equivalently, |−a + x + y2| = |bγ|. We also

remark that as we define the positive square root function to return the value closer to γ
(in this case), we necessarily have that φ(A±) = B±, as φ(φ−1(S) ∩ S) = φ(S) ∩ S and
πx(A±) = πy(φ(A±)).

Corollary 4.6. `±0 : I → I has Lipschitz constant | b
γ
|

Proof. We let t, t′ ∈ I be arbitrary and write |`±0 (t)−`±0 (t′)| = |
√
a+ bt−

√
(a+ bt)− b(t− t′)|.

By lemma 2.11, we have that |`±0 (t)− `±0 (t′)| ≤ | b√
a+bt
||t− t′| = | b

γ
||t− t′|. �

Corollary 4.7. When |b| ≤ 1, |a| > 1, A± = TH1 (γ) = D1,|γ|(γ, 0)

Proof. By lemma 2.11, we have that |
√
a+ by−|γ|| ≤ | by

γ
| ≤ 1. Thus, for each cross-section at

vertical coordinate t0, we have that (γ, t0) ∈ D1,0(
√
a+ bt0, t0) and thus D1,0(

√
a+ bt0, t0) =

D1,0(γ, t0) �

Corollary 4.8. When |b| > 1, A+ and A− can each be partitioned into the disjoint union of
|b| = pw polydiscs of polyradius (1, |γ|/|b|)

Proof. By corollary 4.6, if |y − y′| ≤ |γ|/|b|, then |`±0 (y) − `
(
0y
′)| ≤ 1. As all points in a

p-adic disc are the center of that disc, we then have that the horizontal cross-sections of A+

at vertical coordinates y, y′ project in the x-coordinate to the same subset of I ⊂ Qp. By
an elementary congruence argument, I can be partitioned into pw discs D0,D1, . . . ,Dpw−1 of
radius |γ|/|b|. Letting y∗i be an arbitrary point in Di, we now have that

A± =

pw−1⊔
k=0

D1,|γ|/|b|
(
`±0 (y∗i ), y

∗
i

)
�

4.2. Finite and Infinite Trajectory Pre-images.

Definition 4.9. Let X = {s = . . . s−2s−1.s0s1 . . . | si ∈ {+,−}} be the space of two-sided
sequences in two symbols, in our case letting those symbols be + and −. X is here equipped
with one of many canonical choices of distance metrics, our choice being for w, s ∈ X

d(s, w) = e−min {|m| |sm 6=wm}
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In keeping with canon, X is naturally equipped with the self-homeomorphism σ : X → X
where σ(s)k = sk−1.

Definition 4.10. For s ∈ X, we denote the length-m pre-image of forward trajectory s and
the infinite pre-image of forward trajectory s respectively as

V s
m =

m⋂
k=0

φ−k(Ask), V
s =

∞⋂
k=0

φ−k(Ask).

Similarly, we denote the length-m pre-image of backward trajectory s and the infinite pre-
image of backward trajectory s respectively as

Hs
m =

−1⋂
k=−(m+1)

φ−k(Ask), H
s =

−1⋂
k=−∞

φ−k(Ask).

We proceed to our main project of the section by utilizing a logical trick Gouvêa [6] links
spiritually to Saint Anselm of Canterbury: assuming the existence of an object, determining
the properties such an object would have, and then using those properties to prove the
existence of such an object. In particular, we wish to show that V s is non-empty for all
s ∈ X, and is moreover a vertical tube of radius 0.

Lemma 4.11. (1) V s
m ⊂ V s

m−1

(2) φ(V s
m) ⊂ V

σ(s)
m−1

Proof. The proofs of each statement consists simply of recalling definitions. The first
statement is obvious once the definitions of V s

m and V s
m−1 are written out:

V s
m =

m⋂
k=0

φ−k(Ask) ⊂
m−1⋂
k=0

φ−k(Ask) = V s
m−1

The second statement follows with only slightly more difficulty

φ (V s
m) = φ

(
m⋂
k=0

φ−k(Ask)

)

=
m⋂
k=0

φ1−k(Ask)

= φ(As0) ∩

(
m−1⋂
k=0

φ−k(Aσ(s)k)

)
= φ(As0) ∩ V

σ(s)
m−1 ⊂ V

σ(s)
m−1

�

Corollary 4.12. For all s ∈ X, m ∈ N, (x, y) ∈ V s
m, we have |x| = |γ|.

Definition 4.13. We let cm = cm(a, b) = | 1
γm
|, and dm = dm(a, b) = 1

|γ|m−1|b| .

Proposition 4.14. For all m ≥ 0, if (x0, y0) ∈ V s
m, then Dcm,dm(x0, y0) ⊆ V s

m
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Proof. For the case m ≥ 1, we break Proposition 4.14 up into three lemmas, then show that
those lemmas imply the proposition.

Lemma 4.15. Proposition 4.14 holds for the special case m = 0.

Proof. V s
0 = As0 , C0 = 1 and d0 = |γ

b
|. By Corollaries 4.7 and 4.8 (and recalling that any

point in a p-adic ball can be written to be at its center), we have that D1,| γ
b
|(x0, y0) ⊂ As0

for all (x0, y0) ∈ As0 , establishing our claim for the special case. �

Lemma 4.16. Bcm(x0, y0) ⊂ V s
m for all (x0, y0) ⊂ V s

m

Proof. We proceed by strong induction on m, letting lemma 4.15 serve as our basis. We
assume for our inductive hypothesis that Bcm(x0, y0) ⊂ V s

m for all m ≤ (n − 1). By
proposition 2.2, we have that φ has Lipschitz constant |γ| on S. Thus for any (x′0, y

′
0) ∈

Bcn(x0, y0), we have that ‖φ(x0, y0)− φ(x′0, y
′
0)‖ ≤ γcn = cn−1. By our inductive hypothesis

and lemma 4.11, we then have that φ(x0, y0) ∈ V σ
n−1(s), and as Bcn(x0, y0) ⊂ As0 , we have

that (x′0, y
′
0) ∈ φ−1(V σ

n−1(s)) ∩ As0 = V s
n . �

Lemma 4.17. D0,dm(x0, y0) ⊂ V s
m for all (x0, y0) ⊂ V s

m

Proof. We let (x′0, y
′
0) = (x0, y

′
0) ∈ D0,dm(x0, y0) and let φ(x0, y0) = (x1, y1) and φ(x′0, y

′
0) =

(x′1, y
′
1). We write

‖(x1, y1)− (x′1, y
′
1)‖ = ‖

(
b(y0 − y′0)− (x20 − x′02), x0 − x′0

)
‖

= ‖(b(y0 − y′0), 0)‖ = |b||y0 − y′0|
≤ |b|dm = cm−1

We then have by Lemma 4.16 that (x′1, y
′
1) ∈ V

σ(s)
m−1, and asD0,dm(x0, y0) ⊂ As0 , we conclude

that (x′0, y
′
0) ∈ φ−1(V σ

m−1(s)) ∩ As0 = V s
m �

To wrap up the proof of proposition 4.14, we simply note that for all (x′0, y
′
0) ∈

Dcm,dm(x0, y0), we have that (x′0, y
′
0) ∈ D0,dm(x′0, y0), and (x′0, y0) ∈ Bcm(x0, y0). By

lemmas 4.16 and 4.17, we can conclude that (x′0, y
′
0) ∈ V s

m. �

We have now assembled the machinery we need to attack non-emptiness of V s
m and V s.

Proposition 4.18. When a = γ2, |γ| > max{|b|, 1}, for all n ∈ N, s ∈ X V s
n = T V|γ|−n (`sn(t))

where `sn : I → I is a continuous function.

Proof. We use induct on n. For the purposes of our induction, as we must call on V s
n−1,

we let V s
−1 = S = T V|γ|(0), which fulfills that φ(V s

0 ) ⊂ V s
−1 and that V s

−1 is a tube of width
1
|γ|−1 = |γ| as needed. Along with that we have that V s

0 = As0 = T V|γ|0(`
s0
0 ), which establishes

a basis.
For the inductive step, we assume for all m ≤ n ≥ 0, s ∈ X that V s

m = T V|γ|−m(`sm). Though
there may be many choices for `sm, we assume it is a fixed continuous function once named.
By Lemma 4.11, we have that V s

m = T V|γ|−m(`sm) ⊂ T V
|γ|−(m−1)(`

s
m−1) = V s

m−1. Thus, for all
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t ∈ I, |`sm(t)− `sm−1(t)| ≤ |γ|
−(m−1) = p−(m−1)v where v = −vp(γ). We can then write

`sm(t) =
m∑
k=0

p(k−1)vψsm(t)

where ψsk : I → Zp is a continuous function defined by

ψsk(t) =
`sk(t)− `sk−1(t)

p(m−1)v

Fixing s, we wish to find `sn+1 : I → I such that V s
n+1 = T V

|γ|−(n+1)(`
s
n+1) (and

as a consequence, is nonempty). By Lemma 4.11, we have that φ(`sn(t), t) = (a +

bt − `sn(t)2, `sn(t)) ∈ V
σ(s)
n−1 = T V

|γ|−(n−1)(`
σ(s)
n−1) for all t ∈ I–in particular we have that

|`σ(s)n−1 (`sn(t))− (a+ bt− `sn(t)2)| ≤ |γ|−(n−1) = p−(n−1)v. We let rsn(t) : I → Zp be defined as

rsn(t) =
`
σ(s)
n−1 (`sn(t))− (a+ bt− `sn(t)2)

p(n−1)v

so now φ(`sn(t), t) =
(
`
σ(s)
n−1(t) + p(n−1)vrsn(t), `sn(t)

)
.

We claim that

h(t) =
−ψσ(s)n (`sn(t)) + rsn(t)

2pv`sn(t)

fulfills our desired conditions for ψsn+1, that is V s
n+1 = T V

|γ|−(n+1)(`
s
n(t) + pnvh(t)) = T ∗. We

have by construction that ψσ(s)n and rsn have image in Zp, and by corollary 4.12 |2pv`sn(t)| = 1,
so we have that Im(h) ⊆ Zp as desired.

To show that T ∗ ⊂ V s
n+1, we need only show that φ ({(`sn(t) + pnvh(t), t) | t ∈ I}) ⊂ V

σ(s)
n ,

as lemma 4.16 gives us that (x, y) ∈ V s
n+1 implies B|γ|−(n+1)(x, y) ⊆ V s

n+1. We let t0 ∈ I be
arbitrary, and let α0 = (x0, y0) = (`sn(t0) + pnvh(t0), t0). We let φk(α0) = αk = (xk, yk) and
write

α1 =
(
a+ bt0 − (`sn(t0) + pnvh(t0))

2, `sn(t0) + pnvh(t0)
)

=
(
(a+ bt0 − `sn(t0)

2)− 2pnv`sn(t0)h(t0)− p2nvh(t0)
2, `sn(t0) + pnvh(t0)

)
=
(
`
σ(s)
n−1(`

s
n(t0)) + p(n−1)vrsn(t0)− 2pnv`sn(t0)h(t0)− p2nvh(t0)

2, `sn(t0) + pnvh(t0)
)

From our form for h, we note 2pnv`sn(t0)h(t0) = p(n−1)v
(
−ψσ(s)n (`sn(t0)) + rsn(t0)

)
. As the

rsn terms cancel and `σ(s)n−1 + ψ
σ(s)
n = `

σ(s)
n , we now have

α1 =
(
`σ(s)n (`sn(t0)) + p2nvh(t0)

2, `sn(t0) + pnvh(t0)
)
.

By lemma 4.17, we need only that |x1 − `σ(s)n (`sn(t0))| ≤ |γ|n, as |`sn(t0) − y1| ≤ |γ|−n <
|γ|−(n−1)|b|−1 = dn since |b| < |γ| by assumption. This condition clearly holds however, as
|
(
`
σ(s)
n (`sn(t0)) + p2nvh(t0)

2
)
−`σ(s)n (`sn(t0))| = |p2nvh(t0)

2| ≤ p−2nv < |γ|n. Thus, φ(α) ∈ V σ(s)
n

and α ∈ V s
n ⊂ As0 by assumption, so we have that α ∈ φ−1(V σ(s)

n ) ∩ As0 = V s
n+1 as desired.
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To show T ∗ ⊃ V s
n+1, we recall that V s

n+1 ⊂ V s
n by Lemma 4.11 and consider an arbitrary

element β ∈ V s
n \ T ∗. We seek to show that φ(β) 6∈ V

σ(s)
n . We keep that α0 = (x0, y0) =

(`sn(t0) + pnvh(t0), t0) and use the form β = (`sn(t0) + pnvh(t0) + η, t0) where p−nv ≥ |η| >
p(n+1)v. We then write

φ(β) =
(
(a+ bt0 − (`sn(t0) + pnvh(t0))

2)− 2η(`sn(t0) + pnvh(t0))− η2, `sn(t0) + pnvh(t0) + η
)

=
(
`σ(s)n (`sn(t0)) + p2nvh(t0)

2 − 2η(`sn(t0) + pnvh(t0))− η2, `sn(t0) + pnvh(t0) + η
)

= φ(α0) +
(
−2η(`sn(t0) + pnvh(t0))− η2, η

)
= φ(α0) + (θ, η)

As |η| ≤ p−nv < dn, we have by Corollary 4.14 and inductive hypothesis that φ(β) ∈ V σ(s)
n

if and only if |θ| ≤ |γ|−n. However, as |`sn(t0) + pnvh(t0)| = |γ|, we have |−2η(`sn(t0) +
pnvh(t0))| = |γ||η| > |γ|−n, and as |γη| > |η|2, we have by a strongest wins argument that
|θ| > |γ|−n. Thus we have shown our function h is indeed a valid choice for ψsn+1, and T ∗ =
V s
n+1. As such, we can write `sn+1(t) = `sn(t) + pnvh(t) and have that V s

n+1 = T V
|γ|−(n+1)(`

s
n+1),

as desired. �

Corollary 4.19. V s is non-empty for all s, and in particular

V s = {`s(t), t | t ∈ I} = T V0 (`s)

where `s : I → I is defined pointwise by

`s(t) = lim
m→∞

`sm(t).

Furthermore, `s is Lipschitz continuous with Lipschitz constant |pb|.

Proof. We first show that limm→∞ `
s
m(t) exists for all s, t. By iterating corollary 4.11, we

see that {`sm(t)}m≥0 is Cauchy, as for all m ≥ n, each `sm(t) ∈ D|γ|−n(`sn(t)). Thus, {`sm}≥0
converges uniformly to a continuous function `s(t), with uniformity coming from each tube
V s
m being of constant width which decreases monotonically.
To see that `s is Lipschitz continuous with Lipschitz constant |pb|, we split into two cases.

If |y− y′| ≥ pd0 = | γ
pb
|, we then have that since the image of ` is in I, |`s(y)− `s(y′)| ≤ |γ| ≤

|pb||y − y′|. In the other case that |y − y′| ≤ d0, we let k be such that dk+1 < |y − y′| ≤ dk.
Since (`s(y), y) ∈ V s ⊂ V s

k , by lemma 4.14 we have that (`s(y′), y) ∈ V s
k , so |`s(y′)− `s(y)| ≤

ck = |b|dk+1 ≤ |pb||y − y′|, as desired. �

4.3. Extending our results to φ−1. We recall that by 2.1 f−1 ◦ φa,b ◦ f = φ−1a
b2
, 1
b

where

f(x, y) = (−by,−bx).

Notation 4.20. For the remainder of this subsection, we shall use the following conventions
a∗ = a

b2
, b∗ = 1

b
. If an object has a ∗ as a subscript or a superscript, it is to be interpreted

as with respect to a∗ and b∗.

Definition 4.21. We let g : I → I∗ be defined as g(t) = −t
b
.

Lemma 4.22. We let ρ∗ : I∗ → I∗ be a continuous function and let µ : I → I be defined as
µ = (ρ∗)g = g−1 ◦ ρ∗ ◦ g. Then

f
(
T Vp−k(ρ

∗(t))
)

= THp−k|b|(µ)
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Proof. We write T Vε (ρ∗) = {(ρ∗(u) + pkθ, u) | u ∈ I∗, θ ∈ Zp}. We apply f and perform the
following calculations:

f(T Vε (ρ∗)) = {f(ρ∗(u) + pkθ, u) | u ∈ I∗, θ ∈ Zp}}
= {(−bu,−bρ∗(u)− bpkθ) | u ∈ I∗, θ ∈ Zp}

We make substitutions −bu = t and −bp−vp(b)θ = η. We then have that

f(T Vε (ρ∗)) = {(t,−bρ∗(−t
b

) + pk+vp(b)η) | t ∈ I, η ∈ Zp}

= {(t, µ(t) + pk+vp(b)η) | t ∈ I, η ∈ Zp}
= THp−k|b|(µ)

�

Remark 4.1. While written for positive radius p−k for simplicity and clarity, Lemma 4.22 in
fact applies identically to describing f(T V0 (ρ∗))

Lemma 4.23. f(A∗∓) = B± = φ(A±)

Proof. We recall from 4.4 that A∗∓ = T V1 (`∗∓0 ) where `∗∓0 (t) = ∓
√
a∗ + b∗t. We then conjugate

`∗∓0 by g to yield

(`∗∓0 )g = ±b
√
a∗ + b∗(

−t
b

)

= ±b
√
a

b2
− t

b2

= ±
√
a− t = ω±0 (t)

By lemma 4.22, we can then conclude that f(A∗∓) = TH|b| (ω
±
0 (t)). Recalling proposition 4.5,

we now have that f(A∗∓) = B±. �

Definition 4.24. We let ·̃ : {+,−} → {+,−} be defined as ∓̃ = ±.
Corollary 4.25. Fixing s, we let w ∈ X be defined by wi = s̃−(i+1). We let ωsm : I → I be
defined as (`∗wm)g. For all m ∈ N, Hs

m = f(V ∗wm) = TH|bγ−m|(ω
s
m).

Proof. Equipped with the previous two lemmas, our work reduces to recalling definitions and
applying our newfound technical results. We write:

V ∗wm =
m⋂
k=0

(φ∗)−k(A∗wk)

=
m⋂
k=0

(f−1 ◦ φk ◦ f)(A∗wk)

Applying f to both sides and using lemma 4.23 to make substitution φ(Aw̃k) = f(A∗wk), we
now have

f(V ∗wm) =
m⋂
k=0

φk+1(Aw̃k)
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We now reindex by the substitution k 7→ j where j = −(k + 1).

f(V ∗wm) =
−1⋂

j=−(m+1)

φ−j(Aw̃−(j+1)
)

Finally we recall that by definition w̃−(j+1) = sj and yield

f(V ∗wm) =
−1⋂

j=−(m+1)

φ−j(Asj) = Hs
m

By lemma 4.22, we have that f(V ∗wm) = TH|bγ−m|(ω
s
m). We can thus conclude that Hs

m =

TH|bγ−m|(ω
s
m).

�

By extending our methods for corollary 4.25 (effectively replacing each m with an ∞ and
taking limits where appropriate), we arrive at a virtually identical result characterizing Hs.

Corollary 4.26. Hs = TH0 (ωs) where ωs = (`w∗ )g.

Corollary 4.27. ωs is Lipschitz continuous with Lipschitz constant |pb∗|

Proof. Recall from 4.19 that |`w∗ (t)− `w∗ (t′)| ≤ |pb∗||t− t′|, for t, t′ ∈ S∗. By lemma 2.11, as g
g−1 have reciprocal Lipschitz constants, we have that conjugation by linear maps preserves
Lipschitz constant, so ωs has Lipschitz constant |pb∗| = |p

b
| �

4.4. Proof of the Main Theorem.

Lemma 4.28. Each Hs
⋂
V s consists of precisely one point αs.

Proof. Recall the definitions of Hs and V s:

V s = {(`s(t), t) | t ∈ I} Hs = {(u, ωs(u)) | u ∈ I}

We then have that V s ∩ Hs = {(u, t) | u = `s(t); t = ωs(u)}. Consider the two-variable
system of equations u = `s(t); t = ωs(u). By making the appropriate substitutions, one sees
that (u0, t0) is a solution if and only if t0 = ωs(`s(t0)), u0 = `s(ωs(u0)). Let G1 : I → I be
the composition G = ωs ◦ `s, and H : I → I the composition H = `s ◦ωs. As corollaries 4.19
and 4.27 inform us, `s has Lipschitz constant |pb| and ωs has Lipschitz constant |p

b
|. By

lemma 2.3, G and H both have Lipschitz constant |p2| < 1, implying that both functions
are contractions of I. By the Banach fixed-point theorem, as I is a complete metric space,
we have that G and H have unique fixed points t0 and u0 respectively. Note as well that as
t0 = G(t0), we can write `s(t0) = `s(G(t0)) = `s(ωs(`s(t0))) = H(`s(t0)), implying that `s(t0)
is a fixed point of H. As u0 is the unique fixed point of H, we then have that `s(t0) = u0.
By an identical argument, we also have ωs(u0) = t0, thus establishing that (u0, t0) ∈ V s∩Hs

so Hs is nonempty. To confirm uniqueness, we assume (u′0, t
′
0) ∈ V s∩Hs. By the arguments

above, we must have that t′0 is a fixed point of G, and as t0 is the unique fixed point of
G, we have t′0 = t0, and as (u′0, t0) ∈ V s, we must have u′0 = `s(t0) = u0. We thus name
(u0, t0) = αs with our proof complete. �
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We have now finally established the last of the technical details necessary to finish off
our proof of Theorem 4.1 once and for all. To recall the statement of Theorem 4.1, we
seek to establish a topological conjugacy to the action of σ on X. Let the conjugacy map
Ψ : X → J(φ) be defined by Ψ(s) = αs, keeping our definition of αs from Lemma 4.28. That
Ψ is a bijection is an obvious consequence of Lemma 4.28, as each point in J(φ) must follow
some infinite forward and backward trajectory through the sets A+ and A− by proposition 4.4
To see that Ψ ◦ σ = φ ◦Ψ, write

φ(αs) = φ

(
∞⋂

k=−∞

φ−k(Ask)

)

=
∞⋂

k=−∞

φ−(k−1)(Ask)

=
∞⋂

k=−∞

φ−k(Ask+1
)

=
∞⋂

k=−∞

φ−k(Aσ(s)k) = ασ(s)

Finally, to see that Ψ is indeed bicontinuous, we recall a few facts from point-set topology:

(1) If A and B are both compact metric spaces and F : A→ B is bijective and continuous
in the forward direction, then F−1 is continuous as well and F is a homeomorphism
between A and B.

(2) In a metric space A, a sequence an converges to a limit L ∈ A if and only if every
subsequence ank has a further subsequence ankm converging to L.

(3) A function F : A→ B between metric spaces is continuous if and only if whenever a
sequence an converges to L ∈ A, F (an) converges to F (L) ∈ B.

(4) In a compact set, every sequence has a convergent subsequence.

As X is well-known to be compact and J(φ) is compact by Proposition 2.10, fact (1) implies
that just the one-directional continuity of Ψ is sufficient to prove bicontinuity. Let s be
arbitrary, {sn}n≥1 ⊂ X be a sequence converging to s. By fact (3) and the arbitrarity of
our choice of s, Ψ is continuous if and only if {Ψ(sn)}n≥1 ⊂ J(φ) converges to Ψ(s) = αs.
Consider an arbitrary subsequence {Ψ(snk)}k≥1. By fact (4), as J(φ) is compact, there
exists a further subsequence {Ψ(snkm}k≥1 converging to some L ∈ J(φ). However, as {snkm}
converges to s, we have that for any ε, there exists anM such that for allm > M , d(snkm , s) ≤
ε–in other words, for all N , there exists an M such that for all m > M , snkmi = si for all
0 ≤ i ≤ N . Thus, Ψ(snkm ) ∈ V s

N , so it follows that L ∈ V s. An identical argument can be
made to establish that L ∈ Hs. As αs is the unique element of the intersection V s ∩Hs, the
sequence {Ψ(snkm )}m≥1 converges to αs = Ψ(s), thus confirming continuity. At long last,
this concludes the proof of our main theorem.
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5. Region III: One-directional Reduction

5.1. General Results. We will now consider the region in the parameter space where |b| 6=
1, |a|1/2 ≤ max{|b|, 1}

Proposition 5.1. If |a|1/2 < max{|b|, 1}, then J(φ) 6= ∅. In particular, J(φ) contains both
fixed points.

Proof. First, suppose |a| < 1 and |b| < 1. Consider the function g(z) = z2− ((b−1)2 +4a) =

z2−b2+2b−1+4a. Then g(z) = z2−1. So g(1) = 0 and g′(1) = 2 6= 0, so by Hensel’s lemma
there exists r such that g(r) = 0. Therefore (b − 1)2 + 4a is a square in Qp, so there both
periodic points of φ exist. Now because φa∗,b∗ for |a∗|1/2 < |b∗| and |b∗| > 1 is topologically
conjugate to φ−1a,b where |a| < 1 and |b| < 1, that must mean that φa∗,b∗ admits fixed points
as well. �

Proposition 5.2. Suppose p 6= 3. If |a|1/2 < max{|b|, 1}, then φ has minimal period two
points if and only if p ≡ 1 mod 3.

Proof. Suppose |a| < 1 and |b| < 1. We know that φ has period two points if and only if
h(z) = z2− (−3(b+ 1)2 + 4a) has roots. However, by Hensel’s lemma h has roots if and only
if h(z) = z2 + 3 has roots in Z/pZ, which has roots if and only if −3 is a quadratic residue
mod p. But by quadratic reciprocity, −3 is a square in Qp if and only if p ≡ 1 mod 3. By
conjugation with h, we get the desired result for the case |a|1/2 < |b| and |b| > 1.

�

Proposition 5.3. Suppose |a|1/2 = max{1, |b|} and |b| 6= 1. Then φ has fixed points if and
only if 1 + 4ā is a quadratic residue mod p. φ has period two points if and only if −3 + 4ā
is a quadratic residue mod p.

Proof. The proof follows similarly to the previous two propositions. Suppose |b| < 1. By
Hensel’s lemma, φ has periodic points if and only if g(z) = z2 − (1 + 4a) has roots in Z/pZ,
and period two points if and only if the reduction of h(z) = z2 − (−3 + 4a) has roots in
Z/pZ.

�

Proposition 5.4. If |a| ≤ 1 and |b| < 1 then J(φ) ⊂ Z2
p, and Z2

p is also the smallest polydisc
that contains J(φ).

Proof. From our bounds on the filled Julia set, we know that in the case where |b| > 1

and |b| ≥ |a|1/2, then J(φ) ⊂ S = {(x, y) ∈ Qp : |x| ≤ |b|, and |y| ≤ |b|}. However,
through conjugation with the map f(x, y) = (by, bx), we know that φa,b ∼ φ a

b2
, 1
b
, which

corresponds exactly to the case |a| ≤ 1, |b| < 1. Therefore, J(φ a
b2
, 1
b
) = f−1(J(φa,b)). So,

J(φ a
b2
, 1
b
) ⊂ f−1(S) = Z2

p. To prove that Z2
p is the smallest polydisc containing J(φ), suppose

Q is a polydisc such that J(φ) ⊂ Q. We know that φ admits two fixed points, namely

(
1−b+
√

(b−1)2+4a

−2 ,
1−b+
√

(b−1)2+4a

−2 ) and (
1−b−
√

(b−1)2+4a

−2 ,
1−b−
√

(b−1)2+4a

−2 ).The absolute value of the

difference of each of these co-ordinates is |(b− 1)2 + 4a|
1
2 = 1 by strongest wins. Because the
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absolute value of the difference of each co-ordinate of two points in the filled Julia set can
be 1, this must mean that Z2

p ⊂ Q. So because Q was arbitrary, that must mean that Z2
p is

the smallest polydisc containing J(φ).
�

Proposition 5.5. If |a|1/2 ≤ |b| and |b| > 1, then S = {(x, y) ∈ Qp : |x| ≤ |b|, and |y| ≤ |b|}
is the smallest polydisc that contains J(φ) in this region.

Proof. Because Z2
p is the smallest polydisc for the case |a| ≤ 1 and |b| < 1, then by conjugacy

f(Z2
p) = S must be the smallest polydisc in the case |a|1/2 ≤ |b| and |b| > 1. �

Proposition 5.6. If |a| < 1 and |b| ≤ 1, then φn(Z2
p) ⊂ Z2

p, for n ≥ 1. In addition,
φ(Z2

p) ∩ Z2
p = {(x, y) ∈ Q2

p : |−a + x + y2| ≤ |b|}. Similarly, if |a|1/2 ≤ |b| and |b| > 1, then
φ−n(S) ⊂ S for n ≥ 1, and φ−1(S) ∩ S = {(x, y) ∈ Q2

p : |a+ by + x2| ≤ |b|}.

Proof. Suppose |a| < 1 and |b| ≤ 1. Suppose (x, y) ∈ Z2
p. Then ‖φ(x, y)‖ = max{|a + by −

x2|, |x|} ≤ 1. Iterating the argument, we have ‖φn(x, y)‖ ≤ 1, so φn(Z2
p) ⊆ Z2

p However,
since φ does not have good reduction, then φ(Z2

p) ⊂ Z2
p. Therefore, φn(Z2

p) ( Z2
p.

Suppose (x, y) ∈ Z2
p and φ−1(x, y) ∈ Z2

p. Then (x, y) ∈ φ(Z2
p) ∩ Z2

p, so ‖(x, y)‖ ≤ 1 and
‖φ−1(x, y)‖ = ‖(y, −a+x+y2

b
)‖ ≤ 1. Therefore, |−a+ x+ y2| ≤ |b|. The proof for part two of

the proposition works identically.
�

Proposition 5.7. If |a|, |b| < 0, then φ admits an attracting fixed point α = (α, α) with
basin of attraction (pZp)2.

Proof. To show that φ admits a fixed point α ∈ (pZp)2, we recall 2.12, which stated that the

formula for fixed points of φ can be written as (q, q), where q = b−1
2
±
√

(b−1)2+4a

2
, and note

that by 5.1, the term under the square root is indeed a square in Qp. We note that

q =

(
b− 1

2
±
√

(b− 1)2 + 4a

2

)
=

1

2
± 1

2
.

We let α = (α, α) be such a fixed point.
We let x, y ∈ (pZp)2 be written (x, y) = (α + θ, α + η) with θ, η ∈ pZp. A straightforward
calculation shows that

φ2(x, y)− α =
(
−2α(bη − 2αθ − θ2)− (bη − 2αθ − θ2)2 + bθ, bη − 2αθ − θ2

)
Recalling that |α|, |b|, |θ|, |η| < 1 by assumption, inspection reveals that for any monomial
term w on either side of the polynomial in θ, η above that |w| < max{|θ|, |η|}, as one or
both of θ, η is a factor of each term, with each coefficient having absolute value below 1.
By the ultrametric inequality, we conclude that ‖φ2(x, y) − α‖ < ‖(x, y) − α‖, proving the
proposition. �
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5.2. The Attractor. We assume without loss of generality that |b| < 1, |a| ≤ |b2|, as the
remainder of region III conjugates to that case via Lemma 2.1.

Notation 5.8. When relevant, we let Zp/pkZp refer to the ring of integers modulo pk. We
let ik : Zp/pkZp ↪→ Zp be defined such that ik(z) is the unique integer such that ik(z) ≡ z
mod pkZp and 0 ≤ ik(z) < pk. We let ·k : Zp → Z/pkZ be the reduction map modulo pk. As
it does not induce any ambiguity, we refer to the counterparts for multiple dimensions the
same way.

Proposition 5.9. As defined in Milnor’s article [9], φ admits a trapped attracting set A ⊂
Z2
p, which here does not imply any notion of indecomposability. Furthermore, J(φ) = A

Proof. We have by Proposition 2.5 that J(φ) ⊂ Z2
p and as φ−1(Z2

p) 6⊆ Z2
p, we have that φ(Z2

p)

is a proper subset of Z2
p. By [9], as Z2

p is a compact set, we have that A =
⋂
k∈N φ

k(Zp)
is a non-empty φ-invariant set, and as A ⊂ B(0, 1) = Zp, we have that it is bounded and
therefore A ⊂ J(φ). Further, we have for all β ∈ Zp \ A, there exists mβ ∈ N such that
φmβ(β) ∈ Qp \ Zp, and thus β 6∈ J(φ), so J(φ) = A. �

Conjecture 5.10. For some (a, b) ∈ Zp×pZp ⊂ Region III, A admits a bounded nonperiodic
orbit.

Remark 5.1. While there is no small amount of discussion among dynamicists regarding the
proper definition of strange attractor in the Euclidean case (see for example Ruelle [13]), at
present there seems to be very little written about strange attractors in the p-adic or more
general non-Archimedean context. In light of that, we shall tentatively call any attractor
that admits a bounded nonperiodic orbit "strange." In the absence of more concrete results
regarding our attracting set for the time being, we will not worry ourselves too much
regarding decomposability and may in fact slightly abuse terminology by referring to an
attracting set as an attractor when it in fact may be decomposable–such ambiguities can
hopefully be cleared up through further investigation.

To discuss our attracting set, we introduce a notion of Khrennikov and Anashin [1]. While
their work on the subject deals with functions on Qp, we shall find that it adapts quite readily
to the two-variable case.

Definition 5.11 (Anashin & Khrennikov). A set of k balls of radius ε = 1/pm in Q2
p

{Bε(α1), Bε(α2), . . . , Bε(αk)}
is called a fuzzy cycle of order m and length k if φ(Bε(αi)) ⊆ Bε(αi+1 mod k). We refer to the
balls Bε(β) where φn(Bε(β)) ⊂ Bε(αi) but β 6= αi for all i ≤ k as fuzzily pre-periodic to the
fuzzy cycle in question.

Remark 5.2. In order to understand the relevance of definition 5.11, we recall a fact from
ring theory

Fact 5.12. Consider a polynomial ψ ∈ R[x] where R is a ring with ideal I. Let ·∗ : R →
R/I be the natural reduction map and φ∗ : R/I → R/I be the polynomial obtained by
applying ·∗ to the coefficients of φ. Then for all z ∈ R, φ∗(z∗) = (φ(z))∗.
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From this, we have that α ≡ β mod pkZp implies φ(α) ≡ φ(β) mod pkZp–equivalently,
for all β ∈ Bp−k(α), φ(β) ∈ Bp−k(φ(α)). Thus, any cycle of φk corresponds to a fuzzy cycle
of order k of φ.

Corollary 5.13.
A = {α ∈ Zp | αk ∈ Per(φk) ∀ k ∈ N},

that is A consists of the points that project to φk-periodic points by each reduction map ·k.

Proof. We letMk be the length of the longest preperiodic "tail" of any φk-orbit in
(
Zp/pkZp

)2,
that is

Mk = min
{
m ∈ N | φmk (ζ) ∈ Per(φk) ∀ ζ ∈

(
Zp/pkZp

)2}
.

As all orbits of a finite dynamical system are either periodic or strictly pre-periodic, we can
be assured that such a minimum exists. We then have that

A ⊂
Mk⋂
k=0

φk(Z2
p) ⊂

⊔
ζ∈Per(φk)

Bp−k (ik(ζ)) .

This establishes that A ⊆ {α ∈ Zp | αk ∈ Per(φk) ∀ k ∈ N}. Furthermore, for all ζ ∈
Per(φk), we have that φM(Z2

p)∩Bp−k (ik(ζ)) 6= ∅, as there always exists some β ∈
(
Zp/pkZp

)2
such that φMk (β) = ζ. Thus, for any α ∈ {α ∈ Zp | αk ∈ Per(φk) ∀ k ∈ N}, we have that
Bk(α) = Bp−k(α) ∩ A 6= ∅. As such, we have a family of nested nonempty subsets of Z2

p,
{Bk(α) | k ∈ N}. By the Cantor intersection theorem, as Z2

p is a compact metric space, we
can write ⋂

k≥0

Bk(α) 6= ∅

However, we note that
⋂
k≥0 Bk(α) ⊂

⋂
k≥0Bp−k(α) = {α}. Thus α ∈ A, so we have that

A ⊇ {α ∈ Zp | αk ∈ Per(φk) ∀ k ∈ N}. This establishes a two-way containment and thus
the result. �

We finish this section by introducing two sequences of statistics, further results regarding
which may lead to a better understanding of the p-adic Hénon attractor.

Definition 5.14. Let Gm(a, b) = Gm be the directed graph with vertex set V = (Zp/pmZp)2
and edge set

E = {(α, β) ∈ (Zp/pmZp)2 × (Zp/pmZp)2 | φm(α) = β}
Let Cm(a, b) = #{connected components of Gm}. Let C(a, b) = C be the sequence
{Cm(a, b)}m≥1.

Proposition 5.15. If the monotone increasing sequence C(a, b) converges to some κ(a, b) ∈
N, then A can be decomposed into κ(a, b) indecomposable attractors

Proof. To see that C is non-decreasing, one must only note that the directed graph Gm can
be acquired from Gm+1 via taking the quotient graph obtained from partitioning V into
equivalence classes by residue class mod Zp/pmZp–this process obviously cannot result in
a new connected component arising when moving from Gm+1 to Gm.
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As follows from our proof of corollary 5.13, for all β ∈ (Zp/pmZp)2 such that β is
preperiodic to a length-k cycle O = {α1, . . . , αk} ⊂ (Zp/pmZp)2, the ball Bp−m(im(β)) is
eventually mapped to some Bp−m(αi). If the preimage of O and its preperiodic tails under
the quotienting process described above is contained within one connected component of
Gn for all n > m, because all connected components of Gn are the union of a cycle and
its preperiodic tails, we can conclude that the union of the balls "fuzzily-preperiodic" to
the fuzzy cycle corresponding to O or contained within it form a basin of attraction to an
indecomposable attractor. If C is indeed convergent to κ, there then exists some N ∈ N such
that Cn = κ for all n > N , so each of the κ connected components of Gn correspond to one
indecomposable attractor. �

Definition 5.16. Let Pm
+ (a, b) = {max{k | Per∗k(φm) 6= ∅}}m≥1, that is the length of the

longest cycle of (Zp/pmZp)2 under the action of φm. Define the sequence P+(a, b) = P+ as
P+ = {Pm

+ (a, b)}m≥1 is taken as a sequence. As established by our previous remarks, the
mth entry of P+ is the maximum length of fuzzy cycles of order m admitted by φ.

Proposition 5.17. If the monotone increasing sequence P+ is bounded, then A is a collection
of attracting cycles. If P+ is unbounded, then A admits a bounded nonperiodic orbit.

Proof. P+ is monotone increasing by a similar argument to that used to establish that C is
monotone increasing. Suppose P+ is unbounded. We present an algorithm to find a point
β ∈ Z2

p such that the orbit of β orbit is bounded and nonperiodic. We determine β through
its canonical p-adic representation digit-by-digit. We suppose that β is chosen mod pk−1Z2

p

such that there are fuzzy cycles of unbounded length components of which project by the
reduction map ·k−1 to β. To establish a basis, we note that our process works for the k = 1
case in precisely the same way as for the k > 1 case.
As the length of fuzzy cycles of arbitrary order m is unbounded, we have by the pigeonhole
principle that for at least one residue class ζk of

(
Zp/pkZp

)2, fuzzy cycles of unbounded
length contain balls that project to ζk under ·m. We choose the νk ∈

(
Zp/pkZp

)2 fulfuilling
that property of maximal minimal period under φk and let β ≡ νk mod pkZ2

p. Repeating
this process for infinitely many k, we construct a β such that βk has unbounded minimal
period under φk as k increases. Thus, β ∈ A by corollary 5.13, but for all m ∈ N, β cannot
be periodic with length at most m, as there exists some k such that βk is periodic under φk
with minimal period exceeding m. Thus β fulfills our desired conditions.

On the other hand, if P is bounded, it is necessarily eventually constant. In that case,
for any point in α ∈ A, there exists integers k,N such that for all n > N , αn has minimal
period k–thus, α is of period k. �

We end this section by remarking on the plausibility of our conjecture. In particular,
points exactly like β from the proof of the final proposition necessarily exist in the case of
good reduction (Region I), as in that case, all points of Z2

p are periodic under every reduction
map, but only countably many are periodic. More study is required to settle Conjecture 5.10
as well as to answer the question raised by Proposition 5.15–it would most certainly be a
surprising result if it is indeed the case that for some choice of a, b, A cannot be broken into
a collection of indecomposable attractors.
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