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ABSTRACT. Many formulas and inequalities which hold for polygons in Euclidean geometry have
analogous non-Euclidean versions that hold in spherical and hyperbolic geometry. In this paper
we prove a unified strengthening of the well-known Euler’s inequality which holds for triangles
in Euclidean, spherical, and hyperbolic geometry. We also prove a generalization of Svrtan and
Veljan’s strengthening of Euler’s inequality [4] into spherical geometry, examine a symmetrized
version of that inequality in Euclidean and spherical geometry, and show that neither strengthening
can be extended into hyperbolic geometry.

1. INTRODUCTION

Euler’s inequality states that, for a triangle in Euclidean geometry with circumradius R and
inradius r,

R≥ 2r,
with equality only in the case of an equilateral triangle. Svrtan and Veljan showed analogous
versions of this well-known inequality in non-Euclidean geometries of constant curvature, namely,

tanR≥ 2tanr

in spherical geometry, and
tanhR≥ 2tanhr

in hyperbolic geometry [4]. They also provided a strengthened version of Euler’s inequality for
Euclidean geometry in the form of the following theorem:

Theorem 1.1 ( [3], [5]).
R
r
≥ abc+a3 +b3 + c3

2abc
(1a)

≥ a
b
+

b
c
+

c
a
−1(1b)

≥ 2
3

(
a
b
+

b
c
+

c
a

)
(1c)

≥ 2(1d)
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In this paper, we examine how the spherical and hyperbolic versions of Euler’s inequality can be
strengthened in the same sense as this Euclidean strengthening. We begin in Section 2 with unified
results that hold in all three of these geometries. In Section 3 we extend Theorem 1.1 to a directly
analogous theorem in spherical geometry, and show that the same cannot be done in hyperbolic
geometry. Finally, in Section 4 we discuss an alternative strengthening of Euler’s inequality in
Euclidean geometry, and its analogues in spherical and hyperbolic geometry.

2. UNIFIED RESULTS

In this section, we prove results that unify the three geometries, culminating in Theorem 2.7,
which provides an inequality that holds in each geometry. Throughout, we define a function s as
used by Guo and Sönmez [1]

s(x) =



x
2

in Euclidean geometry

sinh
x
2

in hyperbolic geometry

sin
x
2

in spherical geometry

Our first result will be a lemma, modeled after the central result of [1], which will allow us to
easily show spherical and hyperbolic analogues of inequalities in Euclidean geometry which take
a specific form.

Lemma 2.1. Let f (x,y,z) ≥ 0 be an inequality which holds for all Euclidean triangles with side
lengths x,y,z. Then f (s(a),s(b),s(c))≥ 0, with s as defined above, for all spherical and hyperbolic
triangles with side lengths a,b,c, .

Proof. We begin with the hyperbolic case. Consider a hyperbolic triangle with sidelengths a,b,c
and vertices A,B,C in the Poincaré disk model of the hyperbolic plane. Without loss of generality,
we may assume that the triangle is positioned so that its circumcenter is located at the origin. When
we consider the unit disk as a subset of the Euclidean plane, we may consider the Euclidean triangle
T1 with vertices A,B,C. This triangle will have side lengths (1−R2)sinh a

2 ,(1−R2)sinh b
2 , and

(1−R2)sinh c
2 , where R is the Euclidean radius of the circumcircle of T1. By similarity, this implies

the existence of a Euclidean triangle T2 with side lengths sinh a
2 ,sinh b

2 ,sinh c
2 . Since the inequality

f (x,y,z)≥ 0 holds for all Euclidean triangles, we may apply it to T2 to get f (sinh a
2 ,sinh b

2 ,sinh c
2)≥

0.
We now prove the spherical case. Consider a spherical triangle with side lengths a,b,c and

vertices A,B,C. As in the hyperbolic case, we consider the Euclidean triangle T1 with vertices
A,B,C. The Euclidean distance between B and C will be 2sin a

2 , since the leg of the Euclidean
triangle will be a chord of the great circular arc of length a. The other two side lengths can be found
in the same fashion. So T1 is a Euclidean triangle with side lengths 2sin a

2 ,2sin b
2 and 2sin c

2 . This
implies that there is another Euclidean triangle T2 similar to T1 with side lengths sin a

2 ,sin b
2 ,sin c

2 .
Since the inequality f (x,y,z) ≥ 0 holds for any Euclidean triangle, we may apply it to T2 to get
f (sin a

2 ,sin b
2 ,sin c

2)≥ 0, as required.
�
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Next we prove a lemma which relates in a unified manner two quantities which appear frequently
in inequalities relating circumradius and inradius. This lemma will be instrumental in the proof of
Theorem 2.7.

Lemma 2.2. For a triangle in Euclidean, spherical, or hyperbolic geometry, with side-lengths
a,b,c, let

B̄ : = (s(a)+ s(b)− s(c))(s(a)+ s(c)− s(b))(s(b)+ s(c)− s(a))

B : = s(a+b− c)s(a+ c−b)s(b+ c−a)

Then

B− B̄


= 0 in Euclidean geometry
≥ 0 in hyperbolic geometry
≤ 0 in spherical geometry

Proof. In Euclidean geometry,

B− B̄ =

(
a+b− c

2

)(
a+ c−b

2

)(
b+ c−a

2

)
−
(

a
2
+

b
2
− c

2

)(
a
2
+

c
2
− b

2

)(
b
2
+

c
2
− a

2

)
=

1
8
(a+b− c)(a+ c−b)(b+ c−a)− 1

8
(a+b− c)(a+ c−b)(b+ c−a)

= 0.

To show that B≥ B̄ in hyperbolic geometry, we assume, without loss of generality, that a≥ b≥ c.
Then it is sufficient to verify the following two propositions:

Proposition 2.3. sinh b+c−a
2 ≥ sinh b

2 + sinh c
2 − sinh a

2

Proof. Since 2a−b−c≥ b−c, and cosh is even function which increases on positive real numbers,

cosh
b+ c−2a

4
= cosh

2a−b− c
4

≥ cosh
b− c

4
,

and therefore

sinh
b+ c−a

2
+ sinh

a
2
= 2sinh

b+ c
4

cosh
b+ c−2a

4
≥ 2sinh

b+ c
4

cosh
b− c

4
= sinh

b
2
+ sinh

c
2

�

Proposition 2.4. sinh a+b−c
2 sinh a+c−b

2 ≥
(
sinh a

2 + sinh b
2 − sinh c

2

)(
sinh a

2 + sinh c
2 − sinh b

2

)
Proof.

sinh
a+b− c

2
sinh

a+ c−b
2

≥
(

sinh
a
2
+ sinh

b
2
− sinh

c
2

)(
sinh

a
2
+ sinh

c
2
− sinh

b
2

)
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if and only if

0≤sinh
a+b− c

2
sinh

a+ c−b
2

− (sinh
a
2
+ sinh

b
2
− sinh

c
2
)(sinh

a
2
+ sinh

c
2
− sinh

b
2
)

=
1
4
(e

a+b−c
2 − e

c−a−b
2 )(e

a+c−b
2 − e

b−a−c
2 )− 1

4
(e

a
2 − e

−a
2 + e

b
2 − e

−b
2 − e

c
2 + e

−c
2 )

(e
a
2 − e

−a
2 + e

c
2 − e

−c
2 − e

b
2 + e

−b
2 )

=
1
4
(ea + e−a− eb−c− ec−b)− 1

4
(2+ ea + e−a− eb− e−b− ec− e−c +2(e

b+c
2 + e

−b−c
2 )−2(e

b−c
2 + e

c−b
2 ))

=
1
4
(eb + e−b + ec + e−c +2e

b−c
2 +2e

c−b
2 −2e

b+c
2 −2e

−b−c
2 − eb−c− ec−b−2)

=
1
4
(e

b
2 − e

−b
2 )(e

b
2 + e

2c−b
2 −2e

c
2 − e

b−2c
2 − e

−b
2 +2e

−c
2 )

=
1
2

sinh
b
2
(e

c
2 − e

−c
2 )(e

b−c
2 + e

c−b
2 −2)

=2sinh
b
2

sinh
c
2

(
cosh

(
b− c

2

)
−1
)

=4sinh
b
2

sinh
c
2

sinh2
(

b− c
4

)
�

Thus, in hyperbolic geometry,

B = sinh
a+b− c

2
sinh

a+ c−b
2

sinh
b+ c−a

2

≥ (sinh
a
2
+ sinh

b
2
− sinh

c
2
)(sinh

a
2
+ sinh

c
2
− sinh

b
2
)(sinh

b
2
+ sinh

c
2
− sinh

a
2
)

= B̄

To show that B≤ B̄ in spherical geometry, we assume, without loss of generality, that a≥ b≥ c.
Then it is sufficient to verify the following two propositions:

Proposition 2.5. sin b+c−a
2 ≤ sin b

2 + sin c
2 − sin a

2

Proof. Since 2a−b− c≥ b− c, and cos is a decreasing function on the interval [0,π],

cos
b+ c−2a

4
= cos

2a−b− c
4

≤ cos
b− c

4
,

and therefore

sin
b+ c−a

2
+ sin

a
2
= 2sin

b+ c
4

cos
b+ c−2a

4
≤ 2sin

b+ c
4

cos
b− c

4
= sin

b
2
+ sin

c
2
.

�

Proposition 2.6. sin a+b−c
2 sin a+c−b

2 ≤
(
sin a

2 + sin b
2 − sin c

2

)(
sin a

2 + sin c
2 − sin b

2

)
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Proof. This follows directly from the proof of (2.4), since

sinh ix = isinx,

so(
sin

a
2
+ sin

b
2
− sin

c
2

)(
sin

a
2
+ sin

c
2
− sin

b
2

)
− sin

a+b− c
2

sin
a+ c−b

2

= isin
a+b− c

2
isin

a+ c−b
2

−
(

isin
a
2
+ isin

b
2
− isin

c
2

)(
isin

a
2
+ isin

c
2
− isin

b
2

)
= sinh

i(a+b− c)
2

sinh
i(a+ c−b)

2
−
(

sinh
ia
2
+ sinh

ib
2
− sinh

ic
2

)(
sinh

ia
2
+ sinh

ic
2
− sinh

ib
2

)
= 4sinh

ib
2

sinh
ic
2

sinh2 i(b− c)
4

= 4sin
b
2

sin
c
2

sin2 b− c
4
≥ 0

�

Thus, in spherical geometry,

B = sin
a+b− c

2
sin

a+ c−b
2

sin
b+ c−a

2

≤ (sin
a
2
+ sin

b
2
− sin

c
2
)(sin

a
2
+ sin

c
2
− sin

b
2
)(sin

b
2
+ sin

c
2
− sin

a
2
)

= B̄

�

The equations for inradius and circumradius in Euclidean, hyperbolic, and spherical geometry
can be unified as follows: for a triangle with side-lengths a,b,c, circumradius R, and inradius r,

2s(a)s(b)s(c)√
s(a+b− c)s(a+ c−b)s(b+ c−a)s(a+b+ c)

=


R in Euclidean geometry
tanR in spherical geometry
tanhR in hyperbolic geometry

and √
s(a+b− c)s(a+ c−b)s(b+ c−a)

s(a+b+ c)
=


r in Euclidean geometry
tanr in spherical geometry
tanhr in hyperbolic geometry

The following is a theorem which provides a unified inequality dealing with the inradius and
circumradius of triangles in all three of these geometries.

Theorem 2.7. A triangle with side-lengths a,b,c has the following property in Euclidean geome-
try:

(2)
R
r
≥

2s(a+b
2 )s(a+c

2 )s(b+c
2 )

s(a)s(b)s(c)
≥ 2,
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while in hyperbolic geometry,

(3)
tanhR
tanhr

≥
2s(a+b

2 )s(a+c
2 )s(b+c

2 )

s(a)s(b)s(c)
≥ 2,

and in spherical geometry,

(4)
tanR
tanr

≥
2s(a+b

2 )s(a+c
2 )s(b+c

2 )

s(a)s(b)s(c)
≥ 2,

with equality if and only if a = b = c.

Proof. We begin with the right-most inequality of the Euclidean case.

2s(a+b
2 )s(a+c

2 )s(b+c
2 )

s(a)s(b)s(c)
=

2(a+b
4 )(a+c

4 )(b+c
4 )

abc
8

≥ 2

is equivalent to

1
8
(a+b)(b+ c)(a+ c)≥ abc

⇐⇒ ab2 +a2b+ac2 +a2c+bc2 +b2c+2abc≥ 8abc

⇐⇒ ab2 +a2b+ac2 +a2c+bc2 +b2c≥ 6abc.

This in turn follows from the inequality of arithmetic and geometric means, since

ab2 +bc2 + ca2

3
≥ 3√

a3b3c3 ⇐⇒ ab2 +bc2 + ca2 ≥ 3abc

and, similarly,

a2b+b2c+ c2a≥ 3abc.

The left inequality in expression (2) is equivalent to

2abc
(a+b− c)(a+ c−b)(b+ c−a)

≥ (a+b)(a+ c)(b+ c)
4abc

,

or

8a2b2c2 ≥ (a+b− c)(a+ c−b)(b+ c−a)(a+b)(a+ c)(b+ c).

Now, note that for any circle and any point external to that circle there are two lines tangent to
the circle which pass through the point, with the point equidistant from the two points of tangency
corresponding to those lines, so we have, for some x,y,z> 0, that a= y+z, b= x+z, and c= x+y,
as depicted in the following diagram:
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x y
c

y

z

a
z

x

b

B

C

A

Then the left inequality of (2) is equivalent to

8(x+ y)2(x+ z)2(y+ z)2−8xyz(2x+ y+ z)(x+2y+ z)(x+ y+2z)≥ 0,

or

(x+ y+ z)(x3y2 + x2y3−2x2y2z+ x3z2−2x2yz2−2xy2z2 + y3z2 + x2z3 + y2z3)≥ 0

Which is true, since

x3y2 + x2y3−2x2y2z+ x3z2−2x2yz2−2xy2z2 + y3z2 + x2z3 + y2z3

= x2(y+ z)(y− z)2 + y2(x+ z)(x− z)2 + z2(x+ y)(x− y)2

≥ 0

for all non-negative x,y,z.
In spherical geometry, the left inequality of (4) is equivalent to

2sin a
2 sin b

2 sin c
2

B
≥

2sin a+b
4 sin a+c

4 sin b+c
4

sin a
2 sin b

2 sin c
2

,

or

(sin
a
2

sin
b
2

sin
c
2
)2 ≥ Bsin

a+b
4

sin
a+ c

4
sin

b+ c
4

.

As discussed in [1], we have

sin2 R =
4(sin a

2 sin b
2 sin c

2)
2

B̄(sin a
2 + sin b

2 + sin c
2)

tan2 R =
4(sin a

2 sin b
2 sin c

2)
2

Bsin a+b+c
2
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so

Bsin
a+b+ c

2
+4(sin

a
2

sin
b
2

sin
c
2
)2 =

4(sin a
2 sin b

2 sin c
2)

2

tan2 R
+4(sin

a
2

sin
b
2

sin
c
2
)2

=
4(sin a

2 sin b
2 sin c

2)
2

sin2 R

= B̄(sin
a
2
+ sin

b
2
+ sin

c
2
),

since
1

sin2 R
=

1
tan2 R

+1.

Now, since B≤ B̄,

B
(

sin
a
2
+ sin

b
2
+ sin

c
2
− sin

a+b+ c
2

)
≤ 4(sin

a
2

sin
b
2

sin
c
2
)2,

and since

sin
a
2
+ sin

b
2
+ sin

c
2
− sin

a+b+ c
2

= 4
(

sin
a+b

4
sin

a+ c
4

sin
b+ c

4

)
this is precisely equivalent to the left inequality of (4).

The right inequality of (4) is equivalent to

sin
a+b

4
sin

a+ c
4

sin
b+ c

4
≥ sin

a
2

sin
b
2

sin
c
2
,

which is shown on page 636 of [2].
We now consider the hyperbolic case. As in the spherical case, the left-most inequality in (3) is

equivalent to
2sinh a

2 sinh b
2 sinh c

2
B

≥
2sinh a+b

4 sinh a+c
4 sinh b+c

4

sinh a
2 sinh b

2 sinh c
2

or
⇐⇒ (sinh

a
2

sinh
b
2

sinh
c
2
)2 ≥ Bsinh

a+b
4

sinh
a+ c

4
sinh

b+ c
4

We also have the following formulas, similar to those used in the spherical case:

sinh2 R =
4(sinh a

2 sinh b
2 sinh c

2)
2

B̄(sinh a
2 + sinh b

2 + sinh c
2)

tanh2 R =
4(sinh a

2 sinh b
2 sinh c

2)
2

Bsinh a+b+c
2

as discussed in [1]. Using the identity
1

sinh2 x
=

1
tanh2 x

−1,

we get

B̄
(

sinh
a
2
+ sinh

b
2
+ sinh

c
2

)
= Bsinh

a+b+ c
2

−4
(

sinh
a
2

sinh
b
2

sinh
c
2

)2

.
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Using the fact that B≥ B̄ and

sinh
a+b+ c

2
− sinh

a
2
− sinh

b
2
− sinh

c
2
= 4sinh

a+b
4

sinh
a+ c

4
sinh

b+ c
4

,

we are left with

Bsinh
a+b

4
sinh

a+ c
4

sinh
b+ c

4
≤
(

sinh
a
2

sinh
b
2

sinh
c
2

)2

which, as was shown above, is equivalent to the leftmost inequality of expression (3). �

3. ORIGINAL STRENGTHENING

3.1. Euclidean. We will here prove Theorem 1.1 for the reader’s convenience.

Proof. The proof of (1.1) will be divided into proofs of its four parts:

(1d) 2
3(

a
b +

b
c +

c
a)≥ 2:

(1d)⇐⇒ a
b +

b
c +

c
a ≥ 3. Now, by the inequality of arithmetic and geometric means,

1
3

(
a
b
+

b
c
+

c
a

)
≥ 3

√
a
b

b
c

c
a
= 1,

so
a
b
+

b
c
+

c
a
≥ 3

(1c) a
b +

b
c +

c
a −1≥ 2

3(
a
b +

b
c +

c
a):

This follows directly from the inequality proven above: 2
3(

a
b +

b
c +

c
a) ≥ 2 ⇐⇒ 1

3(
a
b +

b
c +

c
a)≥ 1 ⇐⇒ a

b +
b
c +

c
a −1≥ a

b +
b
c +

c
a −

1
3(

a
b +

b
c +

c
a) =

2
3(

a
b +

b
c +

c
a).

(1b) abc+a3+b3+c3

2abc ≥ a
b +

b
c +

c
a −1:

abc+a3 +b3 + c3

2abc
≥ a

b
+

b
c
+

c
a
−1 =

a2c+b2a+ c2b−abc
abc

,

or

abc+a3 +b3 + c3 ≥ 2(a2c+b2a+ c2b−abc)

if and only if

0≤ a3 +b3 + c3 +3abc−2a2c−2b2a−2c2b

= (a3 +ac2−2a2c)+(b3 +a2b−2ab2)+(c3 +b2c−2bc2)−ac2−a2b−b2c+3abc

= a(a− c)2 +b(b−a)2 + c(c−b)2 +ac(b− c)+ab(c−a)+bc(a−b).
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Without loss of generality, suppose a≥ b≥ c. Now

a(a− c)2 +b(b−a)2 + c(c−b)2 +ac(b− c)+ab(c−a)+bc(a−b)

≥ a(a− c)2 +ac(b− c)+ab(c−a)+bc(a−b)

≥ a(a− c)2 +bc(b− c)+ab(c−a)+bc(a−b)

= (a− c)(a2−ac+bc−ab)

= (a− c)2(a−b)
≥ 0

(1a) R
r ≥

abc+a3+b3+c3

2abc :
Recall that we have a = y+ z, b = x+ z, and c = x+ y for some x,y,z > 0. Now,

R
r
=

abc
4(a+b−c

2 )(a+c−b
2 )(b+c−a

2 )
=

2abc
(a+b− c)(a+ c−b)(b+ c−a)

,

so

R
r
≥ abc+a3 +b3 + c3

2abc

if and only if

(y+ z)2(x+ z)2(x+ y)2 ≥ 2xyz((y+ z)(x+ z)(x+ y)+(y+ z)3 +(x+ z)3 +(x+ y)3),

which is equivalent to

2(x2y2(x−z)(y−z)+y2z2(y−x)(z−x)+x2z2(x−y)(z−y))+x4(y−z)2+y4(x−z)2+z4(y−z)2≥ 0.

So it will suffice to show

x2y2(x− z)(y− z)+ y2z2(y− x)(z− x)+ x2z2(x− y)(z− y)≥ 0

Suppose, without loss of generality, that x≥ y≥ z. Then y2 ≥ z2 and (x− z)≥ (x− y), so

0≤ y2z2(y− x)(z− x)

= y2z2(y− x)(z− x)+ z2x2(y− z)(x− y)+ z2x2(z− y)(x− y)

≤ x2y2(x− z)(y− z)+ y2z2(y− x)(z− x)+ x2z2(x− y)(z− y)

�

3.2. Spherical. Theorem 1.1 has the following direct analogue in spherical geometry:
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Theorem 3.1. Let a,b, and c be the side-lengths of a spherical triangle with circumradius R and
inradius r. Then:

tanR
tanr

≥
sin a

2 sin b
2 sin c

2 + sin3 a
2 + sin3 b

2 + sin3 a
2

2sin a
2 sin b

2 sin c
2

(5a)

≥
sin a

2

sin b
2

+
sin b

2
sin c

2
+

sin c
2

sin a
2
−1(5b)

≥ 2
3

(
sin a

2

sin b
2

+
sin b

2
sin c

2
+

sin c
2

sin a
2

)
(5c)

≥ 2(5d)

Proof. (5b), (5c), and (5d) follow from (1b), (1c), and (1d), respectively, as an application of
Lemma 2.1, so it remains only to show (5a).

Now, note that

tanR =
2sin a

2 sin b
2 sin c

2√
sin a+b+c

2 sin a+b−c
2 sin a+c−b

2 sin b+c−a
2

tanr =

√
sin a+b−c

2 sin a+c−b
2 sin b+c−a

2

sin a+b+c
2

so
tanR
tanr

=
2sin a

2 sin b
2 sin c

2

sin a+b−c
2 sin a+c−b

2 sin b+c−a
2

=
2sin a

2 sin b
2 sin c

2
B

,

and since B≤ B̄, we have

tanR
tanr

≥
2sin a

2 sin b
2 sin c

2
B̄

≥
sin a

2 sin b
2 sin c

2 + sin3 a
2 + sin3 b

2 + sin3 a
2

2sin a
2 sin b

2 sin c
2

,

by Lemma 2.1. �

3.3. Hyperbolic. Although we have

sinh a
2 sinh b

2 sinh c
2 + sinh3 a

2 + sinh3 b
2 + sinh3 c

2

2sinh a
2 sinh b

2 sinh c
2

≥
sinh a

2

sinh b
2

+
sinh b

2
sinh c

2
+

sinh c
2

sinh a
2
−1

≥ 2
3

(
sinh a

2

sinh b
2

+
sinh b

2
sinh c

2
+

sinh c
2

sinh a
2

)
≥ 2

for triangles in hyperbolic geometry with side-lengths a,b,c, circumradius R, and inradius r as
an application of Lemma 2.1, there is no direct generalization of Theorem 1.1 into hyperbolic
geometry. Take, for example, a triangle in hyperbolic geometry with side-lengths a = b = 2 and
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c = 0.4. Then

0≥−0.00923

≈ tanhR
tanhr

− 2
3

(
sinh a

2

sinh b
2

+
sinh b

2
sinh c

2
+

sinh c
2

sinh a
2

)

≥ tanhR
tanhr

−

(
sinh a

2

sinh b
2

+
sinh b

2
sinh c

2
+

sinh c
2

sinh a
2
−1

)

≥ tanhR
tanhr

−
sinh a

2 sinh b
2 sinh c

2 + sinh3 a
2 + sinh3 b

2 + sinh3 c
2

2sinh a
2 sinh b

2 sinh c
2

.

In fact, for triangles in hyperbolic geometry, tanhR
tanhr is not comparable with the hyperbolic version

of any of the terms in Theorem 1.1, apart from that given by Euler’s inequality itself. To see this,
consider a triangle with edge-lengths a = b = 2 and c = 0.5. Then we have

0≤ 0.037107

≈ tanhR
tanhr

−
sinh a

2 sinh b
2 sinh c

2 + sinh3 a
2 + sinh3 b

2 + sinh3 c
2

2sinh a
2 sinh b

2 sinh c
2

≤ tanhR
tanhr

−

(
sinh a

2

sinh b
2

+
sinh b

2
sinh c

2
+

sinh c
2

sinh a
2
−1

)

≤ tanhR
tanhr

− 2
3

(
sinh a

2

sinh b
2

+
sinh b

2
sinh c

2
+

sinh c
2

sinh a
2

)

4. SYMMETRIC STRENGTHENING

4.1. Euclidean. We here suggest a new strengthening of Euler’s inequality in Euclidean geometry,
which includes the term from our unified strengthening.

Theorem 4.1. A Euclidean triangle with edge-lengths a,b,c, circumradius R, and inradius r has
the following property:

R
r
≥ abc+a3 +b3 + c3

2abc
(6a)

≥ 1
2

(
a
b
+

b
a
+

a
c
+

c
a
+

b
c
+

c
b

)
−1(6b)

≥ 1
3

(
a
b
+

b
a
+

a
c
+

c
a
+

b
c
+

c
b

)
(6c)

≥ (a+b)(a+ c)(b+ c)
4abc

(6d)

≥ 2(6e)
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Proof. (6a) is equivalent to (1a). (6b) follows from (1b), since

abc+a3 +b3 + c3

2abc
≥ a

b
+

b
c
+

c
a
−1

abc+a3 +b3 + c3

2abc
≥ b

a
+

a
c
+

c
b
−1

so
abc+a3 +b3 + c3

2abc
≥ 1

2

(
a
b
+

b
a
+

a
c
+

c
a
+

b
c
+

c
b
−2
)
.

Similarly, (6c) follows from (1c).
(6d) and (6e) are both equivalent to

a2b+b2a+a2c+ c2a+b2c+ c2b≥ 6abc

which is also equivalent to the right-most inequality of (2) as proven in Section 2. �

4.2. Spherical. We have the following theorem for triangles in spherical geometry:

Theorem 4.2. A triangle in spherical geometry with edge-lengths a,b,c, circumradius R, and
inradius r has the following property:

tanR
tanr

≥
sin a

2 sin b
2 sin c

2 + sin3 a
2 + sin3 b

2 + sin3 c
2

2sin a
2 sin b

2 sin c
2

(7a)

≥ 1
2

(
sin a

2

sin b
2

+
sin b

2
sin a

2
+

sin a
2

sin c
2
+

sin c
2

sin a
2
+

sin b
2

sin c
2
+

sin c
2

sin b
2

)
−1(7b)

≥ 1
3

(
sin a

2

sin b
2

+
sin b

2
sin a

2
+

sin a
2

sin c
2
+

sin c
2

sin a
2
+

sin b
2

sin c
2
+

sin c
2

sin b
2

)
(7c)

≥ 2(7d)

Proof. (7a) is equivalent to (5a). (7b) and (7c) follow from (6b) and (6c), respectively, as an
application of Lemma 2.1, while (7d) likewise follows from the combination of (6d) and (6e). �

We cannot, however, include an inequality analogous to (6d) in spherical geometry. Take, for
example, a triangle in spherical geometry with edge-lengths a = b = 3 and c = 1.5. Then,

0≤ 0.19775

≈
2sin a+b

4 sin a+c
4 sin b+c

4

sin a
2 sin b

2 sin c
2

−
sin a

2 sin b
2 sin c

2 + sin3 a
2 + sin3 b

2 + sin3 c
2

2sin a
2 sin b

2 sin c
2

≤
2sin a+b

4 sin a+c
4 sin b+c

4

sin a
2 sin b

2 sin c
2

−

(
1
2
(
sin a

2

sin b
2

+
sin b

2
sin a

2
+

sin a
2

sin c
2
+

sin c
2

sin a
2
+

sin b
2

sin c
2
+

sin c
2

sin b
2

)−1

)

≤
2sin a+b

4 sin a+c
4 sin b+c

4

sin a
2 sin b

2 sin c
2

− 1
3

(
sin a

2

sin b
2

+
sin b

2
sin a

2
+

sin a
2

sin c
2
+

sin c
2

sin a
2
+

sin b
2

sin c
2
+

sin c
2

sin b
2

)
.
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In fact, 2sin a+b
4 sin a+c

4 sin b+c
4

sin a
2 sin b

2 sin c
2

is not comparable with any of the quantities expressed in Theorem

4.2, except for those given in Theorem 2.7. To see this, consider a triangle with side-lengths
a = b = 0.75, c = 1, which has

0≤ 0.00418

≈ 1
3

(
sin a

2

sin b
2

+
sin b

2
sin a

2
+

sin a
2

sin c
2
+

sin c
2

sin a
2
+

sin b
2

sin c
2
+

sin c
2

sin b
2

)
−

2sin a+b
4 sin a+c

4 sin b+c
4

sin a
2 sin b

2 sin c
2

.

≤ 1
2

(
sin a

2

sin b
2

+
sin b

2
sin a

2
+

sin a
2

sin c
2
+

sin c
2

sin a
2
+

sin b
2

sin c
2
+

sin c
2

sin b
2

)
−1−

2sin a+b
4 sin a+c

4 sin b+c
4

sin a
2 sin b

2 sin c
2

≤
sin a

2 sin b
2 sin c

2 + sin3 a
2 + sin3 b

2 + sin3 c
2

2sin a
2 sin b

2 sin c
2

−
2sin a+b

4 sin a+c
4 sin b+c

4

sin a
2 sin b

2 sin c
2

.

4.3. Hyperbolic. Although we have

sinh a
2 sinh b

2 sinh c
2 + sinh3 a

2 + sinh3 b
2 + sinh3 c

2

2sinh a
2 sinh b

2 sinh c
2

≥ 1
2

(
sinh a

2

sinh b
2

+
sinh b

2
sinh a

2
+

sinh a
2

sinh c
2
+

sinh c
2

sinh a
2
+

sinh b
2

sinh c
2
+

sinh c
2

sinh b
2

)
−1

≥ 1
3

(
sinh a

2

sinh b
2

+
sinh b

2
sinh a

2
+

sinh a
2

sinh c
2
+

sinh c
2

sinh a
2
+

sinh b
2

sinh c
2
+

sinh c
2

sinh b
2

)
≥ 2

for triangles of edge-lengths a,b,c in hyperbolic geometry as an application of Lemma 2.1 to
Theorem 4.1, there is no theorem in hyperbolic geometry which is directly analogous to Theorem
4.1. To show this, consider a triangle with side-lengths a = b = 2.5 and c = 2, then we have

0≥−0.0457201

≈ tanhR
tanhr

− 1
3

(
sinh a

2

sinh b
2

+
sinh b

2
sinh a

2
+

sinh a
2

sinh c
2
+

sinh c
2

sinh a
2
+

sinh b
2

sinh c
2
+

sinh c
2

sinh b
2

)

≥ tanhR
tanhr

−

(
1
2
(
sinh a

2

sinh b
2

+
sinh b

2
sinh a

2
+

sinh a
2

sinh c
2
+

sinh c
2

sinh a
2
+

sinh b
2

sinh c
2
+

sinh c
2

sinh b
2

)−1

)

≥ tanhR
tanhr

−
sinh a

2 sinh b
2 sinh c

2 + sinh3 a
2 + sinh3 b

2 + sinh3 c
2

2sinh a
2 sinh b

2 sinh c
2

.

As we saw with the failure of Theorem 1.1 to generalize into hyperbolic geometry, tanhR
tanhr is not

in fact comparable with any of these quantities, since, for example, a triangle with edge-lengths
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a = b = 1, c = 1.5 has

0≤ 0.23557

≈ tanhR
tanhr

−
sinh a

2 sinh b
2 sinh c

2 + sinh3 a
2 + sinh3 b

2 + sinh3 c
2

2sinh a
2 sinh b

2 sinh c
2

≤ tanhR
tanhr

−

(
1
2
(
sinh a

2

sinh b
2

+
sinh b

2
sinh a

2
+

sinh a
2

sinh c
2
+

sinh c
2

sinh a
2
+

sinh b
2

sinh c
2
+

sinh c
2

sinh b
2

)−1

)

≤ tanhR
tanhr

− 1
3

(
sinh a

2

sinh b
2

+
sinh b

2
sinh a

2
+

sinh a
2

sinh c
2
+

sinh c
2

sinh a
2
+

sinh b
2

sinh c
2
+

sinh c
2

sinh b
2

)
.
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