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Abstract. Quantum modular forms, which are particular complex-valued functions with interesting “modular”-

like properties, have fascinated mathematicians since their discovery by Don Zagier in 2010. In 2016, Folsom,

Garthwaite, Kang, Swisher, and Treneer gave a catalog of explicit examples of quantum modular forms, in
this case arising from mock modular forms which have eta-theta function shadows. In this paper, we will in-

troduce a generalization of their functions, and show explicitly that this generalization is a quantum modular

form as well.

1. Background, Motivation, and Statement of Results

In 2016, Folsom, Garthwaite, Kang, Swisher, and Treneer [2] were able to construct mock modular forms
that unified all eta-theta functions, as classified by Lemke Oliver [5], whose shadows are given by eta-theta
functions with odd characters. By Zagier [7], a mock modular form is simply the holomorphic part of a
harmonic Maass form, a complex-valued function on the upper half-plane that can be uniquely decomposed
into a holomorphic part as well as a non-holomorphic part1. It is interesting to note that in [2] they were
able to show these mock modular forms are also quantum modular forms, which is a property not necessarily
all mock modular forms inherit. Simply put, after Zagier [7], a quantum modular form is an “extension”
of a modular form in the sense they are defined on a particular subset of the rationals, and in which they
have transformation properties similar to modular forms, with the exception of an an error term that is
required to be real analytic. Now, quantum modular forms are a recent phenomenon, so examples of such
constructions are a particular interest of study.

One of our primary motivations in studying the work of Folsom, et al., is to see if it is possible to construct
a generalization that at least constitutes a small class of quantum modular forms covered in [2], and use
this as a catalyst for further extensions. As [2] cataloged a list 59 quantum modular forms, we wanted to
find patterns that would enable us to find a class of quantum modular forms that would encompass these.
An important achievement is that our functions of interest contains a subclass of quantum modular forms
explored by the authors in [2], and is itself a quantum modular form. Throughout the paper, we use the

notation e(a) := e2πia and ζa := e
2πi
a .

Definition 1. For τ ∈ H and u, v ∈ C\(Zτ + Z),

(1.1) µ(u, v; τ) :=
eπiu

ϑ(v; τ)

∑
n∈Z

(−1)ne2πinvq
n(n+1)

2

1− e2πiuqn
,

where, for z ∈ C and τ ∈ H,

ϑ(z; τ) :=
∑

v∈Z+ 1
2

eπiv
2τ+2πiv(z+ 1

2 ).

This work was supported by the National Science Foundation Grant DMS-1359173.
1For more information on mock modular forms, see [3], and for more on harmonic Maass forms, see [6].

1



Definition 2. Let α = A
2C τ + a

b , A, a ∈ Z and C, b ∈ N such that 0 ≤ a ≤ b− 1 and gcd(A,C) = 1; then let

Vα(τ) := iζab q
− (2A−C)2

8C2 µ
(

2α,
τ

2
; τ
)
.

One point we ought to emphasize is that although this generalizes a subclass of functions of interest, we
are straying away from the study of eta-theta functions, a goal explored in [2].

Now, the subclass of functions of interest are when b = 4. In this paper, we were able to prove quantum
modularity for the above function in that case for appropriate subsets of the rationals, denoted as Sα, and
appropriate groups Gα, which will be defined in Section 3. In particular, we prove the following theorem.

Theorem 1. For α = A
2C τ + a

4 where a ∈ {0, 1, 2, 3}, gcd(A,C) = 1, 0 < A
C < 1, the functions Vα are

quantum modular forms on the sets Sα for the groups Gα. In particular, the following are true.

(1) For all τ ∈ H ∪ Sα, we have that

Vα(τ)− (2τ + 1)−1/2Vα(M2τ) =
−i
2

∫ i∞

1/2

gA/C,0(z)√
−i(z + τ)

dz,

when a = 1,3 and

Vα(τ)− 1

i
(2τ + 1)−1/2V (M2τ) =

1

2i
e

(
−A
2C

)∫ i∞

1/2

gA/C,1/2(z)√
−i(τ + z)

dz,

when a = 0,2.
(2) For all τ ∈ H ∪ Sα, we have that

Vα(τ)− ζ−18 (τ + 1)−1/2Vα(M1τ) =
−i
2
e

(
−A
2C

)∫ i∞

1

gA/C,1/2(z)√
−i(z + τ)

dz,

when a = 0,2.
(3) For all τ ∈ H, we have that

V (τ)− (−1)A+C
2 e

(
C

8

)
e

(
C(2A− C)2

8C2

)
V (τ + C) = 0,

for all even C, and

V (τ)− (−1)2A+Ce

(
C

4

)
e

(
C(2A− C)2

4C2

)
V (τ + 2C) = 0,

for all odd C.

Now, proving quantum modularity for arbitrary b ∈ Z has been shown to be an excessively difficult
task, and so investigation on this has been postponed for another time. In the next section, we will review
previous work of Zwegers [8], Kang [4], and Folsom et. al. [2] to provide necessary background and lemmas.
In Section 3, we define our quantum sets and groups. In Section 4, we show our transformations on Vα(Mτ)
where M ∈ Gα. In Section 5, we prove quantum modularity for our function Vα, and finally, in Section 6,
we discuss lingering questions and possible ways to extend our results.

2. Preliminaries

Here, we begin to define functions and present lemmas, propositions, and theorems that we will need to
prove Theorem 1. We begin by outlining the tools we need in order to compute our transformations and
converting our functions to integral form, and follow that by explaining the tools we used to determine our
quantum sets and quantum groups. We also need to define the h function, which occurs when we compute
the transformations on Vα(Mrτ).

Zwegers defines for u ∈ C and τ ∈ H the Mordell integral h by

(2.1) h(u) = h(u; τ) :=

∫
R

eπiτx
2−2πux

coshπx
dx.

The following lemma will be used in transforming µ in our Vα(Mrτ) back to the form of Vα(τ). This is
where we see the h function appear. We later transform these terms that appear into integrals.
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Lemma 1 (Zwegers, Prop. 1.4 and 1.5 of [8]). Let µ(u, v) := µ(u, v; τ) and h(u; τ) be defined as in (1.1)
and (2.1). Then we have

(1) µ(u+ 1, v) = −µ(u, v),
(2) µ(u, v + 1) = −µ(u, v),
(3) µ(−u,−v) = µ(u, v),

(4) µ(u+ z, v + z)− µ(u, v) = 1
2πi

ϑ′(0)ϑ(u+v+z)ϑ(z)
ϑ(u)ϑ(v)ϑ(u+z)ϑ(v+z) , for u, v, u+ z, v + z /∈ Zτ + Z,

and the modular transformation properties,

(5) µ(u, v; τ + 1) = e−
πi
4 µ(u, v; τ),

(6) 1√
−iτ e

πi(u−v)2/τµ
(
u
τ ,

v
τ ;− 1

τ

)
+ µ(u, v; τ) = 1

2ih(u− v; τ).

In some cases the h functions are not in the correct form to us one of our Theorems. Therefore, we
utilize the following proposition in order to shift them into the correct form before we can change them into
integrals.

Proposition 1 (Zwegers, Prop. 1.2 of [8]). The function h has the following properties:

(1) h(z) + h(z + 1) = 2√
−iτ e

πi(z+ 1
2 )

2
/τ

(2) h(z) + e2πiz−πiτh(z + τ) = 2e−πiz−πiτ/4

(3) z → h(z; τ) is the unique holomorphic function satisfying (1) and (2)
(4) h is an even function of z,

(5) h( zτ ;− 1
τ ) =

√
−iτe−πiz2/τh(z; τ)

(6) h(z; τ) = e
πi
4 h(z; τ + 1) + e

−πi
4

eπiz
2/(τ+1)
√
τ+1

h( z
τ+1 ; τ

τ+1 )

Later in our paper, this g function occurs and occasionally is not in the correct form. We needed to shift
it to match our desired result. We were able to use the following lemma to accomplish this.

Definition 3. Let a, b ∈ R and τ ∈ H; then

ga,b(τ) :=
∑
v∈a+Z

veπiv
2τ+2πivb.

Lemma 2 (Zwegers, Prop. 1.15 of [8]). The function ga,b satisfies the following:

(1) ga+1,b(τ) = ga,b(τ),
(2) ga,b+1(τ) = e2πiaga,b(τ),
(3) g−a,−b(τ) = −ga,b(τ),

(4) ga,b(τ + 1) = e−πia(a+1)ga,a+b+ 1
2
(τ),

(5) ga,b(− 1
τ ) = ie2πiab(−iτ)3/2gb,−a(τ).

Finally, we use the following theorem and lemma when we need to cahnge a certain function to a specific
integral form.

Theorem 2 (Zwegers, Thm. 1.16 of [8]). For τ ∈ H, we have the following two results.
When a ∈ (− 1

2 ,
1
2 ) and b ∈ R,

(2.2)

∫ i∞

−τ

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz = −e2πia(b+ 1

2 )q−
a2

2 R(aτ − b; τ).

Also, when a, b ∈ (− 1
2 ,

1
2 ),

(2.3)

∫ i∞

0

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz = −e2πia(b+ 1

2 )q−
a2

2 h(aτ − b; τ).

Lemma 3 (Lemma 2.8 of [2]). Let τ ∈ H.

i) For b ∈ R \ 1
2Z, ∫ i∞

−τ

g1,b+ 1
2
(z)√

−i(z + τ)
dz = −ie

(
−τ

8
+
b

2

)
R
(τ

2
− b; τ

)
+ i.
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ii) For b ∈ (− 1
2 ,

1
2 ) \ {0},∫ i∞

0

g1,b+ 1
2
(z)√

−i(z + τ)
dz = −ie

(
−τ

8
+
b

2

)
h
(τ

2
− b; τ

)
+ i.

iii) For a ∈ (− 1
2 ,

1
2 ) \ {0},∫ i∞

0

ga+1/2,1(z)√
−i(z + τ)

dz = −e
(
−a

2

2
τ + a

)
h

(
aτ − 1

2
; τ

)
+

e(a)√
−iτ

.

We also need to determine for which sets and groups our function is well defined. We used the following
theorem to determine the form of our function and decipher when it would vanish.

Theorem 3 (Kang [4] 2). If α ∈ C such that α 6∈ 1
2Zτ + 1

2Z, then

µ
(

2α,
τ

2
; τ
)

= iq
1
8 g2(e(α); q

1
2 )− e(−α)q

1
8

η(τ)4

η( τ2 )2ϑ(2α; τ)
,

where g2 is the universal mock theta function defined by

g2(z; q) :=

∞∑
n=0

(−q)nqn(n+1)/2

(z; q)n+1(z−1q; q)n+1
.

The following lemma aids us in determining when our function is well defined.

Lemma 4. Fix A
2C ,

a
b ∈ Q such that A

2C and a
b are not both in 1

2Z. Suppose S̃ ⊆ S ⊆ Q is a set of rationals

such that for all n ≥ 1 and all h
k ∈ S̃,

nh

k
± 2

(
Ah

2Ck
+
a

b

)
6∈ Z.

Then

µ

(
2

(
Ah

2Ck
+
a

b

)
,
h

2k
;
h

k

)
= ie

πih
4k g2(ζab e

2πi Ah2Ck ; e
πih
k ),

and has a well-defined value in C.

Recall Theorem 3. Lemma 4 states that when the conditions of Theorem 3 are satisfied, both the second
eta-quotient term arising from the Theorem vanishes, and the g2 sum terminates. The conditions in Lemma
4 arise from considering when the denominator in the second term from Theorem 3 is nonvanishing.

Proof. First, suppose α 6∈ 1
2Zτ+ 1

2Z. We observe that using the definitions of η(τ) and ϑ(2α; τ) (see equation
(17) in [2]) we can rewrite the eta-quotient as

η(τ)4

η( τ2 )2ϑ(2α; τ)
= ie2πiαq−

1
12

(q; q)4∞

(q
1
2 ; q

1
2 )2∞(q; q)∞(e4πiα; q)∞(e−4πiαq; q)∞

=
ie2πiαq−

1
12

(1− e4πiα)
· (q; q)∞(−q 1

2 ; q
1
2 )2∞

(e4πiαq; q)∞(e−4πiαq; q)∞
.

Now when we look at µ, this gives us,

µ
(

2α,
τ

2
; τ
)

= iq
1
8 g2(e(α); q

1
2 )− iq 1

24
1

(1− e4πiα)
· (q; q)∞(−q 1

2 ; q
1
2 )2∞

(e4πiαq; q)∞(e−4πiαq; q)∞
.

Now, we consider when τ = h
k ∈ Q, and α = Ah

2Ck + a
b , where A

2C , and a
b are both /∈ 1

2Z. We first consider

the second term and see that for any τ = h
k ∈ Q, the numerator will be zero. Therefore, the hypotheses

of the lemma tell us that (e4πiαq; q)∞(e−4πiαq; q)∞ 6= 0. The hypotheses of the lemma also tell us that
(1 − e4πiα) 6= 0. Therefore, the denominator of our η-quotient is not zero. Now, we need to show that the

term g2(e(α); q
1
2 ) terminates under the hypotheses of our lemma.

2The notation used here is slightly different than Kang’s, and is taken from Zwegers [8].
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Suppose there exists an integer j ≥ 1 such that

r =
jh

2k
±
(
Ah

2Ck
+
a

b

)
∈ Z.

Then, by simply multiplying through by 2, we see that

2r =
jh

k
±
(
Ah

Ck
+

2a

b

)
∈ Z,

which contradicts the hypotheses of the lemma. Therefore, we can conclude that no such integer exists, and
we must have that

(e4πiαq; q)∞(e−4πiαq; q)∞ 6= 0.

We can also conclude that (1− e4πiα) 6= 0, because (1− e4πiα) = 0 can only occur when 2α ∈ Z. However,
since we are assuming that for all n ≥ 1, nhk ±

(
Ah
Ck + 2a

b

)
6∈ Z, then when n = k, this is the also true, and so,

h± 2

(
Ah

2Ck
+
a

b

)
6∈ Z ⇐⇒ 2

(
Ah

2Ck
+
a

b

)
6∈ Z

and so we can conclude that α = Ah
2Ck + a

b 6∈ Z. Thus, we must have that g2(e(α); q
1
2 ) terminates, which

completes the proof of our lemma. �

3. Quantum Sets and Groups

Recall our function from Definition 2. In this section, we must specify b = 4. With that specified, we
have that

Vα(x) = ia+1q
−(C−2A)2

8C2 µ
(

2α,
τ

2
; τ
)

where α = A
2C τ + a

4 , gcd(A,C) = 1, and a ∈ {0, 1, 2, 3}. When considering quantum modularity, we want to
find quantum sets and quantum groups for this function. We use the definition for quantum sets from [2].
We call a subset S ⊆ Q a quantum set for a function F with respect to the group G ⊆ SL2(Z) if both F (x)
and F (Mx) exist (are non-singular) for all x ∈ S and M ∈ G.

So, the following theorem is regarding the quantum sets and quantum groups of Vα. First, we need to
define our sets and groups. Let

S =

{
h

k
∈ Q

∣∣∣∣h ∈ Z, k ∈ N, gcd(h, k) = 1, h ≡ 1 (mod 2)

}
,

SC1 =

{
h

k
∈ S

∣∣∣∣C - h
}
,

SC2 =

{
h

k
∈ S

∣∣∣∣C - 2h

}
,

Sev =

{
h

k
∈ SC1

∣∣∣∣ k ≡ 0 (mod 2)

}
.

We will now define our sets and groups.

Definition 4. Fix α = A
2C + a

4 . We define

(3.1) Sα =

{
SC1, if a = 0, 2

SC2 ∪ Sev, if a = 1, 3.
5



Definition 5. Fix α = A
2C + a

4 . We define

Gα =



〈(
1 0
1 1

)
,

(
1 C
0 1

)〉
, if a = 0, 2, and even C〈(

1 0
2 1

)
,

(
1 C
0 1

)〉
, if a = 1, 3, and even C〈(

1 0
1 1

)
,

(
1 2C
0 1

)〉
, if a = 0, 2, and odd C〈(

1 0
2 1

)
,

(
1 2C
0 1

)〉
, if a = 1, 3, and odd C.

Theorem 4. Let α = A
2Cx+ a

4 ; the set Sα is a quantum set for Vα, and the group Gα is a quantum group
for Vα. Moreover, for all x ∈ Sα and M ∈ Gα we have

Vα(x) = ia+1e

(
(C − 2A)2

8C2
x

)
µ
(

2α,
x

2
;x
)

and

Vα(Mx) = ia+1e

(
(C − 2A)2

8C2
Mx

)
µ

(
2α,

Mx

2
;Mx

)
are well-defined.

Proof. First consider the general case. By Lemma 4, we get that µ(2α, x2 ;x) is well defined for x ∈ Sα if
nh
k ±

Ah
Ck + 2a

4 is never an integer for all n ∈ N. Therefore, for any n ≥ 1, we want to avoid the existence of
an r ∈ Z such that

r =
nh

k
+
Ah

Ck
+
a

2
⇐⇒ Ck(2r − a) = 2h(Cn+A)

and

r =
nh

k
− Ah

Ck
− a

2
⇐⇒ Ck(2r + a) = 2h(Cn−A).

Consider a = 0. Suppose h
k ∈ SC1, and suppose for sake of contradiction that there exists an r ∈ Z such

that

2Ckr = 2h(Cn±A),

and so

Ckr = h(Cn±A).

There is a factor of C on the left-hand side. So, there must be a factor of C on the right-hand side.
Because gcd(A,C) = 1, we know that C does not divide (Cn ± A). By definition of SC1, C - h, so there is
no factor of C on the right-hand side. This is a contradiction. Therefore, no such integer can exist.

Consider a = 2. Suppose h
k ∈ SC1, and suppose for sake of contradiction that there exists an r ∈ Z such

that

Ck(2r ± 2) = 2h(Cn±A),

and so

Ck(r ± 1) = h(Cn±A).

The left-hand side has a factor of C. Therefore, the right-hand side must have a factor of C as well.
Because gcd(A,C) = 1, we know that (Cn±A) is not divisible by C. We also know that because h

k ∈ SC1,
C - h. Therefore, there are no factors of C on the right-hand side and this is a contradiction. Thus, no such
integer exist.
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Consider a = 1, 3. Suppose h
k ∈ SC2 ∪ Sev. Suppose for sake of contradiction there exists an r ∈ Z such

that

Ck(2r ± a) = 2h(Cn±A).

The left-hand side has a factor of C. Therefore, the right-hand side must also have a factor of C. Because
gcd(A,C) = 1, we know that (Cn±A) is not divisible by C. We also know that because h

k ∈ SC2 ∪Sev, hk ∈
SC2 or h

k ∈ Sev. If h
k ∈ SC2, then C - 2h, and there is no factor of C in the right-hand side. If h

k ∈ Sev, then
k is even, and cancels the factor of 2 on the right-hand side. In this case, we also know that C - h. So, there
is no factor of C in the right-hand side. Therefore, this is a contradiction and no such integer exists.

Next, consider Mr =

(
1 0
r 1

)
for r ∈ {1, 2}. Then,

Mr
h

k
=

(
1 0
r 1

)
h

k
=

h
k

r hk + 1
=

h

hr + k

First, we make a note that h and hr+k are relatively prime because it is given that h and k are relatively
prime. Next, suppose h

k ∈ SC1. Let r ∈ N. So, h is both odd and C - h. Therefore, if x ∈ SC1, Mrx ∈ SC1

as well.
Suppose h

k ∈ SC2 ∪ Sev. Let r ∈ 2N. We know that becuase h
k ∈ SC2 ∪ Sev, h

k must either be in SC2 or

Sev. If h
k ∈ SC2, h is odd and C - 2h. So, Mrx remains in the set. If h

k ∈ Sev, we must look at hr + k.
Because r is even and k is also even, hr + k is even. Therefore, if x ∈ SC2 ∪ Sev, then Mrx must remain in
SC2 ∪ Sev.

Now, consider Tr :=

(
1 r
0 1

)
.

Tr
h

k
=

(
1 r
0 1

)
h

k
=
h

k
+ r =

h+ rk

k

We first note that h+ rk and k are relatively prime, because h and k are relatively prime. Next, suppose
x ∈ SC1. Let r be an even multiple of C. Therefore, h+ rk is odd, because h is odd and r is even. Also, C
does not divide h+ rk because C - h and r is a multiple of C. So, if x ∈ SC1, Trx ∈ SC1.

Suppose x ∈ SC2 ∪ Sev. Let r be an even multiple of C. We know x ∈ SC2, or x ∈ Sev. Suppose x ∈ Sev.
So, h + rk is odd because h is odd and r is even. Also, C does not divide h + rk because C - h and r is a
multiple of C. We also know k is even. Therefore, if x ∈ Sev, Trx ∈ Sev. Suppose x ∈ SC2. We see h + rk
remains odd because h is odd and r is even. Consider 2(h + rk) = 2h + 2rk. Because C - 2h and r is a
multiple of C, C - 2(h+ rk). Therefore, Trx remains in the set. Therefore, if x ∈ SC2 ∪Sev, Trx ∈ SC2 ∪Sev
for all r ∈ N that are an even multiple of C.

We must consider the inverses as well. So,

M−1r x =

(
1 0
−r 1

)
h

k
=

h

−rh+ k
.

We note once again that h and k − rh are relatively prime because h and k are relatively prime. Next,
suppose x ∈ SC1 and suppose r ∈ 2N. So, h is odd and C - h. Therefore, if x ∈ SC1, M−1r x is in the set SC1.

Suppose x ∈ SC2 ∪ Sev. Suppose r ∈ 2N. We know x ∈ SC2 or x ∈ Sev. If x ∈ SC2, h is odd and C - 2h.
So, M−1r x ∈ SC2. Suppose x ∈ Sev. Then, h is odd and C - h. Also, −hr + k is even because r is even and
k is even. Therefore, M−1r x ∈ Sev. So, if x ∈ SC2 ∪ Sev, then M−1r x ∈ SC2 ∪ Sev.

Next, we look at

T−1r x =

(
1 −r
0 1

)
h

k
=
h− rk
k

.

We again note that h − rk and k are relatively prime because h and k are relatively prime. Suppose
x ∈ SC1, and r ∈ N and is an even multiple of C. Therefore, h− rk is odd because h is odd and r is even.
Also, C - h− rk because C - h and r is a multiple of C. Therefore, if x ∈ SC1, then T−1r x ∈ SC1.

Suppose x ∈ SC2 ∪ Sev and r ∈ N and is an even multiple of C. Consider x ∈ SC2. Then, h− rk is odd
because h is odd and r is even. Also, 2(h − rk) = 2h − rk is not divisible by C because C - 2h and r is a
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multiple of C. Consider the alternative, x ∈ Sev. So, k is even. Then, h − rk remains odd as explained.
C - h− rk because C - h and r is a multiple of C. So, if x ∈ SC2 ∪ Sev, then T−1r x ∈ SC2 ∪ Sev.

So, we have covered all of the cases and have proved Theorem 12. �

4. Transformations

Now that we have defined our quantum sets Sα and quantum groups Gα, we will need to explore the
transformation properties of Vα with respect to matrices Mr, Tr ∈ SL2(Z), where

Tr :=

(
1 r
0 1

)
, Mr :=

(
1 0
r 1

)
.

We have derived in full generality the transformation properties of Vα for matrices Tr and Mr for arbitrary b.
Because the quantum sets and quantum groups are defined only in the case b = 4, we will close this section
by specializing the transformations to this case. Recall

Vα(τ) := iζab q
− (A/C−1/2)2

2 µ

(
2

(
A

2C
τ +

a

b

)
,
τ

2
; τ

)
.

We will now present the transformation properties of Vα under Tr and Mr.

Lemma 5. Let A, a ∈ Z, and C, b, r ∈ N with the restriction (A,C) = 1. The function Vα satisfies the
following transformation properties:

Vα(Trτ) = ζ−r8 (−1)
Ar
C + r

2 e

(
−r

2

(
A

C
− 1

2

)2
)
Vα(τ)(4.1)

Vα(Mrτ) = (−1)−
2ar
b ζr8e

(
2a2

b2
r

)√
rτ + 1Vα(τ) + Iα(τ) + Jα(τ),(4.2)

where, in the Tr-transformation, r is chosen such that C|r and 2|r, and in Mr-transformation, r is chosen
such that b|2ar, in addition to r = 1 whenever a = 0. Furthermore,

Iα(τ) := iζab
√
−iτre

(
2a2

b2τ

)
ζA,C,ra,b

2i
h

(
2a

b
τr −

(
A

C
− 1

2

)
; τr

)
,(4.3)

Jα(τ) := −iζab
√
rτ + 1(−1)−

2ar
b ζr8e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2 1

2i
h

((
1

2
− A

C

)
τ − 2a

b
; τ

)
.(4.4)

Proof. Consider the first transformation; we have

Vα(Trτ) = iζab e

(
−Trτ

(A/C − 1/2)2

2

)
µ

(
2

(
A

2C
Trτ +

a

b

)
,
Trτ

2
;Trτ

)
.

Suppose C|r and 2|r; then a simple computation quickly yields

Vα(Trτ) = e

(
−r

2

(
A

C
− 1

2

)2
)
iζab q

− (A/C−1/2)2

2 µ

(
2

(
A

2C
τ +

a

b

)
+
Ar

C
,
τ

2
+
r

2
; τ + r

)

= (−1)
Ar
C + r

2 e

(
−r

2

(
A

C
− 1

2

)2
)
iζab q

− (A/C−1/2)2

2 µ

(
2

(
A

2C
τ +

a

b

)
,
τ

2
; τ + r

)
(4.5)

= ζ−r8 (−1)
Ar
C + r

2 e

(
−r

2

(
A

C
− 1

2

)2
)
iζab q

− (A/C−1/2)2

2 µ

(
2

(
A

2C
τ +

a

b

)
,
τ

2
; τ

)
(4.6)

= ζ−r8 (−1)
Ar
C + r

2 e

(
−r

2

(
A

C
− 1

2

)2
)
Vα(τ),

where we have applied Lemma 1.1 Ar
C times and Lemma 1.2 r

2 times in (4.5), and Lemma 1.5 r times in
(4.6).
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Now consider the second transformation; using a similar approach to the authors in [2], we let Mrτ =
Sτr = − 1

τr
, where τr := − 1

τ − r, and apply Lemma 1.6 so that we have

Vα(Mrτ) = iζab q
− (A/C−1/2)2

2 µ

(
2

(
A

2C
Mrτ +

a

b

)
,
Mrτ

2
;Mrτ

)
= iζab q

− (A/C−1/2)2

2 µ

(
2

(
A

2C

(
−1

τr

)
+
a

b

)
,
−1

2τr
;
−1

τr

)
= iζab q

− (A/C−1/2)2

2 µ

(
2

(
a
b τr −

A
2C

)
τr

,
−1

2τr
;
−1

τr

)

= iζab q
− (A/C−1/2)2

2

√
−iτre

(
−
(
2
(
a
b τr −

A
2C

)
+ 1

2

)2
2τr

)
×[

1

2i
h

(
2

(
a

b
τr −

A

2C

)
+

1

2
; τr

)
− µ

(
2

(
a

b
τr −

A

2C

)
,−1

2
; τr

)]
.

Now, recalling that τr := − 1
τ − r, the roots of unity can be simplified such that

q−
(A/C−1/2)2

2 e

(
−
(
2
(
a
b τr −

A
2C

)
+ 1

2

)2
2τr

)
= e

((
A
C −

1
2

)2
2τr

)
e

(
−
(
2a
b τr −

(
A
C −

1
2

))2
2τr

)

= e

((
A
C −

1
2

)2
2τr

)
e

(
−2a2

b2
τr +

2a

b

(
A

C
− 1

2

)
−
(
A
C −

1
2

)2
2τr

)

= e

(
2a2

b2

(
1

τ
+ r

)
+

2a

b

(
A

C
− 1

2

))
= ζA,C,ra,b e

(
2a2

b2τ

)
where ζA,C,ra,b := e

(
2a2

b2 r + 2a
b

(
A
C −

1
2

))
. If we let

Iα(τ) := iζab
√
−iτre

(
2a2

b2τ

)
ζA,C,ra,b

2i
h

(
2

(
a

b
τr −

A

2C

)
+

1

2
; τr

)
,

we have then

Vα(Mrτ) = −iζab
√
−iτrζA,C,ra,b e

(
2a2

b2τ

)
µ

(
2

(
a

b
τr −

A

2C

)
,−1

2
; τr

)
+ Iα(τ).

Consider focusing on the former term; recalling τr := − 1
τ − r, we can rewrite this such that

− iζab
√
−iτrζA,C,ra,b e

(
2a2

b2τ

)
µ

(
2

(
a

b
τr −

A

2C

)
,−1

2
; τr

)
= −iζab

√
−iτrζA,C,ra,b e

(
2a2

b2τ

)
µ

(
−2

(
A
2C τ + a

b

)
τ

− 2ar

b
,−1

2
;−1

τ
− r

)

= −iζab
√
−iτrζA,C,ra,b e

(
2a2

b2τ

)
(−1)−

2ar
b ζr8µ

(
−2

(
A
2C τ + a

b

)
τ

,−τ/2
τ

;−1

τ

)
(4.7)

= −iζab
√
−iτrζA,C,ra,b e

(
2a2

b2τ

)
(−1)−

2ar
b ζr8
√
−iτe

(
−
(
−2
(
A
2C τ + a

b

)
+ τ

2

)2
2τ

)
×[

1

2i
h

(
−2

(
A

2C
τ +

a

b

)
+
τ

2
; τ

)
− µ

(
−2

(
A

2C
τ +

a

b

)
,−τ

2
; τ

)]
,(4.8)

where we have applied Lemma 1.1 (supposing b|2ar), Lemma 1.5 in (4.7), and Lemma 1.6 in (4.8). Now, we
would like to further reduce the roots of unity shown in (4.8). First, notice that

√
−iτr

√
−iτ =

√
rτ + 1,
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which trivially follows. In addition, the roots of unity can be reduced such that

ζA,C,ra,b e

(
2a2

b2τ

)
e

(
−
(
−2
(
A
2C τ + a

b

)
+ τ

2

)2
2τ

)

= e

(
2a2

b2
r +

2a

b

(
A

C
− 1

2

))
e

(
2a2

b2τ

)
e

(
−τ

2

(
1

2
− A

C

)2

− 2a

b

(
A

C
− 1

2

)
− 2a2

b2τ

)
= e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2

.

If we let

Jα(τ) := −iζab
√
rτ + 1(−1)−

2ar
b ζr8e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2 1

2i
h

(
−2

(
A

2C
τ +

a

b

)
+
τ

2
; τ

)
,

we have then

Vα(Mrτ) = iζab
√
rτ + 1(−1)−

2ar
b ζr8e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2

µ

(
−2

(
A

2C
τ +

a

b

)
,−τ

2
; τ

)
+ Iα(τ) + Jα(τ).

Applying Lemma 1.3 on the µ-function, this reduces to

Vα(Mrτ) = (−1)−
2ar
b ζr8e

(
2a2

b2
r

)√
rτ + 1Vα(τ) + Iα(τ) + Jα(τ).

�

Now that we have completed the proof for Lemma 5, we are interested in converting our functions Iα and
Jα into Mordell integrals, which will help in establishing real analyticity once we establish a correspondence
between the quantum sets and groups for the case b = 4. Before we proceed, we will make use of the following
definition.

Definition 6. Let a, b be such that both a and b are not in Z + 1
2 , and τ ∈ H; then

δa,b(τ) :=

∫ i∞

0

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz + e

(
a

(
b+

1

2

))
q−

a2

2 h (aτ − b; τ) .

It can be easily shown applying Lemma 6.1 and Lemma 6.3, the δ-function is mostly constant in the interval
[− 1

2 ,
1
2 ], with slight changes at the end points. In addition, δ-function satisfies simple shift properties, akin

to the g and h functions from Section 2.

Lemma 6. Let a, b such that both a and b are not in Z + 1
2 , and τ ∈ H; then

δa,b(τ) =


i, if a = 1

2 , b ∈ (− 1
2 ,

1
2 ) \ {0}

0, if a ∈ (− 1
2 ,

1
2 ), b ∈ (− 1

2 ,
1
2 )

e(a)/
√
−iτ , if a ∈ (− 1

2 ,
1
2 ) \ {0}, b = 1

2 .

In addition, δa,b(τ) satisfies

δa,b+1(τ) = e2πia
(

2√
−iτ

eπi(b+
1
2 )

2/τ − δa,b(τ)

)
,(4.9)

δa+1,b(τ) = δa,b(τ)− 2eπi(a+b)e2πiabq−(a+
1
2 )

2/2,(4.10)

Proof. It can be easily shown that, by Theorem 2.3, Lemma 3.1, and Lemma 3.2, δa,b(τ) must be one of the
above three cases. Now consider the first shift property, or (4.9); we have

δa,b+1(τ) =

∫ i∞

0

ga+ 1
2 ,b+

1
2+1(z)√

−i(z + τ)
dz + e

(
a

(
b+

1

2
+ 1

))
q−

a2

2 h (aτ − b− 1; τ) .
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Applying Lemma 2.2 and Proposition 1.1, we have

δa,b+1(τ) =

∫ i∞

0

ga+ 1
2 ,b+

1
2+1(z)√

−i(z + τ)
dz + e

(
a

(
b+

1

2
+ 1

))
q−

a2

2 h (aτ − b− 1; τ)

= e2πi(a+1/2)

∫ i∞

0

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz + e

(
a

(
b+

1

2
+ 1

))
q−

a2

2

×
(

2√
−iτ

eπi(aτ−b−1/2)
2/τ − h (aτ − b; τ)

)
= −e2πia

∫ i∞

0

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz − e2πiae

(
a

(
b+

1

2

))
q−

a2

2 h (aτ − b; τ)

+
2√
−iτ

eπi(aτ−b−1/2)
2/τe2πia(b+

1
2+1)q−

a2

2

= −e2πiaδa,b(τ) +
2e2πia√
−iτ

eπi(b+
1
2 )

2/τ .

Now consider the second shift property, or (4.10); we have

δa+1,b(τ) =

∫ i∞

0

ga+ 1
2+1,b+ 1

2
(z)√

−i(z + τ)
dz + e

(
(a+ 1)

(
b+

1

2

))
q−

(a+1)2

2 h (aτ − b+ τ ; τ) .

Applying Lemma 2.1 and Proposition 1.2, we have

δa+1,b(τ) =

∫ i∞

0

ga+ 1
2+1,b+ 1

2
(z)√

−i(z + τ)
dz + e

(
(a+ 1)

(
b+

1

2

))
q−

(a+1)2

2 h (aτ − b+ τ ; τ)

=

∫ i∞

0

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz + e

(
a

(
b+

1

2

))
q−

a2

2 e2πi(b+1/2)q−a−
1
2 e2πi((a+1/2)τ−b)

×
(

2e−πi((a+1/4)τ−b) − h (aτ − b; τ)
)

=

∫ i∞

0

ga+ 1
2 ,b+

1
2
(z)√

−i(z + τ)
dz + e

(
a

(
b+

1

2

))
q−

a2

2 h (aτ − b; τ)

− 2eπibe2πia(b+
1
2 )q−

1
2 (a2+a+ 1

4 )

= δa,b(τ)− 2eπi(a+b)e2πiabq−(a+
1
2 )

2/2.

�

The benefit of applying this δ-function is it contains the necessary information such that it eases compu-
tations with respect to manipulating the transformations of Vα, since δ contains information about how the
transformation properties of Vα behave over (− 1

2 ,
1
2 ) and at the endpoints. This is essential to the proof of

transforming the functions Iα and Jα to Mordell integrals.

Lemma 7. Let A, a ∈ Z, and C, b, r ∈ N with the restriction (A,C) = 1. We have then

Iα(τ) :=
√
rτ + 1

iεA,C,ra,b

2

∫ 0

1
r

gA
C ,

1
2−

2a
b

(u)√
−i (u+ τ)

du+

√
−iτr
2

δ 2a
b ,

A
C−

1
2
(τr).

Jα(τ) :=
√
rτ + 1

iεA,C,ra,b

2

∫ i∞

0

gA
C ,

1
2−

2a
b

(u)√
−i(u+ τ)

du+
√
rτ + 1ζAC

iεA,C,ra,b

2
δ 1

2−
A
C ,

2a
b

(τ),

where

εA,C,ra,b := e

(
r

2

(
2a

b
+

1

2

)2

+
A

C

(
2a

b
− 1

2

))
,

and where r is chosen such that b|2ar, in addition to r = 1 whenever a = 0.
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Proof. Recall from (4.2)

Vα(Mrτ) = (−1)−
2ar
b ζr8e

(
2a2

b2
r

)√
rτ + 1Vα(τ) + Iα(τ) + Jα(τ),

where

Iα(τ) := iζab
√
−iτre

(
2a2

b2τ

)
ζA,C,ra,b

2i
h

(
2a

b
τr −

(
A

C
− 1

2

)
; τr

)
,(4.11)

Jα(τ) := −iζab
√
rτ + 1(−1)−

2ar
b ζr8e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2 1

2i
h

((
1

2
− A

C

)
τ − 2a

b
; τ

)
.(4.12)

First, consider (4.11); we have

Iα(τ) = iζab
√
−iτre

(
2a2

b2τ

)
ζA,C,ra,b

2i
h

(
2a

b
τr −

(
A

C
− 1

2

)
; τr

)
= −iζab

√
−iτre

(
2a2

b2τ

)
ζA,C,ra,b

2i
e

(
τr
2

(
2a

b

)2

− 2aA

bC

)
×

(∫ i∞

0

g 2a
b + 1

2 ,
A
C

(z)√
−i(z + τr)

dz − δ 2a
b ,

A
C−

1
2
(τr)

)
.

Recalling τr = − 1
τ − r, we can reduce our roots of unity such that

ζA,C,ra,b e

(
2a2

b2τ

)
e

(
τr
2

(
2a

b

)2

− 2aA

bC

)

= e

(
2a2

b2
r +

2a

b

(
A

C
− 1

2

))
e

(
2a2

b2τ

)
e

(
−2a2

b2

(
1

τ
+ r

)
− 2aA

bC

)
= e

(
2a2

b2
r +

2aA

bC
− a

b

)
e

(
2a2

b2τ

)
e

(
−2a2

b2τ
− 2a2

b2
r − 2aA

bC

)
= ζ−ab ,

so that

Iα(τ) =
−
√
−iτr
2

∫ i∞

0

g 2a
b + 1

2 ,
A
C

(z)√
−i(z + τr)

dz +

√
−iτr
2

δ 2a
b ,

A
C−

1
2
(τr).

Consider the integral part of Iα(τ), i.e. ∫ i∞

0

g 2a
b + 1

2 ,
A
C

(z)√
−i(z + τr)

dz.

Substituting z = r − u−1 → dz = u−2du, we have∫ i∞

0

g 2a
b + 1

2 ,
A
C

(z)√
−i(z + τr)

dz =

∫ 0

1
r

g 2a
b + 1

2 ,
A
C

(
r − 1

u

)√
−i
(
r − 1

u −
1
τ − r

) duu2 =
√
τ

∫ 0

1
r

g 2a
b + 1

2 ,
A
C

(
r − 1

u

)√
i (u+ τ)

du

u3/2

=
√
τe

(
−r

2

(
2a

b
+

1

2

)(
2a

b
+

3

2

))∫ 0

1
r

g 2a
b + 1

2 ,
A
C+r( 2a

b +1)
(
− 1
u

)√
i (u+ τ)

du

u3/2
(4.13)

=
√
τe

(
−r

2

(
2a

b
+

1

2

)(
2a

b
+

3

2

))
e

(
r

(
2a

b
+

1

2

)(
2a

b
+ 1

))∫ 0

1
r

g 2a
b + 1

2 ,
A
C

(
− 1
u

)√
i (u+ τ)

du

u3/2
(4.14)

=
√
τi(−i)3/2e

(
r

2

(
2a

b
+

1

2

)2
)
e

(
A

C

(
2a

b
+

1

2

))∫ 0

1
r

gA
C ,−

1
2−

2a
b

(u)√
i (u+ τ)

du(4.15)

=
√
τi(−i)3/2e

(
r

2

(
2a

b
+

1

2

)2
)
e

(
A

C

(
2a

b
+

1

2

))
e

(
−A
C

)∫ 0

1
r

gA
C ,

1
2−

2a
b

(u)√
i (u+ τ)

du(4.16)

= −i
√
−iτe

(
r

2

(
2a

b
+

1

2

)2

+
A

C

(
2a

b
− 1

2

))∫ 0

1
r

gA
C ,

1
2−

2a
b

(u)√
−i (u+ τ)

du,(4.17)
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where we have applied Lemma 2.4 in (4.13), Lemma 2.2 in (4.14) (supposing b|2ar), and Lemma 2.5 in (4.15),
each r times. Furthermore, trivial simplification of the roots of unity immediately follow (4.13)-(4.17). If we
denote

εA,C,ra,b := e

(
r

2

(
2a

b
+

1

2

)2

+
A

C

(
2a

b
− 1

2

))
,

and recall
√
−iτr

√
−iτ =

√
rτ + 1, then Iα(τ) reduces to

Iα(τ) =
√
rτ + 1

iεA,C,ra,b

2

∫ 0

1
r

gA
C ,

1
2−

2a
b

(u)√
−i (u+ τ)

du+

√
−iτr
2

δ 2a
b ,

A
C−

1
2
(τr).(4.18)

Now consider (4.12), or

Jα(τ) := −iζab
√
rτ + 1(−1)−

2ar
b ζr8e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2 1

2i
h

((
1

2
− A

C

)
τ − 2a

b
; τ

)
.

Applying the definition for δ, we have

Jα(τ) := −ζ
a
b

2

√
rτ + 1(−1)−

2ar
b ζr8e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2
[
−q

1
2 ( 1

2−
A
C )

2

e

((
A

C
− 1

2

)(
2a

b
+

1

2

))]
×

[∫ i∞

0

g1−AC ,
2a
b + 1

2
(u)√

−i(u+ τ)
du− δ 1

2−
A
C ,

2a
b

(τ)

]
.

Simplifying our roots of unity such that

− ζab
2

(−1)−
2ar
b ζr8e

(
2a2

b2
r

)
q−

1
2 ( 1

2−
A
C )

2
[
−q

1
2 ( 1

2−
A
C )

2

e

((
A

C
− 1

2

)(
2a

b
+

1

2

))]
=
ζab
2

(−1)−
2ar
b ζr8e

(
2a2

b2
r

)
e

((
A

C
− 1

2

)(
2a

b
+

1

2

))
=
ζab
2
e

(
r

2

(
2a

b
+

1

2

)2
)
e

((
A

C
− 1

2

)(
2a

b
+

1

2

))
=
−i
2
ζAC ε

A,C,r
a,b

then we have

Jα(τ) := −
√
rτ + 1ζAC

iεA,C,ra,b

2

∫ i∞

0

g1−AC ,
2a
b + 1

2
(u)√

−i(u+ τ)
du+

√
rτ + 1ζAC

iεA,C,ra,b

2
δ 1

2−
A
C ,

2a
b

(τ).

Consider the integral part of Jα(τ), i.e. ∫ i∞

0

g1−AC ,
2a
b + 1

2
(u)√

−i(u+ τ)
du.

We have ∫ i∞

0

g1−AC ,
2a
b + 1

2
(u)√

−i(u+ τ)
du =

∫ i∞

0

g−AC ,
2a
b + 1

2
(u)√

−i(u+ τ)
du(4.19)

= −
∫ i∞

0

gA
C ,−

2a
b −

1
2
(u)√

−i(u+ τ)
du(4.20)

= −ζ−AC
∫ i∞

0

gA
C ,

1
2−

2a
b

(u)√
−i(u+ τ)

du(4.21)

where we have applied Lemma 2.1 in (4.19), Lemma 2.3 in (4.20), and Lemma 2.2 in (4.21). Thus, our Jα(τ)
reduces to

Jα(τ) :=
√
rτ + 1

iεA,C,ra,b

2

∫ i∞

0

gA
C ,

1
2−

2a
b

(u)√
−i(u+ τ)

du+
√
rτ + 1ζAC

iεA,C,ra,b

2
δ 1

2−
A
C ,

2a
b

(τ).(4.22)

�

We can now state the transformations of Vα as follows.
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Theorem 5. Let A ∈ Z, and C, b, r ∈ N, a ∈ {0, 1, . . . , b− 1}, and A
C ∈ (0, 1); then

Vα(Trτ) = ζ−r8 (−1)
Ar
C + r

2 e

(
−r

2

(
A

C
− 1

2

)2
)
Vα(τ)(4.23)

Vα(Mrτ) = (−1)
2ar
b ζr8e

(
2a2

b2
r

)√
rτ + 1Vα(τ) +

√
rτ + 1

iεA,C,ra,b

2

∫ i∞

1
r

gA
C ,

1
2−

2a
b

(u)√
−i (u+ τ)

du.(4.24)

where in (4.23), C|r and 2|r, and in (4.24), b|2ar.

Proof. The first transformation (4.23) follows from Lemma 5. For the second transformation, or (4.24), we
combine (4.18) and (4.22) so that we have

Vα(Mrτ) = (−1)
2ar
b ζr8e

(
2a2

b2
r

)√
rτ + 1Vα(τ) +

√
rτ + 1

iεA,C,ra,b

2

∫ i∞

1
r

gA
C ,

1
2−

2a
b

(u)√
−i (u+ τ)

du

+

√
−iτr
2

[
δ 2a
b ,

A
C−

1
2
(τr) + iζAC ε

A,C,r
a,b

√
−iτδ 1

2−
A
C ,

2a
b

(τ)
]
.

By Definition 2, we have that 0 ≤ 2a
b < 2, or otherwise 2a

b is no larger than 2, and thus must account for
the single integer shift. It is enough to account for this integer shift in order to show

δ 2a
b ,

A
C−

1
2
(τr) + iζAC ε

A,C,r
a,b

√
−iτδ 1

2−
A
C ,

2a
b

(τ) = 0

for A
C ∈ (0, 1) and a ∈ {0, 1, . . . , b− 1}. We may write 2a

b = p+ s
b , where p ∈ {0, 1} and s ∈ {0, 1, . . . , b− 1}.

Suppose p = 1; applying the δ-shifts, and recalling τr := − 1
τ − r, we have

δ1+ s
b ,
A
C−

1
2
(τr) + iζAC ε

A,C,r
a,b

√
−iτδ 1

2−
A
C ,1+

s
b
(τ)

=

(
δ s
b ,
A
C−

1
2
(τr)− 2 exp

(
πi

(
s

b
+
A

C
− 1

2

))
exp

(
2πi

s

b

(
A

C
− 1

2

))
exp

(
πi

(
s

b
+

1

2

)2(
1

τ
+ r

)))

+ iζAC ε
A,C,r
a,b

√
−iτ exp

(
2πi

(
1

2
− A

C

))(
2√
−iτ

exp

(
πi

(
s

b
+

1

2

)2

/τ

)
− δ 1

2−
A
C ,

s
b
(τ)

)
= δ s

b ,
A
C−

1
2
(τr) + iζAC ε

A,C,r
s,2b

√
−iτδ 1

2−
A
C ,

s
b
(τ)

+ 2iζAC ε
A,C,r
a,b exp

(
2πi

(
1

2
− A

C

))
exp

(
πi

(
s

b
+

1

2

)2

/τ

)

− 2 exp

(
πi

(
s

b
+
A

C
− 1

2

))
exp

(
2πi

s

b

(
A

C
− 1

2

))
exp

(
πi

(
s

b
+

1

2

)2(
1

τ
+ r

))
.

We want to show

2iζAC ε
A,C,r
a,b exp

(
2πi

(
1

2
− A

C

))
exp

(
πi

(
s

b
+

1

2

)2

/τ

)

− 2 exp

(
πi

(
s

b
+
A

C
− 1

2

))
exp

(
2πi

s

b

(
A

C
− 1

2

))
exp

(
πi

(
s

b
+

1

2

)2(
1

τ
+ r

))
= 0.(4.25)
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Notice we can rewrite the former term such that

2iζAC ε
A,C,r
a,b exp

(
2πi

(
1

2
− A

C

))
exp

(
πi

(
s

b
+

1

2

)2

/τ

)

= −2iζAC ε
A,C,r
s,2b exp

(
πi

(
s

b
+

1

2

)2

/τ

)

= −2iζAC exp

(
2πi

(
r

2

(
s

b
+

1

2

)2

+
A

C

(
s

b
− 1

2

)))
exp

(
πi

(
s

b
+

1

2

)2

/τ

)

= −2iζAC exp

(
2πi

A

C

(
s

b
− 1

2

))
exp

(
πi

(
s

b
+

1

2

)2(
1

τ
+ r

))

= 2 exp

(
−πi

2

)
exp

(
2πi

A

C

)
exp

(
πi

(
s

b
− A

C

))
exp

(
2πi

s

b

(
A

C
− 1

2

))
exp

(
πi

(
s

b
+

1

2

)2(
1

τ
+ r

))

= 2 exp

(
πi

(
s

b
+
A

C
− 1

2

))
exp

(
2πi

s

b

(
A

C
− 1

2

))
exp

(
πi

(
s

b
+

1

2

)2(
1

τ
+ r

))
,

which implies (4.25) is in fact 0. Thus, this reduces to showing3

(4.26) δ s
b ,
A
C−

1
2
(τr) + iζAC ε

A,C,r
s,2b

√
−iτδ 1

2−
A
C ,

s
b
(τ) = 0.

Since
∣∣A
C −

1
2

∣∣ ∈ (− 1
2 ,

1
2

)
, we only need to consider the case when s

b ∈ [0, 12 ]. If s
b ∈ [0, 12 ), then it is trivial

(4.26) is 0. Now suppose s
b = 1

2 ; because b|2ar must be satisfied, this implies b|sr, and therefore 2|r. With
a bit of simplification, we have

δ 1
2 ,
A
C−

1
2
(τr) + iζAC ε

A,C,r
s,2b

√
−iτδ 1

2−
A
C ,

1
2
(τ)

= i+ iζAC ε
A,C,r
s,2b e2πi(

1
2−

A
C ) = i− i = 0,

which implies our result. �

We can see that the functions described in [2] are special cases of this transformation whenever b = 4, for
select r, and the restriction A

C ∈ (0, 1), of which we will now present as corollaries.

Corollary 1. For b = 4, r = 2, A
C ∈ (0, 1) and a ∈ {0, 1, 2, 3},

Vα(M2τ) = (−1)aiζa
2

4

√
2τ + 1Vα(τ) + ie

((
a+ 1

2

)2

+
A

2C
(a− 1)

) √
2τ + 1

2

∫ i∞

1
2

gA
C ,

1
2−

a
2
(u)√

−i(u+ τ)
du.

Now, we would like to analyze the nature of the second transformation of Vα whenever b = 4 and r = 1.
However, because the condition b|2ar must be satisfied, a is forced to be even.

Corollary 2. For b = 4, r = 1, A
C ∈ (0, 1), and a ∈ {0, 2},

Vα(M1τ) = ζ8
√
τ + 1Vα(τ) + ζ8ζ

−A
2C

√
τ + 1

2

∫ i∞

1

gA
C ,

1
2
(u)√

−i(u+ τ)
du.

5. Proof of Theorem 1

Proof. Now, in order to prove quantum modularity, we must make the restrictions outlined in Theorem 1.
Therefore, we need to set b = 4 from our equations in Theorem 5. For Vα(Mrτ), we get

3Notice this would have been the case if we had let p = 0, and thus s = 2a.
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Vα(Mrτ) = (−1)
ar
2 ζr8e

(
a2

8
r

)√
rτ + 1Vα(τ)

+
√
rτ + 1

i

2
e

(
r

2

(
a

2
+

1

2

)2

+
A

C

(
a

2
− 1

2

))∫ i∞

1
r

gA
C ,

1
2−

a
2

(u)√
−i (u+ τ)

du.(5.1)

Following this, we are going to compute what each Vα(M2τ) looks like for a = 0, 1, 2, 3 and what each
Vα(M1τ) looks like for a = 0, 2. and show that the equations we state in Theorem 1 hold. Then, we will do
the same for Vα(Trτ) for a general a and and r that is an even multiple of C. Following that, we will argue
why this makes our functions quantum modular.

We first begin by focusing on the M2 transformations. So, we can simplify (5.1) further by setting r = 2
which looks like

(5.2) Vα(M2τ) = (−1)aie

(
a2

4

)√
2τ + 1Vα(τ)

+
√

2τ + 1
i

2
e

((
a

2
+

1

2

)2

+
A

C

(
a

2
− 1

2

))∫ i∞

1
2

gA
C ,

1
2−

a
2

(u)√
−i (u+ τ)

du.

From here, we can go through the cases of a = 0, 1, 2, 3. We start with a = 0. We get

Vα(Mrτ) = i
√

2τ + 1Vα(τ) +
√

2τ + 1
i

2
e

((
1

2

)2

+
A

C

(
−1

2

))∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

= i
√

2τ + 1Vα(τ) +
√

2τ + 1
i

2
e

(
1

4

)
e

(
− A

2C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

= i
√

2τ + 1Vα(τ)− 1

2

√
2τ + 1e

(
− A

2C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

.

Now we compute 1
i (2τ + 1)−1/2Vα(M2τ) for a = 0. We get

1

i
(2τ + 1)−1/2Vα(Mrτ) = Vα(τ)− 1

2i
e

(
− A

2C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

Finally, we compute Vα(τ)− 1
i (2τ + 1)−1/2Vα(M2τ). This looks like

Vα(τ)− 1

i
(2τ + 1)−1/2Vα(M2τ) =

1

2i
e

(
− A

2C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

This clearly matches our second equation from Theorem 1 for a = 0 and M2. Now, we follow the same
procedure for a = 2 and M2. So, we plug in a = 2 to our equation (5.2), which already accounts for r = 2.
We get
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Vα(Mrτ) = (−1)aie

(
a2

4

)√
2τ + 1Vα(τ) +

√
2τ + 1

i

2
e

((
a

2
+

1

2

)2

+
A

C

(
a

2
− 1

2

))∫ i∞

1
2

gA
C ,

1
2−

a
2

(u)√
−i (u+ τ)

du

= i
√

2τ + 1Vα(τ) +
√

2τ + 1
i

2
e

((
1 +

1

2

)2

+
A

C

(
1− 1

2

))∫ i∞

1
2

gA
C ,

1
2−1

(u)√
−i (u+ τ)

du

= i
√

2τ + 1Vα(τ) +
√

2τ + 1
i

2
e

(
9

4
+

A

2C

)∫ i∞

1
2

gA
C ,

1
2−1

(u)√
−i (u+ τ)

du

= i
√

2τ + 1Vα(τ) +−1

2

√
2τ + 1e

(
A

2C

)∫ i∞

1
2

gA
C ,
−1
2

(u)√
−i (u+ τ)

du.

Now we use Lemma 2 part (2) in order to shift our g function to the desired form. Therefore, we get

Vα(M2τ) = i
√

2τ + 1Vα(τ) +−1

2

√
2τ + 1e

(
A

2C
− A

C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

du

= i
√

2τ + 1Vα(τ) +−1

2

√
2τ + 1e

(
− A

2C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

Now, we compute 1
i (2τ + 1)−1/2Vα(M2τ) which is

1

i
(2τ + 1)−1/2Vα(M2τ) = Vα(τ) +− 1

2i
e

(
− A

2C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

From here, we compute Vα − 1
i (2τ + 1)−1/2Vα(M2τ). We get

1

i
(2τ + 1)−1/2Vα(M2τ) =

1

2i
e

(
− A

2C

)∫ i∞

1
2

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

This clearly matches our second equation from Theorem 1. Now we continue to look at our M2 transfor-
mations, but we aim to match a = 1 and a = 3 to our first equation in Theorem 1. We begin with plugging
in a = 1 in equation (5.2), which already accounts for r = 2. We obtain that

Vα(M2τ) = −ie
(

1

4

)√
2τ + 1Vα(τ) +

√
2τ + 1

i

2
e

((
1

2
+

1

2

)2

+
A

C

(
1

2
− 1

2

))∫ i∞

1
2

gA
C ,

1
2−

1
2

(u)√
−i (u+ τ)

du

=
√

2τ + 1Vα(τ) +
i

2

√
2τ + 1

∫ i∞

1
2

gA
C ,0

(u)√
−i (u+ τ)

du.

Now we compute (2τ + 1)−1/2Vα(M2τ). It looks like

(2τ + 1)−1/2Vα(M2τ) = Vα(τ) +
i

2

∫ i∞

1
2

gA
C ,0

(u)√
−i (u+ τ)

du.

Finally, we are able to compute Vα(τ)− (2τ + 1)−1/2Vα(M2τ). We find that

Vα(τ)− (2τ + 1)−1/2Vα(M2τ) = − i
2

∫ i∞

1
2

gA
C ,0

(u)√
−i (u+ τ)

du.

We see this matches our first equation from Theorem 1. Now we need to do the same for a = 3. So, we
plug in a = 3 in our equation (5.2), which accounts for r = 2, to obtain
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Vα(M2τ) = −ie
(

9

4

)√
2τ + 1Vα(τ) +

√
2τ + 1

i

2
e

((
3

2
+

1

2

)2

+
A

C

(
3

2
− 1

2

))∫ i∞

1
2

gA
C ,

1
2−

3
2

(u)√
−i (u+ τ)

du

=
√

2τ + 1Vα(τ) +
i

2

√
2τ + 1e

(
A

C

)∫ i∞

1
2

gA
C ,−1

(u)√
−i (u+ τ)

du.

Now, we need to use Lemma 2 in order to get our g function in the form that we desire. We see that

Vα(M2τ) =
√

2τ + 1Vα(τ) +
i

2

√
2τ + 1e

(
A

C
− A

C

)∫ i∞

1
2

gA
C ,0

(u)√
−i (u+ τ)

du

=
√

2τ + 1Vα(τ) +
i

2

√
2τ + 1

∫ i∞

1
2

gA
C ,0

(u)√
−i (u+ τ)

du.

We now can compute (2τ + 1)−1/2Vα(M2τ) and we find

(2τ + 1)−1/2Vα(M2τ) = Vα(τ) +
i

2

∫ i∞

1
2

gA
C ,0

(u)√
−i (u+ τ)

du.

Finally, we compute Vα(τ)− (2τ + 1)−1/2Vα(M2τ). We see that

Vα(τ)− (2τ + 1)−1/2Vα(M2τ) = − i
2

∫ i∞

1
2

gA
C ,0

(u)√
−i (u+ τ)

du.

This clearly matches our first equation from Theorem 1, and we have finished the M2 transformations.
Now we move on to the M1 transformations for a = 0 and a = 2. We need to plug in r = 1 and b = 4 in

our equation from Theorem 5, (5.1). When we do this, we get

Vα(M1τ) = (−1)
a
2 e

(
a2 + 1

8

)√
τ + 1Vα(τ)

+
√
τ + 1

i

2
e

(
1

2

(
a

2
+

1

2

)2

+
A

C

(
a

2
− 1

2

))∫ i∞

1

gA
C ,

1
2−

a
2

(u)√
−i (u+ τ)

du.(5.3)

And now we can begin with a = 0. Because (5.3) already accounts for r = 1, we first need to plug in
a = 0 to obtain

Vα(M1τ) = ζ8
√
τ + 1Vα(τ) +

√
τ + 1

i

2
e

(
1

2

(
1

2

)2

+
A

C

(
−1

2

))∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du

= ζ8
√
τ + 1Vα(τ) +

√
τ + 1

i

2
e

(
1

8

)
e

(
− A

2C

)∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

Now we compute ζ−18 (1 + τ)−1/2Vα(M1τ). We find

ζ−18 (1 + τ)−1/2Vα(M1τ) = Vα(τ) +
i

2
e

(
− A

2C

)∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

Finally, we can compute Vα(τ)− ζ−18 (1 + τ)−1/2Vα(M1τ). We get

Vα(τ)− ζ−18 (1 + τ)−1/2Vα(M1τ) = − i
2
e

(
− A

2C

)∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du.
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We see this matches our third equation from Theorem 1. Now, we need to show that ourM1 transformation
for a = 2 does as well. Therefore, we need to plug in a = 2 in (5.3), which already accounts for r = 1. We
get that

Vα(M1τ) = −e
(

5

8

)√
τ + 1Vα(τ)

+
√
τ + 1

i

2
e

(
1

2

(
1 +

1

2

)2

+
A

C

(
1− 1

2

))∫ i∞

1

gA
C ,−

1
2

(u)√
−i (u+ τ)

du

= e

(
1

8

)√
τ + 1Vα(τ) +

√
τ + 1

i

2
e

(
1

8

)
e

(
A

2C

)∫ i∞

1

gA
C ,−

1
2

(u)√
−i (u+ τ)

du.

From here, we must use Lemma 2 part (2) in order to shift our g to the form we want. Doing this, we see

Vα(M1τ) = e

(
1

8

)√
τ + 1Vα(τ) +

√
τ + 1

i

2
e

(
1

8

)
e

(
A

2C
− A

C

)∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du

= e

(
1

8

)√
τ + 1Vα(τ) +

√
τ + 1

i

2
e

(
1

8

)
e

(
− A

2C

)∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

Now we must calculate ζ−18 (τ + 1)1/2Vα(M1τ). We find

ζ−18 (τ + 1)−1/2Vα(M1τ) = Vα(τ) +
i

2
e

(
− A

2C

)∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

Finally, we must find Vα(τ)− ζ−18 (τ + 1)−1/2Vα(M1τ), which is

Vα(τ)− ζ−18 (τ + 1)−1/2Vα(M1τ) = − i
2
e

(
− A

2C

)∫ i∞

1

gA
C ,

1
2

(u)√
−i (u+ τ)

du.

This clearly matches the third equation from Theorem 1. Finally, we must match up our T transformations
with the forth equation in our Theorem 1. We begin by looking at the T transformation in integral form
from our Theorem 5. Here, r is an even multiple of C, as we recall from Theorem 4. We see

Vα(Trτ) = ζ−r8 (−1)
Ar
C + r

2 e

(
−r

2

(
A

C
− 1

2

)2
)
Vα(τ)

= ζ−r8 (−1)
Ar
C + r

2 e

(
−r

2

(
2A− C

2C

)2
)
Vα(τ)

= ζ−r8 (−1)
Ar
C + r

2 e

(
r (2A− C)

2

8C2

)
Vα(τ).

Now, we calculate (−1)
Ar
C + r

2 e
(
r
8

)
e
(
r(2A−C)2

8C2

)
V (τ + r). This looks like

(−1)
Ar
C + r

2 e
(r

8

)
e

(
r(2A− C)2

8C2

)
Vα(Trτ) = Vα(τ).

And from here, we can clearly see

Vα(τ)− (−1)
Ar
C + r

2 e
(r

8

)
e

(
r(2A− C)2

8C2

)
V (τ + r) = 0.
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So, if C is even, we have r = C, and

Vα(τ)− (−1)A+C
2 e

(
C

8

)
e

(
C(2A− C)2

8C2

)
V (τ + C) = 0.

If C is odd, we have r = 2C, and

Vα(τ)− (−1)2A+Ce

(
C

4

)
e

(
C(2A− C)2

4C2

)
V (τ + 2C) = 0.

These match our last two equations in Theorem 1.
Now we have shown each of the equations in Theorem 1 hold. These equations tell us that the difference

between Vα(τ) and a root of unity multiplied by (rτ + 1)−1/2Vα(Mrτ) is a Mordell integral. Where Mr is
from Gα. Because of the shape of the integral, we know the difference is real analytic as discussed in Folsom,
et al [2]. The equations from Theorem 1 also tell us that the difference between Vα(τ) and a root of unity
multiplied by Vα(Trτ) is 0; this is clearly real analytic. We also know that by Theorem 4, we have quantum
sets and quantum groups for these functions.

Therefore, the function Vα is quantum modular on the set Sα with respect to the group Gα, and this
concludes our proof of Theorem 1. �

6. Conclusion

Although we were able to determine the transformation properties of Vα for arbitrary b ∈ Z satisfying
particular conditions, it is still under investigation determining which quantum sets and groups will follow
with respect to b. One approach that may yield a result is if b is restricted to be powers of two. In addition,
it is curious what the structure of a strong generalization of our current work would appear such that it
constitutes all classes of quantum modular forms seen in the work of [2]. A possible area to expand our work
in order to encompass the work of [2] would be to investigate shifting our function, so we not only generalize
the n = 1 case, but also the n = 2, 3, 4, 5, 6 cases. We are also interested in proving mock modularity for Vα
as that is something that is accomplished in [2].
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