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ABSTRACT. Level set trees provide insight into the topology of a function’s relative extrema. We
consider a random walk where the displacement between successive states is determined by a mix
of geometric variables, and calculate how the parameters of the transition kernel evolve under the
pruning operation. We find that the level set tree of the geometric random walk does not have Horton
or Tokunaga self-symmetry, but does have asymptotic Horton self-symmetry.

1. INTRODUCTION

There has been substantial work into studying and understanding self-similarity of random walks
that produce binary trees, and Horton and Tokunaga laws provide a convenient way to do just that.
However, there is no comparable work done for understanding self-similarity in non-binary trees.
Within this paper we explore the self-similarity of discrete random walks. The major motivation
for this summer’s project was a paper coauthored by Dr. Kovchegov. The major result was a proof
that the level set tree of a finite symmetric homogeneous Markov chain has Horton self similarity
with exponent R = 4, and Tokunaga self-similarity with parameters (a, c) = (1, 2). Based upon this
previous work we decided to look at random walk excursions generated by discrete random walks
rather than continuous random walks, which left us to deal with n-ary trees because of the discrete
state space. This is due to the fact that in a continuous state space the probability of returning to
a previous state is 0. It is clear that this is not the case in a discrete state space in which there is a
chance of returning to a previous state or staying at the current state.

2. TERMINOLOGY

We introduce here Horton-Strahler ordering, Horton laws, Tokunaga self-similarity, trees, level
set trees, and pruning.

2.1. Trees and Hierarchical Ordering. A tree T, is a connected simple non-cyclic graph with
vertices, V and edges E, with T = (V,E) such that NE = NV − 1. In a rooted tree, one node is
designated as the root, which gives the tree a direction of edges, as well as creating a parent-child
relationship within the tree. If v = ⟨i1, ..., in⟩ ∈ T then u = ⟨i1, ..., in−1⟩ ∈ T is called the child of
v, and v is the parent of u. A leaf is a vertex that has no children. It is possible to represent the
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planar tree T (which is rooted at ϕ) by a bijection between the set of vertices V and the set of finite
integer-valued sequences ⟨i1, ..., in⟩ ∈ T, such that

(1) ϕ = ⟨ /0⟩,
(2) if ⟨i1, ..., in⟩ ∈ T then ⟨i1, ..., ik⟩ ∈ T ∀1 ≥ k ≥ n and
(3) if ⟨i1, ..., in⟩ ∈ T then ⟨i1, ..., in−1, j⟩ ∈ T ∀1 ≥ j ≥ in.

The Horton-Strahler ordering of the vertices of a finite, rooted labeled tree is performed in the
following order, from leaves to the root: (i) each leaf has order r(leaf) =1; (ii) the maximum order
r of the children c1, c2,..., cn of a parent vertex p is assigned to the parent vertex if the number of
children with the maximum order of r is 1; (iii) when more than one child is of order r, then the
parent vertex is assigned the order M+1. Figure 1 below illustrates this.

FIGURE 1. An example of Horton-Strahler ordering for a non-binary tree is represented.

Formally,

Let M = max{r(c1),(c2), ...,(cn)} and let µ = {c : r(c) = M}

r(p) =

{
M if |µ|= 1
M+1 if |µ|> 1

An extension of Horton-Strahler ordering is Tokunaga indexing which focuses on side branching
and can be useful when dealing with incomplete trees. A tree T is a complete tree if each branch
of T has a single vertex, meaning that there is no side branching. All other trees are considered
incomplete trees. Thus incomplete trees have side branching which is when branches of differing
orders merge together. For instance, an order one branch merging into an order three branch.
Side branching often takes place in natural hierarchies and Tokunaga indexing is well equipped to
address this issue. Let τk

i j,1 ≤ k ≤ N j,1 ≤ i < j ≤ Ω be the number of branches with order i which
join in the non-terminal vertices of the k-th branch of order j. Then Ni j = ∑k τk

i j, j > i is the total
number of such branches in a tree T. The Tokunaga index Ti j is the average number of branches of
order i < j per branch of order j in a finite tree of order Ω ≥ j:

Ti j =
Ni j

N j
.
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2.2. Pruning and Self-Similarity. Self similar trees are statistical structures that are preserved
under the operation of pruning. Pruning of a finite, rooted tree T cuts its leaves (vertices of de-
gree one) and their parental edges, and removes the resulting chains of degree two vertices and
their parental edges, also called series reduction. The Horton-Strahler order k of a vertex v is the
minimal number of prunings that are necessary in order to eliminate the sub-tree rooted at v.

A sequence of probability laws {PN}N∈N is said to have well-defined asymptotic Horton-Strahler
orders for k ∈ N , with random variables

N(PN)
k
N

→ Nk in probability as N → ∞,

with the quantity N∥ is called the asymptotic ratio of the branches of order k.

2.3. Horton and Tokunaga branching laws. The Horton and Tokunaga branching laws allow for
the studying of self-similarity in random trees. Horton laws acknowledge the principal branching
that takes place in a tree. The Horton law states

Nr

Nr+1
= RB,

Mr+1

Mr
= RM, RB,RM > 0, r ≥ 1,

such that Nr,Mr are the total number and average mass of branches of order r in a finite tree of
order Ω.

Looking at a sequence {PN}N∈N of probability laws over binary trees with well-defined asymp-
totic Horton-Strahler orders will follow the Horton self-similarity law if and only if at least one of
the following limits below exists and the limit is (i)finite and (ii) positive:

(1) root law: limk→∞
(
Nk

)− 1
k = R, R > 0,

(2) ratio law: limk→∞ Nk/Nk+1 = R, R > 0,
(3) geometric law: limk→∞ Nk ∗Rk = N0, N0 > 0,

with the constant R being the Horton exponent.

The Tokunaga laws allow for the studying of side branching within a tree. Within a deterministic
setting, a tree T of order Ω is a self-similar tree if its side-branching structure (i) is the same for all
branches of a given order:

τk
i j =: τi j, 1 ≤ k ≤ N j, 1 ≤ i < j ≤ Ω,

and (ii) is invariant with respect to the branch order:

τi(i+k) ≡ Ti(i+k) =: Tk f or2 ≤ i+ k ≤ Ω.

Tokunaga self-similar trees obey an additional constraint of

Tk+1

Tk
= c ⇐⇒ Tk = ack−1 a,c > 0,1 ≤ k ≤ Ω−1.

In a random setting, a tree T of order Ω is self-similar if E(τ j
i(i+k)) =: Tk for 1 ≤ j ≤ Ni + k,2 ≤

i+ k ≤ Ω; and furthermore, it is Tokunaga self similar if the additional constraint above holds. [1]
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FIGURE 2. The level set tree representation of a continuous function captures the
topology of its local extrema.

2.4. Tree Representation of Functions. A level set tree is a topological structure of the level sets
of a time series or a real function and gives a visual representation of when the level set intervals
merge together. [1] Starting with a water level of α that initially covers the entire excursion. Then
allowing the water to start to recede, parts of the graph will slowly emerge, similar to islands in an
ocean. As more water recedes the island eventually merge together. The point at which the islands
merge together creates a vertex. This is illustrated below.

More formally, the level set Lα(Xt) is defined as the pre-image of the function values above α:

Lα(Xt) = t : x ≥ α

3. RESULTS

This section presents the main theorems resulting from our work. Before proceeding, we shall
formalize our treatment of the geometric random walk. For parameters {p1, p2,r1,r2} such that
0 < p1 + p2 ≤ 1 and 0 < r1,r2 ≤ 1, we define the process so that (i) there is probability p1 of an
upward step where the step size is determined by a geometric variable with parameter r1, (ii) there
is probability p2 of a downward step where the step size is determined by a geometric variable
with parameter r2, and (iii) there is probability 1− p1 − p2 of a flat step.

Definition 3.1. A geometric random walk, more precisely called a geometric homogeneous Markov
chain (GHMC), is a probabilistic process whose transition kernel K(x) is a weighted mix of geo-
metric random variables. Specifically,

K(x) = p1g1(x)+(1− p1 − p2)δ0 + p2g2(−x),

where

gi(x) =

{
ri(1− ri)

x−1 x = 1,2,3, . . .
0 o.w.

i = 1,2

and δ0 is a degenerate random variable with support {0}.

Note that the time and state spaces for this process are both discrete. We fix the state Xt = 0 at
time t = 0. The state is integer-valued, and the time is a nonnegative integer.
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3.1. Effect of Pruning on Geometric Random Walk.

Theorem 3.2. The local minima of a geometric homogenous Markov chain form a GHMC with
parameters

r∗1 =
p2r1

p1 + p2

r∗2 =
p1r2

p1 + p2

p∗1 =
−p2

1(p1 p2r1 + p1 p2r2 − p1 p2r1r2 + p2
1r2 + p2

2r1 + p2r1r2 − p1r2 − p2r1 − p2r2)

(p1 + p2)(p1 −1)(p2 −1)(p1 p2r1 + p1 p2r2 − p1 p2r1r2 + p2
1r2 + p2

2r1)

p∗2 =
−p2

2(p1 p2r1 + p1 p2r2 − p1 p2r1r2 + p2
1r2 + p2

2r1 + p1r1r2 − p1r2 − p2r1 − p1r1)

(p1 + p2)(p1 −1)(p2 −1)(p1 p2r1 + p1 p2r2 − p1 p2r1r2 + p2
1r2 + p2

2r1)

Proof. We calculate the characteristic function of the difference between successive local minima
and set it equal to the characteristic function of the GHMC kernel. The difference between minima
is

d j =
ξ+

∑
i=1

Yi −
ξ−

∑
i=1

Zi.

The first sum represents upward or flat steps until the local maximum between the two minima
is reached. The second sum represents downward or flat steps from the local maximum down
to the following local minimum. Since the first sum includes upward and flat increments, ξ+
is a geometric random variable with parameter p2, which is the probability of a downward step.
Similarly, ξ− is a geometric variable with parameter p1. The variables Yi and Zi are weighted mixes
of a degenerate variable and a geometric variable. Specifically,

Yi ∼
(

1− p1 − p2

1− p2

)
δ0 +

(
p1

1− p2

)
g1(x)

Zi ∼
(

1− p1 − p2

1− p1

)
δ0 +

(
p2

1− p1

)
g2(x).

For Yi, the first weight represents the probability that a step is flat given that it is not downward, and
the second weight represents the probability that a step is upward given that it is not downward.
The expression for Zi is constructed in a similar fashion.

The characteristic function of d j is

(1)
(

p2(p1r1 +(1− p1 − p2)(e−is −1+ r1))

(1− p2)(e−is −1+ r1 − p1r1 − (1− p1 − p2)(e−is −1+ r1))

)
×(

p1(p2r2 +(1− p1 − p2)(eis −1+ r2))

(1− p1)(eis −1+ r2 − p2r2 − (1− p1 − p2)(eis −1+ r2))

)
.

The characteristic function of the kernel K∗(x) of the pruned walk is

(2)
p∗1r∗1(e

is −1+ r∗2)+(1− p∗1 − p∗2)(e
is −1+ r∗2)(e

−is −1+ r∗1)+ p∗2r∗2(e
−is −1+ r∗1)

(e−is −1+ r∗1)(e
is −1+ r∗2)

.
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Setting expressions 1 and 2 equal and solving in Maple yields two solutions. One solution was not
consistent with the restrictions on the parameters and was ignored, leaving the solution presented
in theorem 3.2. These calculations are described in greater detail in Appendix A. □

Solutions to more specific cases of the geometric walk can be derived from theorem 3.2. By
defining p = p1 and 1− p = p2, we obtain the result of pruning a geometric walk that does not
have plateaus.

Corollary 3.3. The local minima of a GHMC with nonzero displacement between successive points
form a GHMC with parameters

r∗1 = r1(1− p),

r∗2 = r2 p,

p∗1 =
p2r1r2 − pr1r2 + pr2

p2r1r2 − pr1r2 − pr1 + pr2 + r1
,

p∗2 =
p2r1r2 − pr1r2 − pr1 + r1

p2r1r2 − pr1r2 − pr1 + pr2 + r1
.

We can also look at the case of a symmetric random walk, where we let r = r1 = r2 and α =
1− p1 − p2 = 1−2p1.

Corollary 3.4. The local minima of a symmetric GHMC with parameters {r,α} form a symmetric
GHMC with parameters

α∗ =
α2(r−4)− r
(α+1)2(r−4)

, r∗ =
r
2
.

Corollary 3.5. The local minima of a symmetric GHMC with α = 0 form a symmetric GHMC with

α∗ =
r

4− r
, r∗ =

r
2
.

3.2. Asymptotic Horton Self-Similarity. We begin by establishing some lemmas that are rele-
vant to the main theorem of this section.

Lemma 3.6. For a random walk with probability p1 of a step up and probability p2 of a step down,
the expected proportion of local maxima is p1 p2

p1+p2
. For a symmetric GHMC, this value simplifies to

(1−α)/4.

Proof. The probability that a point in the random walk is a local maximum (or is the left edge of a
plateau) is equivalent to the probability that a point is higher than its left neighbor, followed by 0
or more flat segments, and higher than the first point to its right that is not at the same level. This
value is p1 p2(1− p1− p2)

n, where n is the number of flat segments. Adding up over all possible n
yields a geometric series with first term p1 p2 and ratio 1− p1 − p2, and its sum is

p1 p2

1− (1− p1 − p2)
=

p1 p2

p1 + p2
.

Letting p1 = p2 = (1−α)/2, which is the case for the symmetric GHMC, reduces this expression
to (1−α)/4. □
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For the remainder of this section, the notation {α(k),r(k)} shall denote the parameters of a sym-
metric GHMC after k prunings.

Lemma 3.7. There is no symmetric GHMC where α = α(1) = α(2). Equivalently, α cannot stay
fixed for more than one iteration of pruning.

Proof. We attempt to find parameters {α,r} such that α(1) = α. This is satisfied by {α,r} where

α =
α2(r−4)− r

(α+1)2(p−4)

=⇒ α(α+1)2(r−4) = α2(r−1)− r

=⇒ α3r+2α2r+αr−4α3 −8α2 −4α = α2r−4α2 − r

=⇒ α3r+α2r+αr−4α3 −4α2 −4α =−r

=⇒ (α3 +α2 +α)(r−4) =−r

=⇒ α3 +α2 +α =
r

4− r
.

It follows that for α(2) = α(1), {α(1),r(1)} must satisfy the relationship

α3
(1)+α2

(1)+α(1) =
r(1)

4− r(1)
.

If we assume α = α(1) and use the fact that r(1) = r/2, this relationship becomes

α3 +α2 +α =
r/2

4− r/2
=

r
8− r

.

This implies that
r

4− r
=

r
8− r

,

which is a contradiction because r cannot be 0. Thus, α = α(1) precludes α(2) = α(1), proving the
lemma. □

Lemma 3.8. For any symmetric GHMC, the parameters {α(k),r(k)} both tend to zero as the number
of prunings k tends to infinity.

Proof. It is trivial to show that r(k) → 0 as k → ∞, because r(k+1) = r(k)/2.
The expression for α(k+1) in terms of α(k) and r(k) is

α(k+1) =
α2
(k)(r(k)−4)− r(k)

(α(k)+1)2(r(k)−4)
=

( α(k)

α(k)+1

)2

−
r(k)

(α(k)+1)2(r(k)−4)

Since r(k) → 0 and neither term in the denominator can get arbitrarily close to 0, we have

α(k+1) ≈
( α(k)

α(k)+1

)2
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for large k. Now assume α(k+1) > α(k)/2. Then( α(k)

α(k)+1

)2

> α(k)/2

=⇒ 2α2
(k) > α(k)(α(k)+1)2

=⇒ 2α(k) > (α(k)+1)2

=⇒ 2α(k) > α2
(k)+2α(k)+1

=⇒ 0 > α2
(k)+1,

which is impossible. So for sufficiently large k, α(k+1) ≤ α(k)/2, meaning α(k) → 0 as k → ∞. □

Theorem 3.9. The level set tree of a GHMC has ratio asymptotic Horton self-similarity with ex-
ponent 4. However, it does not have Horton self-similarity or Tokunaga self-similarity.

Proof. Applying Lemma 3.6 in the context of a symmetric GHMC, we see that Nk+1/Nk → (1−
α(k))/4 as the tree’s order Ω → ∞. Lemma 3.7 shows that α(k) cannot be fixed for all k, meaning
that the expected value of Nk+1/Nk cannot be the same for all k, which is required for Horton
self-similarity. Zaliapin [2] proved that a tree with Tokunaga self-similarity must have Horton
self-similarity, so the lack of Horton similarity here implies a lack of Tokunaga similarity. To
show asymptotic self-similarity, we combine the results of Lemmas 3.6 and 3.8. Since Nk+1/Nk →
(1−α(k))/4 and α(k) → 0, we conclude that Nk+1/Nk → 1/4 as k → ∞. □

The following definition and conjectures attempt to extend the result of theorem 3.9 to more
general situations.

Definition 3.10. A GHMC is mean-zero when the expected value of the kernel K(x) is 0. Since the
expected value of the GHMC kernel is p1/r1− p2/r2, it is mean-zero precisely when p1/p2 = r1/r2.

Conjecture 3.11. A GHMC has ratio asymptotic Horton self-similarity with exponent 4 if and only
if it is mean-zero.

Conjecture 3.12. A GHMC never has true Horton or Tokunaga self-similarity.

4. FUTURE WORK

In the future, we hope to build upon this work by formally proving the conjectures and extending
certain results. We would like to investigate random walks where the type of probability distribu-
tion is not known, in order to see what general conclusions can be made about its self-similarity
properties. We also want to study side-branching statistics in GHMCs, as this paper focuses on
principal branching statistics. We hope to find a methodology for labeling branches in non-binary
trees, since side-branching and merging of multiple maxima orders can both occur at the same
parental vertex. We plan to frame this methodology in a way that is consistent with our previous
work and helps us come to stronger conclusions about the self-similarity.



Self-Similarity in Level Set Trees of Geometric Random Walks 9

APPENDIX A. CALCULATIONS RELATED TO THEOREM 3.2

This section explains the proof of theorem 3.2 in greater detail, particularly with regard to de-
riving the characteristic functions.

Some important facts needed for this section are the characteristic function of a geometric vari-
able, probability generating function of a geometric variable, and the characteristic function of a
degenerate random variable. In the following expressions, let A denote a geometric variable with
parameter a, and B denote a degenerate variable with parameter b. The notation φX(s) shall de-
note the characteristic function of a random variable X , and GX(z) shall represent the probability
generating function of X .

φA(s) =
a

e−is − (1−a)
GA(z) =

za
1− z(1−a)

φB(s) = eisb

We start by deriving the kernel of the pruned GHMC:

K̂∗(s) = p∗1ĝ∗1(s)+(1− p∗1 − p∗2)δ̂0 + p∗2ĝ∗2(−s)

= p∗1

(
r∗1

e−is − (1− r∗1)

)
+(1− p∗1 − p∗2)+ p∗2

(
r∗2

eis − (1− r∗2)

)
=

p∗1r∗1(e
is −1+ r∗2)+(1− p∗1 − p∗2)(e

is −1+ r∗2)(e
−is −1+ r∗1)+ p∗2r∗2(e

−is −1+ r∗1)
(e−is −1+ r∗1)(e

is −1+ r∗2)
,

which is expression 2.
Deriving the characteristic function of d j, the difference between successive local minima in a

GHMC, is more complicated. Recall that

d j =
ξ+

∑
i=1

Yi −
ξ−

∑
i=1

Zi =
ξ+

∑
i=1

Yi +

(
−

ξ−

∑
i=1

Zi

)
where

ξ+ ∼ Geom(p2)

ξ− ∼ Geom(p1)

Yi ∼
(

1− p1 − p2

1− p2

)
δ0 +

(
p1

1− p2

)
g1(x)

Zi ∼
(

1− p1 − p2

1− p1

)
δ0 +

(
p2

1− p1

)
g2(x).

The characteristic function of Yi for any i is

(3)

φY (s) =
(

1− p1 − p2

1− p2

)
δ̂0 +

(
p1

1− p2

)
ĝ1(s)

=

(
1− p1 − p2

1− p2

)
+

(
p1

1− p2

)(
r1

e−is −1+ r1

)
=

(1− p1 − p2)(e−is −1+ r1)+ p1r1

(1− p2)(e−is −1+ r1)

.
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The probability generating function of ξ+ is

(4) Gξ+(z) =
zp2

1− z(1− p2)
=

p2

z−1 − (1− p2)
.

The characteristic function of the sum ∑ξ+
i=1Yi is calculated by plugging in expression 3 for z in

expression 4, which yields
(5)

p2
(1−p2)(e−is−1+r1)

(1−p1−p2)(e−is−1+r1)+p1r1
− (1− p2)

=
p2(p1r1 +(1− p1 − p2)(e−is −1+ r1))

(1− p2)(e−is −1+ r1 − p1r1 − (1− p1 − p2)(e−is −1+ r1))
.

The derivation of the characteristic function for ∑ξ−
i=1 Zi is very similar, and turns out to be the

same as expression 5 except that p1 and p2 switch, as do r1 and r2. Multiplying this function by -1
changes the s variables to −s, so the characteristic function of −∑ξ−

i=1 Zi is

(6)
p1(p2r2 +(1− p1 − p2)(eis −1+ r2))

(1− p1)(eis −1+ r2 − p2r2 − (1− p1 − p2)(eis −1+ r2))
.

Due to the independence of the two sums in d j, the characteristic function of d j is simply the
product of expressions 5 and 6, which forms expression 1.

Expressions 1 and 2 are set equal to one another, and we wish to solve for the starred variables
in terms of their unstarred counterparts. We cross multiply the expressions to remove the fractions,
and subtract one side from the other to form a large expression set equal to zero:

(7) p2(p1r1 +(1− p1 − p2)(e−is −1+ r1))p1(p2r2 +(1− p1 − p2)(eis −1+ r2))×
(e−is −1+ r∗1)(e

is −1+ r∗2)−
(1− p2)(e−is −1+ r1 − p1r1 − (1− p1 − p2)(e−is −1+ r1))×
(1− p1)(eis −1+ r2 − p2r2 − (1− p1 − p2)(eis −1+ r2))×

(p∗1r∗1(e
is −1+ r∗2)+(1− p∗1 − p∗2)(e

is −1+ r∗2)(e
−is −1+ r∗1)+ p∗2r∗2(e

−is −1+ r∗1)) = 0.

Expanding this equation and grouping terms by eis produces an equation

Ae−2is +Be−is +C+Deis +Ee2is = 0,

where A,B,C,D,E are functions of p1, p2,r1,r2, p∗1, p∗2,r
∗
1,r

∗
2.

Solving the system A = B =C = D = E = 0 produces two solutions:

r∗1 =
p2r1

p1+p2

r∗2 =
p1r2

p1+p2

p∗1 =
−p2

1(p1 p2r1+p1 p2r2−p1 p2r1r2+p2
1r2+p2

2r1+p2r1r2−p1r2−p2r1−p2r2)

(p1+p2)(p1−1)(p2−1)(p1 p2r1+p1 p2r2−p1 p2r1r2+p2
1r2+p2

2r1)

p∗2 =
−p2

2(p1 p2r1+p1 p2r2−p1 p2r1r2+p2
1r2+p2

2r1+p1r1r2−p1r2−p2r1−p1r1)

(p1+p2)(p1−1)(p2−1)(p1 p2r1+p1 p2r2−p1 p2r1r2+p2
1r2+p2

2r1)

,

and
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

r∗1 =
p1r2

p1r2−p1−p2

r∗2 =
p2r1

p2r1−p1−p2

p∗1 =
−p2

1(−p1 p2r1r2+p2
1r2+p1 p2r1+p1 p2r2+p2

2r1+p2r1r2−p1r2−p2r1−p2r2)

(−p1 p2r1r2+p2
1r2+p1 p2r1+p1 p2r2+p2

2r1)(−p2r1+p1+p2)(p2−1)(p1−1)

p∗2 =
p2

2(−p1 p2r1r2+p2
1r2+p1 p2r1+p1 p2r2+p2

2r1+p1r1r2−p1r2−p2r1−p1r1)

(−p1 p2r1r2+p2
1r2+p1 p2r1+p1 p2r2+p2

2r1)(p1r2−p1−p2)(p2−1)(p1−1)

.

In the second “solution”, it can be seen that plugging in valid {p1, p2,r1,r2} leads to invalid
{p∗1, p∗2,r

∗
1,r

∗
2}. As a particular example, the expression for r∗1 evaluates as negative for any valid in-

put. The numerator is positive because it is the product of two positive parameters. The denomina-
tor is negative because due to the constraints on the terms, p1r2 < p1, implying p1r2− p1− p2 < 0.
Accordingly, we accept the first solution as the explanation of how the GHMC parameters are
affected by pruning.
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