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Abstract. We prove a result for square matrices over the p-adic numbers akin to the
Perron-Frobenius Theorem for square matrices over the real numbers. In particular, we
show that if a square n × n matrix A has all entries p-adically close to 1, then this matrix
will possess a unique maximal eigenvalue λ0 such that: (a) λ0 is a p-adic integer, (b) λ0 has
an algebraic multiplicity of one, and (c) there exists an eigenvector associated to λ0 with
all entries p-adically close to 1. Furthermore, we show that iteration of A/λ0 converges to
a projection operator onto the eigenspace of λ0.

1. Introduction

The classical Perron-Frobenius Theorem gives us information about square matrices with
all entries given by positive real numbers.

Theorem 1.1 (Perron-Frobenius, Theorem 1 in Chapter 16 of [3]). Let A be a square matrix
with all entries given by positive real numbers. Then there exists an eigenvalue λ0 of A of
multiplicity one such that λ0 is a positive real number and |λ| < λ0 for all other complex
eigenvalues λ of A. Furthermore, there exists an eigenvector v of A with eigenvalue λ0 such
that all components of v are positive real numbers.

A useful application of Theorem 1.1 is the following.

Theorem 1.2 (Theorem 3 in Chapter 16 of [3]). Let A be a square n × n matrix with all
entries given by positive real numbers such that, for each column of A, the sum of the entries
in that column is 1. Then the maximal eigenvalue λ0 of A guaranteed by Theorem 1.1 is equal
to 1, and for any vector x ∈ Rn with all entries nonnegative, the sequence (Akx) converges
to an eigenvector of λ0.

The dynamical implications of Theorem 1.2 make it useful for studying many real-world
phenomena. Matrices in the form of the matrix A from Theorem 1.2 are used to model
changes in atomic nuclei and populations in ecological systems [3, p. 241], and Theorem 1.2
itself forms the basis of Google’s search strategy [3, p. 242].

Our first result over the p-adic numbers is analogous to Theorem 1.1. This result applies
to any p-adic n× n matrix A, where: (a) all entries of A are in 1 + pZp, and (b) p - n. For
a demonstration of why these conditions cannot be relaxed, see Example 4.3.
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Theorem 1.3. Let p be a prime and let n be a positive integer such that p - n. Let A be a
square n× n matrix with all entries in 1 + pZp; that is, let

A =


1 + pa11 1 + pa12 . . . 1 + pa1n
1 + pa21 1 + pa22 . . . 1 + pa2n

...
...

. . .
...

1 + pan1 1 + pan2 . . . 1 + pann

 , (1)

where each aij ∈ Zp. Then there exists an eigenvalue λ0 of A of multiplicity one such that
λ0 ∈ Zp, λ0 ≡ n (mod pZp), and |λ|p < |λ0|p for all other eigenvalues λ of A in Cp. In
addition, there exists an eigenvector v of A with eigenvalue λ0 such that all components of
v are elements of 1 + pZp.

Our next result states that we can relax the condition of Theorem 1.3 that p - n as long
as we strengthen the other condition according to the extent to which p | n. Specifically,
given a prime p and positive integer n, we show that the conclusion of Theorem 1.3 about
the existence of a strictly maximal eigenvalue λ0 of A still holds if we require that all entries
of A be close enough to 1.

Theorem 1.4. Let p be a prime and let n, ` be positive integers. Let A be a square n × n
matrix with all entries in 1 + p`Zp; that is, let

A =


1 + p`a11 1 + p`a12 . . . 1 + p`a1n
1 + p`a21 1 + p`a22 . . . 1 + p`a2n

...
...

. . .
...

1 + p`an1 1 + p`an2 . . . 1 + p`ann

 , (2)

where each aij ∈ Zp. Suppose ` > 2(n − 1)νp(n). Then there exists an eigenvalue λ0 of A
of multiplicity one such that λ0 ∈ Zp, |λ0 − n|p ≤ p−`/|nn−1|p, and |λ|p < |λ0|p for all other
eigenvalues λ of A in Cp.

Our final result analyzes the forward orbits of vectors with p-adic components under iter-
ation by p-adic square matrices with a strictly dominant eigenvalue of multiplicity one. We
produce a statement for matrices over the p-adic numbers analogous to that of Theorem 1.2
for matrices over the real numbers.

Theorem 1.5. Let A be a square n × n matrix with all entries in Qp. Suppose that A has
an eigenvalue λ0 of multiplicity one such that |λ|p < |λ0|p for all other eigenvalues λ of A in
Cp. Then iteration of A/λ0 converges to a projection operator onto the eigenspace of λ0.

2. Background on the p-adic Numbers

We begin with some remarks on the p-adic numbers Qp and their complete, algebraically
closed extension Cp. Unless otherwise specified, we will take p to be any prime number. We
refer the reader to [2] for more details on Qp and Cp.
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2.1. Construction of Qp.

Definition 2.1. The p-adic valuation on Z is the function νp : Z \ { 0 } → Z defined by

νp(n) =

{
max { k ∈ N : pk | n } if p | n
0 if p - n.

(3)

We extend νp to Q as follows: we define νp : Q→ Z ∪ {∞} by

νp(x) =

{
νp(a)− νp(b) if x = a/b ∈ Q×

∞ if x = 0.
(4)

Definition 2.2. The p-adic absolute value on Q is the function |·|p : Q→ R defined by

|x|p = p−νp(x), (5)

where we define p−∞ = 0.

We recall that a field K is complete if every Cauchy sequence in K converges in K. It
is known that Q is not complete with respect to any of its nontrivial absolute values [2,
Lemma 3.2.3].

Definition 2.3. The field Qp of p-adic numbers is the completion of Q with respect to the
p-adic absolute value.

2.2. Properties of Qp. There are several useful properties of Qp that we will keep in mind
throughout our work. The first of these appears as part of Theorem 3.2.13 in [2].

Theorem 2.4. Fix a prime p and let a, b ∈ Qp. Then

|a+ b|p ≤ max { |a|p, |b|p } . (6)

Theorem 2.5 (Proposition 2.3.3 in [2]). Fix a prime p and let a, b ∈ Qp with |a|p 6= |b|p.
Then

|a+ b|p = max { |a|p, |b|p } . (7)

It is a consequence of Theorem 2.4 that Zp = {x ∈ Qp : |x|p ≤ 1 } is a subring of Qp; we
call this the ring Zp of p-adic integers. It follows similarly that pZp = {x ∈ Qp : |x|p < 1 }
is the unique maximal ideal of Zp. The quotient field Zp/pZp is called the residue field of
Zp; it is an immediate consequence of [2, Corollary 3.3.6] that Zp/pZp ∼= Z/pZ.

The following results allow us to deduce information about the roots of a polynomial
f(X) ∈ Zp[X] from the behavior of the reductions of f(X) and f ′(X) modulo pZp (f ′(X)
being the formal derivative of f(X)).

Theorem 2.6 (Hensel’s Lemma, Theorem 3.4.1 in [2]). Let f(X) be a polynomial whose
coefficients are in Zp and suppose that there exists a p-adic integer α1 ∈ Zp such that

f(α1) ≡ 0 (mod pZp) (8)

and

f ′(α1) 6≡ 0 (mod pZp). (9)

Then there exists a unique p-adic integer α ∈ Zp such that f(α) = 0 and α ≡ α1 (mod pZp).
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Theorem 2.7 (Strong Hensel’s Lemma, Lemma 3.1 and Corollary 1 in [1]). Let f(X) ∈
Zp[X] be a polynomial whose coefficients are in Zp and suppose that there exists a p-adic
integer α1 ∈ Zp such that

|f(α1)|p < |f ′(α1)|2p. (10)

Then there exists a unique p-adic integer α ∈ Zp for which f(α) = 0 and

|α− α1|p ≤
|f(α1)|p
|f ′(α1)|p

. (11)

We conclude this subsection with a theorem that gives us sufficient conditions for a poly-
nomial in Zp[x] to be irreducible over Qp.

Theorem 2.8 (Eisenstein Irreducibility Criterion, Proposition 5.3.11 in [2]). Let

f(X) = a0 + a1X + · · ·+ anX
n ∈ Zp[x] (12)

be a polynomial satisfying the conditions

i) |an|p = 1,

ii) |ai|p < 1 for 0 ≤ i < n, and

iii) |a0|p = 1/p.

Then f(X) is irreducible over Qp.

2.3. The Field Cp and Newton Polygons. While the algebraic closure Qp of Qp is

not complete [2, Theorem 5.7.4], the completion of Qp is algebraically closed [2, Propo-
sition 5.7.8]; we call this field Cp.

Definition 2.9. Let f(X) = a0 + a1X + · · ·+ anX
n ∈ Cp[X] be a polynomial. The Newton

polygon of f is the lower convex hull of the set of points

S = { (i, νp(ai)) : 1 ≤ i ≤ n } . (13)

By a slope of the Newton polygon, we will mean the slope of a line segment appearing in the
polygon. Given a slope of the polygon, by the length of the slope, we will mean the length of
the projection of the corresponding segment on the x-axis. It is clear that since the Newton
polygon is the lower convex hull of a set of points in R2, the slopes form a nondecreasing
sequence if we pick the corresponding segments from left to right.

Theorem 2.10 (Theorem 6.4.7 in [2]). Let f(X) = a0 + a1X + · · · + anX
n ∈ Cp[X] be a

polynomial, and let m1,m2, . . . ,mr be the slopes of its Newton polygon (in increasing order).
Let i1, i2, . . . , ir be the corresponding lengths. Then, for each k, 1 ≤ k ≤ r, f(X) has exactly
ik roots (counting multiplicities) of absolute value pmk .

3. Background on Linear Algebra

We now review necessary background material on linear algebra. We will take A to be a
square n × n with entries from a field F . We refer the reader to [3] and [4] for additional
details on linear algebra.
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3.1. Calculation of Determinants. A useful formula for computing determinants is pro-
vided in [3, Chapter 5, Equation 16]. This formula expresses the determinant of A as the
sum of signed products of entries from distinct rows and columns in A. We will quote this
formula below for convenience.

Lemma 3.1 (Determinant Formula). Let Sn denote the symmetric group on { 1, . . . , n },
and let sgn denote the sign function of permutations in Sn. Then

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i). (14)

3.2. Calculations Involving Jordan Normal Forms. We briefly review how to compute
powers of matrices given in Jordan normal form. Let A be a matrix in Jordan normal form:

J =


Jm1 0 . . . 0
0 Jm2 . . . 0
...

...
. . .

...
0 0 . . . Jmj

 , (15)

where, for 1 ≤ i ≤ j, Jmi
is the mi ×mi Jordan block associated to the eigenvalue λi of J :

Jmi
=


λi 1 . . . 0 0
0 λi . . . 0 0
...

...
. . .

...
...

0 0 . . . λi 1
0 0 . . . 0 λi

 . (16)

Different Jordan blocks may share the same eigenvalue, but different eigenvalues may not
share the same Jordan bock. A useful computational property of Jordan normal forms, as
noted in Section 5.5 of [4], is that we can easily compute powers of A:

Jn =


Jnm1 0 . . . 0
0 Jnm2

. . . 0
...

...
. . .

...
0 0 . . . Jnmj

 . (17)

Thus, in order to compute Jn for a positive integer n, we only have to compute the power
Jnmi

of each Jordan block Jmi
. By induction, we will show that, for any positive integer n,

Jnmi
=


λni

(
n
1

)
λn−1i . . .

(
n

mi−2

)
λ
n−(mi−2)
i

(
n

mi−1

)
λ
n−(mi−1)
i

0 λni . . .
(

n
mi−3

)
λ
n−(mi−3)
i

(
n

mi−2

)
λ
n−(mi−2)
i

...
...

. . .
...

...
0 0 . . . λni

(
n
1

)
λn−1i

0 0 . . . 0 λni

 . (18)
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If a < b, we say
(
a
b

)
= 0, as is standard. In the case n = 1, the formula (18) agrees

with the Jordan block Jmi
. Suppose inductively that the formula (18) holds for some integer

n = k ≥ 1. That is,

Jkmi
=



λki
(
k
1

)
λk−1i . . .

(
k

mi−2

)
λ
k−(mi−2)
i

(
k

mi−1

)
λ
k−(mi−1)
i

0 λki . . .
(

n
mi−3

)
λ
k−(mi−3)
i

(
k

mi−2

)
λ
k−(mi−2)
i

...
...

. . .
...

...

0 0 . . . λki
(
k
1

)
λk−1i

0 0 . . . 0 λki


. (19)

We compute Jk+1
mi

:

Jk+1
mi

=



λki
(
k
1

)
λk−1i . . .

(
k

mi−2

)
λ
k−(mi−2)
i

(
k

mi−1

)
λ
k−(mi−1)
i

0 λki . . .
(

k
mi−3

)
λ
k−(mi−3)
i

(
k

mi−2

)
λ
k−(mi−2)
i

...
...

. . .
...

...

0 0 . . . λki
(
k
1

)
λk−1i

0 0 . . . 0 λki





λi 1 . . . 0 0

0 λi . . . 0 0
...

...
. . .

...
...

0 0 . . . λi 1

0 0 . . . 0 λi


(20)

=



λk+1
i λki +

(
k
1

)
λki . . .

(
k

mi−2

)
λ
k−(mi−2)
i +

(
k

mi−1

)
λ
k−(mi−2)
i

0 λk+1
i . . .

(
k

mi−3

)
λ
k−(mi−3)
i +

(
k

mi−2

)
λ
k−(mi−3)
i

...
...

. . .
...

0 0 . . . λki +
(
k
1

)
λki

0 0 . . . λk+1
i


(21)

=



λk+1
i

(
k+1
1

)
λ
(k+1)−1
i . . .

(
k+1
mi−2

)
λ
(k+1)−(mi−2)
i

(
k+1
mi−1

)
λ
(k+1)−(mi−1)
i

0 λk+1
i . . .

(
k+1
mi−3

)
λ
(k+1)−(mi−3)
i

(
k+1
mi−2

)
λ
(k+1)−(mi−2)
i

...
...

. . .
...

...

0 0 . . . λk+1
i

(
k+1
1

)
λ
(k+1)−1
i

0 0 . . . 0 λk+1
i


. (22)

The final step follows by Pascal’s identity for binomial coefficients:

(
a+ 1

b+ 1

)
=

(
a

b

)
+

(
a

b+ 1

)
(23)

for nonnegative integers a and b. Hence, the formula (18) holds for n = k + 1. By the
Principle of Mathematical Induction, this formula holds for all positive integers n.
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4. Proofs of Main Results

4.1. Proof of Theorem 1.3. In this subsection, we establish Theorem 1.3. Our argument
will make use of the Newton polygon associated to the characteristic polynomial f(X) of A.
First we establish several lemmas.

Lemma 4.1. Let p be a prime and let n be a positive integer. Let A be a square n×n matrix
with all entries in 1 + pZp; that is, let

A =


1 + pa11 1 + pa12 . . . 1 + pa1n
1 + pa21 1 + pa22 . . . 1 + pa2n

...
...

. . .
...

1 + pan1 1 + pan2 . . . 1 + pann

 . (24)

Then |det(A)|p ≤ p1−n.

Proof. Using Lemma 3.1, we calculate:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

(1 + ai,σ(i)p) (25)

=
∑
σ∈Sn

sgn(σ)
∑

I⊆{1,...,n}

∏
i∈I

ai,σ(i)p (26)

=
∑
σ∈Sn

sgn(σ)
n∑
k=0

∑
I⊆{1,...,n}
|I|=k

∏
i∈I

ai,σ(i)p (27)

=
n∑
k=0

∑
I⊆{1,...,n}
|I|=k

pkS(I), (28)

where for each I ⊆ { 1, . . . , n } we define

S(I) =
∑
σ∈Sn

sgn(σ)
∏
i∈I

ai,σ(i). (29)

Now suppose that 0 ≤ k ≤ n − 2. Let I ⊆ { 1, . . . , n } with |I| = k. Since |I| ≤ n − 2,
there exists a transposition ε ∈ Sn that fixes the elements of I. Then since the map σ 7→ σε
is a bijection from Sn to itself, we can write

S(I) =
∑
σ∈Sn

sgn(σε)
∏
i∈I

ai,σε(i) (30)

= sgn(ε)
∑
σ∈Sn

sgn(σ)
∏
i∈I

ai,σ(i) (31)

= −S(I), (32)
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where in line (31) we use the fact that ai,σε(i) = ai,σ(i) for all σ ∈ Sn and for all i ∈ I. The
statement S(I) = −S(I) implies that S(I) = 0, so line (28) becomes

det(A) =
n∑

k=n−1

∑
I⊆{1,...,n}
|I|=k

pkS(I). (33)

We see from Theorem 2.4 that for any subset I of { 1, . . . , n }, |S(I)|p ≤ 1. Taking the p-adic
absolute value of both sides of equation (33) and again applying Theorem 2.4, we find that

|det(A)|p ≤
∣∣∣∣∣

n∑
k=n−1

∑
I⊆{1,...,n}
|I|=k

pk

∣∣∣∣∣
p

≤ max { |pn−1|p, |pn|p } = p1−n. (34)

�

Lemma 4.2. Let the matrix A be as in the statement of Lemma 4.1 Let the characteristic
polynomial f(X) of A be given as:

f(X) = Xn + Cn−1X
n−1 + · · ·+ C1X + C0. (35)

Then |Ci|p ≤ p1−n+i for 0 ≤ i ≤ n− 1, and if additionally p - n, |Cn−1|p = 1.

Proof. First we establish some notations. Given positive integers i and j, let δi,j represent
the Kronecker delta function of i and j. Given a permutation σ ∈ Sn, let Fix(σ) denote the
set of all elements of { 1, . . . , n } that are fixed by σ. Given a subset I of { 1, . . . , n }, let Ic

represent the set { 1, . . . , n } \ I.
We apply Lemma 3.1 to A−XI to find the characteristic polynomial f(X) of A:

f(X) = (−1)n det(A−XI) (36)

= (−1)n
∑
σ∈Sn

sgn(σ)
n∏
i=1

(1 + pai,σ(i) − δi,σ(i)X) (37)

= (−1)n
∑
σ∈Sn

sgn(σ)
∑

I⊆{1,...,n}

(∏
i∈Ic

(
1 + pai,σ(i)

))(∏
i∈I

(
−δi,σ(i)X

))
(38)

= (−1)n
∑
σ∈Sn

sgn(σ)
∑

I⊆Fix(σ)

(∏
i∈Ic

(
1 + pai,σ(i)

))
(−1)|I|X |I| (39)

= (−1)n
∑

I⊆{1,...,n}

(−1)|I|X |I|

 ∑
σ∈Sn

I⊆Fix(σ)

sgn(σ)
∏
i∈Ic

(
1 + pai,σ(i)

). (40)

Note that if we let AI denote the (n − |I|) × (n − |I|) matrix formed by removing the ith
row and column from A for each i ∈ I, then line (40) becomes

f(X) = (−1)n
∑

I⊆{1,...,n}

(−1)|I|X |I| det(AI). (41)
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This is because, given I ⊆ { 1, . . . , n }, applying Lemma 3.1 to AI tells us that

det(AI) =
∑

σ∈Sym(Ic)

sgn(σ)
∏
i∈Ic

(1 + pai,σ(i)) (42)

=
∑
σ∈Sn

I⊆Fix(σ)

sgn(σ)
∏
i∈Ic

(
1 + pai,σ(i)

)
. (43)

It follows that for 0 ≤ i ≤ n − 1, the coefficient Ci can be calculated by adding and
subtracting the determinants of (n− i)× (n− i) matrices with entries in 1 +pZp; Lemma 4.1
implies that each of these determinants has a p-adic absolute value of at most p1−(n−i) =
p1−n+i, and Theorem 2.4 then implies that

|Ci|p ≤ p1−n+i (44)

Suppose, additionally, that p - n. We note by line (41) that

|Cn−1|p =

∣∣∣∣∣∣
∑
|I|=n−1

det(AI)

∣∣∣∣∣∣
p

(45)

= |tr(A)|p (46)

= |(1 + a11p) + · · ·+ (1 + annp)|p (47)

= |n+ (a11 + · · ·+ ann)p|p. (48)

It follows from Theorem 2.4 that |a11 + · · · + ann|p ≤ 1, and so |(a11 + · · · + ann)p|p ≤ p−1.
But |n|p = 1 since p - n, so by Theorem 2.5, line (48) becomes

|Cn−1|p = max { |n|p, |(a11 + · · ·+ ann)p|p } = |n|p = 1. (49)

�

Proof of Theorem 1.3. Let the matrix A be as in the statement of Theorem 1.3. Suppose
that p - n. Our first goal is to show the existence of a strictly maximal eigenvalue λ0 of A of
multiplicity one. We reach this goal by an analysis of the characteristic polynomial f(X) of
A.

We first construct a partial Newton polygon for f(X). Referring to Lemma 4.2, we find
that νp(Ci) ≥ n− (i+ 1) for 0 ≤ i ≤ n− 2, and νp(Cn−1) = 0 = νp(1); see Figure 1.

The slope of the Newton polygon from (n − 2, νp(Cn−2)) to (n − 1, 0) must be at most
0− 1 = −1. The fact that the Newton polygon is the lower convex hull of a set of points in
R2 implies that the slopes are nonincreasing from right to left, so we conclude that all slopes
to the left of (n−1, 0) must be at most −1. Applying Theorem 2.10 to this Newton polygon,
we find that there are n− 1 roots of f(X) (in Cp, counting multiplicities) of absolute value
at most p−1, and there is one root λ0 with

|λ0|p = p0 = 1. (50)

It follows that λ0 is a strictly maximal eigenvalue of A of multiplicity one.
Our second goal is to show that λ0 ∈ Zp. This will require an application of Theorem 2.6,

Hensel’s lemma. In particular, we will show that λ0 ≡ n (mod pZp). Recall we showed in
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1 2 n− 1 n

1

2

(n− 1)

n

Remaining Points
Lie in this Region

Figure 1. Newton Polygon for f(X) in the proof of Theorem 1.3.

Lemma 4.2 that if we write the characteristic polynomial f(X) of A as

f(X) = Xn + Cn−1X
n−1 + · · ·+ C1X + C0, (51)

then we know that |Ci|p ≤ p1−n+i for 0 ≤ i ≤ n − 1, and |Cn−1|p = 1 since p - n. Thus,
f(X) ∈ Zp[X], so f(n) and f ′(n) are in Zp. Note that

Cn−1 = − tr(A) = −n− (a11 + · · ·+ ann)p ≡ −n (mod pZp). (52)

Reducing f(n) and f ′(n) modulo pZp, we find that

f(n) ≡ nn − nnn−1 (mod pZp) (53)

≡ 0 (mod pZp), (54)

since |Ci|p ≤ p−1 for 0 ≤ i ≤ n− 2, whereas

f ′(n) ≡ nnn−1 − (n2 − n)nn−2 (mod pZp) (55)

≡ nn − nn + nn−1 (mod pZp) (56)

≡ nn−1 6≡ 0 (mod pZp). (57)

We now apply Theorem 2.6 to conclude that there exists a unique p-adic integer α ∈ Zp such
that f(α) = 0 and α ≡ n (mod pZp). Writing α = n + x for some x ∈ pZp, it follows from
Theorem 2.5 that |α|p = |n|p = 1. But we saw in equation (50) that λ0 is the unique root of
f(X) of p-adic absolute value 1, so it follows that λ0 = α ∈ Zp. We now have that

λ0 ≡ n (mod pZp). (58)

What remains is to show that there exists an eigenvector of A with eigenvalue λ0 such
that all of its components are elements of 1 +pZp. We can solve a linear system of equations
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in Qp to find a nonzero eigenvector v = (v1, . . . , vn) ∈ Qn
p of λ0. If we pick a component vi

of v such that |vi|p = max { |v1|p, . . . , |vn|p }, then it follows that

u =
v

vi
(59)

is an eigenvector of λ0 contained in Znp . Since ui = 1, we see that

(Au)i = λ0ui = λ0 ≡ n (mod pZp). (60)

The matrix A is equivalent to the matrix of all 1’s modulo pZp, so for all j with 1 ≤ j ≤ n,
calculating (Au)j as the scalar product of the jth row of A with u shows that

(Au)j ≡ u1 + · · ·+ un (mod pZp). (61)

Thus, all of the components of (Au)j are equivalent to each other modulo pZp, and by
equation (60), they are all equivalent to n modulo pZp. But since Au = λ0u, we also know
that

(Au)j = λ0uj ≡ nuj (mod pZp) (62)

for all j with 1 ≤ j ≤ n. Then we have the system of equations:

n ≡ nu1 (mod pZp) (63)

n ≡ nu2 (mod pZp) (64)

...

n ≡ nun (mod pZp). (65)

Since n 6≡ 0 (mod pZp), we can divide each line above through by n to see that every
component uj of u is equivalent to 1 modulo pZp and is hence an element of 1 + pZp. �

Example 4.3. Here we show that the conclusions of Theorem 1.3 do not necessarily hold
if we relax the conditions that: (a) all entries of A are in 1 + pZp, and (b) p - n. When we
applied Theorem 2.6 in the proof of Theorem 1.3 to show that the maximal eigenvalue was
in Zp, we used the fact that f(n) ≡ 0 (mod pZp), but f ′(n) 6≡ 0 (mod pZp). It stands to
reason that if we want the maximal eigenvalue to not be in Zp, it would be worthwhile to
consider cases where f ′(n) is equivalent to zero modulo pZp.

We consider the matrix A ∈ Mat2×2(Q2) defined by

A =

[
1 + 2a11 1 + 2a12
1 + 2a21 1 + 2a22

]
, (66)

where each aij ∈ Z2. The characteristic polynomial of A is

f(X) = X2 − tr(A)X + det(A), (67)

so f ′(X) = 2X − tr(A) and f ′(2) = 4− tr(A). If f ′(2) = 0, then tr(A) = 4. Then

2 + 2(a11 + a22) = 4 (68)

a11 + a22 = 1. (69)
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Let (a11, a12, a21, a22) = (1/3, 0, 0, 2/3), so that each aij ∈ Z2 and a11 + a22 = 1. Then
equation (66) becomes

A =

(
5/3 1
1 7/3

)
, (70)

and equation (67) becomes
f(X) = X2 − 4X + 26/9. (71)

Taking the 2-adic absolute values of the coefficients of f(X) in equation 71, we find that

i) |1|2 = 1,

ii) |−4|2 = 1/4 < 1, and

iii) |26/9|2 = 1/2.

We conclude by Theorem 2.8 that f(X) is irreducible over Q2. Thus, neither eigenvalue
of f(X) is in Q2, let alone Z2. If we look at the Newton polygon of f(X), we see that its
vertices are (0, 1) and (2, 0), so its eigenvalues have the same 2-adic absolute value, 2−1/2. �

4.2. Proof of Theorem 1.4. In this subsection, we generalize Theorem 1.3 to establish
Theorem 1.4. Many parts of the argument will be similar.

Lemma 4.4. Let p be a prime and let n, ` be positive integers. Let A be a square n × n
matrix with all entries in 1 + p`Zp; that is, let

A =


1 + p`a11 1 + p`a12 . . . 1 + p`a1n
1 + p`a21 1 + p`a22 . . . 1 + p`a2n

...
...

. . .
...

1 + p`an1 1 + p`an2 . . . 1 + p`ann

 . (72)

Then |det(A)|p ≤ p`(1−n).

Proof. The argument is as in the proof of Lemma 4.1; the only difference is that one must
replace p with p` throughout. �

Lemma 4.5. Let the matrix A be as in the statement of Lemma 4.4. Let the characteristic
polynomial f(X) of A be given as:

f(X) = Xn + Cn−1X
n−1 + · · ·+ C1X + C0. (73)

Then |Ci|p ≤ p`(1−n+i) for 0 ≤ i ≤ n− 2 and if additionally ` > νp(n), |Cn−1|p = |n|p.
Proof. The estimates for |Ci|p in the case 0 ≤ i ≤ n− 2 follow as in the proof of Lemma 4.2;
the only difference is that one must replace p with p` throughout.

Suppose additionally that ` > νp(n), so |n|p > |p`|p ≥ |p`(a11 + · · ·+ ann)|p. We estimate:

|Cn−1|p = |tr(A)|p (74)

= |(1 + p`a11) + · · ·+ (1 + p`ann)|p (75)

= |n+ p`(a11 + · · ·+ ann)|p (76)

= |n|p. (77)
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�

Proof of Theorem 1.4. Let the matrix A be as in the statement of Theorem 1.4. Suppose
n > 1, for otherwise this discussion is trivial. Suppose that ` > 2(n− 1)νp(n). Our first
goal is to show the existence of a strictly maximal eigenvalue λ0 of A of multiplicity one.
This requires a careful analysis of the characteristic polynomial f(X) of A.

From Lemma 4.5, we have that νp(Ci) ≥ `(n−i−1) for 0 ≤ i ≤ n−2, and νp(Cn−1) = νp(n).
We note that since n is a positive integer larger than 1, the hypotheses imply that ` > 2νp(n),
so νp(Cn−1) < `/2. We construct a partial Newton polygon for f(X); see Figure 2.

1 2 n− 2 n− 1 n

`

2`

(n− 1)`

n`

Remaining Points
Lie in this Region

Figure 2. Newton Polygon for f(X) in the proof of Theorem 1.4.

We note that the line segment connecting (n− 1, νp(Cn−1)) with (n, 0) has the slope

0− νp(Cn−1)
n− (n− 1)

= −νp(Cn−1) (78)

> −`/2. (79)

We now consider extending the line segment through (n − 1, νp(Cn−1)) and (n, 0) to the
left until it intersects the y axis. For 0 ≤ i ≤ n− 2, we bound the y-coordinate of the point
on the line segment extension with x-coordinate i:

νp(Cn−1)(n− i) < (`/2)(n− i) (80)

= (`/2)(n− i− 1) + `/2 (81)

≤ νp(Ci)/2 + `/2 (82)

≤ νp(Ci)/2 + νp(Ci)/2 (83)

= νp(Ci). (84)
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The calculation above shows that this line segment extension will lie strictly below the
remaining points of the Newton polygon. We note that the slopes of the segments of the
Newton polygon to the left of the point (n− 1, νp(Cp−1)) are bounded above by the slope of
the line segment through (n− 2, `) and (n− 1, νp(Cn−1)). We calculate:

νp(Cn−1)− `
(n− 1)− (n− 2)

< `/2− ` (85)

= −`/2. (86)

Applying Theorem 2.10 to this Newton polygon, we find that there are n−1 roots of f(X)
(in Cp, counting multiplicities) of absolute value strictly less than p−`/2. We will denote these
roots by λ1, λ2, . . . , λm. Furthermore, there is one root, denoted λ0, of absolute value strictly
greater than p−`/2. This root is a strictly maximal eigenvalue of A of multiplicity one.

Now that we have established the existence of a maximal eigenvalue λ0, we will show that
λ0 is a p-adic integer. This will require an application of Theorem 2.7, the strong version of
Hensel’s lemma. We calculate:

f(n) = nn + Cn−1n
n−1 + Cn−2n

n−2 + · · ·+ C1n+ C0 (87)

= nn − (n+ p`(a11 + · · ·+ ann))nn−1 + Cn−2n
n−2 + · · ·+ C1n+ C0 (88)

= −p`(a11 + · · ·+ ann)nn−1 + Cn−2n
n−2 + · · ·+ C1n+ C0. (89)

Since |Ci|p ≤ p−` for 0 ≤ i ≤ n− 2, we have the bound |f(n)|p ≤ p−`. We calculate:

f ′(n) = nnn−1 + (n− 1)Cn−1n
n−2 + (n− 2)Cn−2n

n−3 + · · ·+ C1 (90)

= nn − (n− 1)(n+ p`(a11 + · · ·+ ann))nn−2 + (n− 2)Cn−2n
n−3 + · · ·+ C1 (91)

= nn + (nn−2 − nn−1)(n+ p`(a11 + · · ·+ ann)) + (n− 2)Cn−2n
n−3 + · · ·+ C1 (92)

= nn−1 + p`(nn−2 − nn−1)(a11 + · · ·+ ann) + (n− 2)Cn−2n
n−3 + · · ·+ C1. (93)

Since ` > (n− 1)νp(n), so that p−` < |nn−1|p, and since |Ci|p ≤ p−` for 0 ≤ i ≤ n− 2, we
have the equality |f ′(n)|p = |nn−1|p. Finally, since ` > 2(n− 1)νp(n), we have the bound:

|f(n)|p ≤ p−` (94)

< p−2(n−1)νp(n) (95)

= |n2(n−1)|p (96)

= |f ′(n)|2p. (97)

We now apply Theorem 2.7 to conclude that there exists a unique p-adic integer α so that
f(α) = 0 satisfying
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|α− n|p ≤
|f(n)|p
|f ′(n)|p

(98)

≤ p−`

|nn−1|p
(99)

<
p−`

p−`/2
(100)

= p−`/2. (101)

We will show that the none of the nonmaximal eigenvalues are candidates for the root
α found by Hensel’s lemma. Let λi, 1 ≤ i ≤ m be a nonmaximal eigenvalue of A. Since
|λi|p < p−`/2 and |n|p > p−`/2, we have:

|λi − n|p > p−`/2. (102)

Hence, the nonmaximal eigenvalues are not α. Thus λ0 = α. In particular, λ0 is a p-adic
integer. From (99), we obtain |λ0 − n|p ≤ p−`/|nn−1|p.

From the Newton polygon in Figure 2 and the estimate for |Cn−1|p from Lemma 4.5, we
calculate:

|λ0|p = |Cn−1|p (103)

= |n|p. (104)

�

4.3. Proof of Theorem 1.5. In this subsection, we establish Theorem 1.5. Out argument
will make use of the Jordan canonical form of n × n matrices with a strictly dominating
eigenvalue of multiplicity one.

Proof of Theorem 1.5. Let A be an n × n matrix with an eigenvalue λ0 of multiplicity one
such that |λ|p < |λ0|p for all other eigenvalues λ of A. We write the Jordan canonical form
of A in block form:

A = Q−1


λ0 0 . . . 0
0 Jm1 . . . 0
...

...
. . .

...
0 0 . . . Jmj

Q, (105)

where the Jmi
are mi×mi Jordan blocks associated to the nonmaximal eigenvalues of A. We

will denote the nonmaximal eigenvalues, by λ1, λ2, . . . , λj; note, however, that the eigenvalues
in this list are not necessarily distinct.We write out each matrix Jmi

as:
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Jmi
=


λi 1 . . . 0 0
0 λi . . . 0 0
...

...
. . .

...
...

0 0 . . . λi 1
0 0 . . . 0 λi

 . (106)

We calculate the kth power of these Jordan blocks:

Jkmi
=



λki
(
k
1

)
λk−1i . . .

(
k

mi−2

)
λ
k−(mi−2)
i

(
k

mi−1

)
λ
k−(mi−1)
i

0 λki . . .
(

k
mi−3

)
λ
k−(mi−3)
i

(
k

mi−2

)
λ
k−(mi−2)
i

...
...

. . .
...

...

0 0 . . . λki
(
k
1

)
λk−1i

0 0 . . . 0 λki


. (107)

For a positive integer k, the kth power of A can be calculated as

Ak = Q−1


λk0 0 . . . 0
0 Jkm1

. . . 0
...

...
. . .

...
0 0 . . . Jkmj

Q. (108)

We will now divide through by λk0 to obtain:

(A/λ0)
k = Q−1


1 0 . . . 0
0 Jkm1

/λk0 . . . 0
...

...
. . .

...
0 0 . . . Jkmj

/λk0

Q. (109)

We compute each power Jkmi
/λk0:

Jkmi
/λk0 =



(
λi
λ0

)k (
k
1

) (
λi
λ0

)k−1 (
1
λ0

)
. . .

(
k

mi−1

) (
λi
λ0

)k−(mi−1) (
1
λ0

)mi−1

0
(
λi
λ0

)k
. . .

(
k

mi−2

) (
λi
λ0

)k−(mi−2) (
1
λ0

)mi−2

...
...

. . .
...

0 0 . . .
(
k
1

) (
λi
λ0

)k−1 (
1
λ0

)
0 0 . . .

(
λi
λ0

)k


. (110)
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Noting that each |λi|p < |λ0|p for 1 ≤ i ≤ j, we see that each block Jkmi
/λk0 vanishes as k

tends towards infinity. Thus as as k tends towards infinity, the sequence (A/λ0)
k converges

to

P = Q−1


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

Q. (111)

Since Q and Q−1 induce a change of basis from the standard basis of Qn
p to the basis

of generalized eigenvectors of A, and since the first column of Q−1 is the eigenvector v0

associated to the maximal eigenvalue λ0, P is the projection onto the eigenspace spanned
by v0. �
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