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Abstract. Albertson and Berman [1] conjectured that every planar graph has an induced
forest on half of its vertices; the current best result, due to Borodin [3], is an induced forest on
two fifths of the vertices. We show that the Albertson-Berman conjecture holds, and is tight,
for planar graphs of treewidth 3 (and, in fact, for any graph of treewidth at most 3). We also
improve on Borodin’s bound for 2-outerplanar graphs by finding a large outerplanar induced
subgraph and invoking Hosono’s result [9] that outerplanar graphs have large induced forests.
Finally, we discuss potential extensions of this approach to k-outerplanar graphs and the
related problem of the vertex arboricity of 2-outerplanar graphs.

1. Introduction

A graph G = (V (G), E(G)) is a set V (G) of vertices and a set E(G) of pairs of vertices,
called edges. If the graph being referred to is clear from context, we simply write V and
E. In this paper, all graphs are assumed to be finite and simple (without loops or parallel
edges). If V ′ ⊆ V (G), G[V ′] = (V ′, E ′) is the subgraph induced by V ′, where E ′ ⊆ E(G)
consists of all edges in V ′. A proper m-coloring of a graph G is an assignment of one of m
colors to each vertex such that no adjacent vertices are the same color. An acyclic m-coloring
of G is a proper m-coloring in which the union of any two color classes induces an acyclic
subgraph (also called a forest).

A graph is planar if it can be drawn (embedded) in the plane without any edge crossings.
A given planar graph could have many embeddings in the plane with no edge crossings, and
some properties of the graph are dependent upon the embedding. Given a planar graph G
and a planar embedding of G, we denote the set of vertices and edges in the infinite face of
G by f∞G . A planar graph G = (V,E) is outerplanar (or ( 1-outerplanar)) with respect to an
embedding if all vertices are in f∞G ; it is k-outerplanar if for k = 1, G is outerplanar and for
k > 1, G[V \ V (f∞G )] is (k − 1)-outerplanar.

It is well-known that planar graphs are sparse, meaning that the number of edges is linear
in the number of vertices [6]. The sparsity of planar graphs suggests that they have “large”
induced forests, as sparsity means that, on average, vertices are incident to relatively few
edges, potentially allowing many vertices to be included in an induced subgraph without
creating a cycle. As there are planar graphs on n vertices whose largest induced forests have
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Figure 1. K2,2,2, also called the octahedron, is not acyclically 4-colorable.

size exactly n
2

(e.g. K4),
n
2

is a clear upper bound on the size of induced forests in planar
graphs. Albertson and Berman [1] conjectured that this upper bound is tight:

Conjecture 1.1. Every planar graph on n vertices has an induced forest on at least n
2

vertices.

Among the consequences of the Albertson-Berman conjecture would be that every planar
graph has an independent set of size at least n

4
, a fact implied by the Four Color Theorem.

The current best lower bound on the size of induced forests in planar graphs is 2n
5

, and
is due to Borodin [3]. This lower bound is actually a corollary of the following stronger
result by Borodin: planar graphs are acyclically 5-colorable. This implies the lower bound
stated above, as the union of the largest two color classes of an acyclic 5-coloring contains
at least two fifths of the vertices and induces a forest. This result is the best possible, as
there are planar graphs which do not have an acyclic 4-coloring (see Figure 1). This implies
that Conjecture 1.1 cannot be proven using acyclic colorings, as an acyclic 4-coloring is
needed to guarantee that the union of two color classes has size at least n

2
. However, acyclic

colorings are a means to prove special cases of Conjecture 1.1. In section 2.1, we show that
some classes of planar graphs are acyclically k-colorable for k ≤ 4. The 2n

5
lower bound on

induced forest size implied by Borodin’s result is thought not to be tight, as the notion of
an acyclic coloring is considerably more constrained than that of an induced forest.

Classes of planar graphs for which the conjecture has previously been proven include
outerplanar graphs [9] and planar graphs without k-cycles, where k ∈ {3, 4, 5, 6} [10]. It is
worth noting that the lower bound for induced forests in outerplanar and triangle-free planar
graphs is in fact larger than n

2
. Outerplanar graphs have induced forests on at least 2

3
of

their vertices [9], and Salavatipour uses the discharging technique to show that triangle-free
planar graphs on n vertices have induced forests on at least 17n+24

32
vertices [11]. The results
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on planar graphs without cycles of length k are implied by the fact that the vertices of such
graphs can be partitioned into two classes such that each class induces a forest, a notion
which will be discussed further in section 3.

In this paper, we use acyclic colorings to prove that Conjecture 1.1 is true for planar
graphs of treewidth at most 3 (defined below). We also improve the lower bound for 2-
outerplanar graphs to 4

9
by giving an algorithm to find an outerplanar induced subgraph of

a 2-outerplanar graph on at least 2
3

of the vertices.

Definition 1.2. A k-tree is a graph G = (V,E) such that:

i. If |V | = k, G = Kk

ii. If |V | > k, there exists a vertex v ∈ V such that d(v) = k and G− v is a k-tree.

A graph is a partial k-tree if it is the subgraph of a k-tree. We say that a graph G has
treewidth k if k is the least integer such that G is a partial k-tree. Note that k-outerplanar
graphs have treewidth at most 3k − 1 [7].

2. Results

2.1. Low Treewidth Graphs.

Proposition 2.1. Let G=(V,E) be a k-tree. There exists an acyclic (k + 1)-coloring of G.

Proof. We proceed by induction on |V |.
The base case, when |V | ≤ k, is trivial, as any coloring with exactly |V | colors is acyclic.
Suppose |V | = n. By the definition of a k-tree, there exists v ∈ V such that d(v) = k and

G − v is a k-tree. G − v has an acyclic (k + 1)-coloring by the inductive hypothesis. The
neighbors of v induce a k-clique in G and thus are colored k distinct colors in any proper
coloring. Color v the remaining color, say i. This coloring is acyclic, v has only one edge
with a vertex colored j for i 6= j. �

Corollary 2.2. Let G be a partial k-tree on n vertices. G has an induced forest on at least
2n
k+1

vertices.

Proof. By the above result, G has an acyclic (k + 1)-coloring. Let U be the union of the two
largest color classes in this coloring. Clearly, |U | ≥ 2n

k+1
and G[U ] is a forest. �

The corollary implies Conjecture 1.1 for planar graphs of treewidth 3, and, as K4 has
treewidth 3, the conjecture is tight for this class of planar graphs. For planar graphs of
treewidth 2, which includes outerplanar graphs, the corollary implies the existence of an
induced forest on 2

3
of the vertices. This bound is again tight, as the union of disjoint

triangles is outerplanar.

2.2. 2-outerplanar Graphs.

Our next result requires some additional notation and terminology. In the following discus-
sion, we will assume the embedding of a planar graph G is fixed and inherited by subgraphs.
Properties of G and its subgraphs such as k-outerplanarity and the elements of the set f∞

will be considered with respect to this fixed embedding.



4 Lei, Sherman-Bennett

Figure 2. A MLT 2-outerplanar graph. External edges are dashed; 2-external
edges are bolded. The vertex v has between degree 4.

For convenience, if G = (V,E) is 2-outerplanar, we write it as G = (L1, L2;E), where
L1 := {v ∈ V : v ∈ f∞G } and L2 := {v ∈ V : v ∈ f∞G[V \L1]

}. Clearly, L1 ∪ L2 = V . If a vertex
is in L1, we call it external ; if a vertex is in L2, we call it internal. The edges in f∞G are
called external ; those in f∞G [L2] are 2-external (see Figure 2). Note that f∞G[Li]

is a cactus

graph (every edge is in at most 1 cycle). Additionally, we say that a set of vertices A ⊆ V
encloses another set of vertices B ⊆ V if B ∩ f∞G[A∪B] = ∅. To simplify later arguments, we
assume that the embedding of G is such that if H is a connected component of G, H is not
enclosed by another connected component of G.

We call B ⊆ L1 a block of G if G[B] is a cycle. We also introduce a weakened notion of
triangulation, to simplify later arguments. G is mid-layer triangulated (MLT) if every face f
of G that contains vertices of exactly 2 layers is a triangle. Finally, in order to speak about
adjacencies of vertices in different layers, we define the between degree of v ∈ Li, denoted
db(v), as |N(v) ∩ Lj| where j 6= i (see Figure 2).

Observation 1. If a 2-outerplanar graph is MLT and uv is a 2-external edge, then there
exists w ∈ L2 such that uvw is a face.

Observation 2. If a 2-outerplanar graph is MLT, db(v) ≥ 1 for all v ∈ L2.

Lemma 2.3. Let G = (L1, L2;E) be a simple, MLT 2-outerplanar graph. If v ∈ L2 has
between degree 1, then it is incident to exactly two 2-external edges.
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Proof. Let u be the vertex in N(v) ∩ L1. By MLT, there exist 2 triangles, xuv and yuv
containing the edge uv. x 6= y since G is simple. As db(v) = 1, x and y are in L2, and the
edges xv and yv are 2-external. Therefore, v is incident to at least two 2-external edges.

Suppose for the sake of contradiction that v is incident to more than two 2-external edges.
Let w, z be consecutive neighbors in the clockwise ordering of N(v)∩f∞G[L2]

in the embedding

such that w and z are not in the same 2-connected component of f∞G[L2]
and w /∈ {x, y}. Then

by Observation 1, there exists s ∈ L1 such that vws is a face. Since w /∈ {x, y} and G is
simple, s 6= u. This implies db(v) ≥ 2, which is a contradiction. �

Lemma 2.4. Let G = (L1, L2;E) be an MLT 2-outerplanar graph and let D be the set of
2-external edges. There exists a matching M ⊆ D with the following property:

(1) If v ∈ L2 \ V (M) then db(v) ≥ 2.

Proof. Without loss of generality, we assume the only edges between L2 vertices are in C.
Let L := {v ∈ L2 : db(v) = 1}.
First, observe a block B of G enclosing a vertex in L2 in fact encloses a vertex with between

degree at least 2: consider an edge uv in B: by MLT, u and v have a mutual neighbor w ∈ L2,
so db(w) ≥ 2.

We proceed by strong induction on |L|. If |L| = 0, any matching M ⊆ D has property
(1).

Suppose |L| = n. Let v ∈ L and u ∈ L2 \ L be vertices such that uv ∈ D. Such vertices
exist because every block enclosing a vertex in L2 encloses a vertex of between degree at
least 2. By Lemma 2.3, v has exactly one other neighbor w such that vw ∈ D.

Contract u and w to v and delete parallel edges and loops; let the resulting graph be G′.
Since v /∈ L(G′), by the inductive hypothesis, there exists a matching M ′ ⊆ D(G′) with
property (1). Now, consider M ′ as a matching in D(G).

If v is not covered by M ′ in G′, then u, v, w are not covered by M ′ in G, so let M :=
M ′∪{vw}. M ⊆ D(G) is a matching and has property (1), since db(u) > 1 as argued above.

If vx ∈ M ′ for some x ∈ V (G′), then either ux ∈ D(G) or wx ∈ D(G). In the first case,
let M := (M ′ \ {vx}) ∪ {ux, vw}; in the second, let M := (M ′ \ {vx}) ∪ {wx, uw}. In both
cases, M is a subset of D(G), is a matching and has property (1). �

Theorem 2.5. Let G = (L1, L2;E) be a 2-outerplanar graph on n vertices. G has an induced
outerplanar subgraph on at least 2n

3
vertices.

Proof. Without loss of generality, we assume G is MLT by adding edges if necessary. To
find the vertices inducing a large outerplanar graph in G, we delete vertices in L1 until all
vertices in L2 are “exposed” to the external face. To ensure that the resulting outerplanar
graph is sufficiently large, we delete vertices in L1 that expose 2 vertices in L2 or otherwise
ensure 2 vertices will be included in the outerplanar graph.

Let M be a matching with property (1) of Lemma 2.4. We create a list K of triples such
that each vertex in L2 occurs in exactly one triple. For each u ∈ L2 not covered by M ,
db(u) ≥ 2, and we add {u, v, w} to K, where v, w ∈ N(u) ∩ L1. For each edge xy ∈ M , by
Observation 1, there exists z ∈ L1 such that xyz is a face, and we add {x, y, z} to K.

We then perform the following procedure:
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while there exists {u, v, w} ∈ K such that {u, v, w} ∩ L1 = {v}
delete v from G and delete all triples containing v from K;

while there exists v ∈ L1 such that v is in 2 or more distinct triples of K
delete v from G and delete all triples containing v from K;

while {u, v, w} ∈ K
delete v ∈ L1 from G and delete {u, v, w} from K.

Note that if v ∈ L1 is deleted from G, all L2 vertices in a triple with v are exposed.
Therefore, the undeleted vertices induce an outerplanar subgraph in G.

In the first two steps, at least two L2 vertices were exposed for every deleted L1 vertex.
In the final step, all triples are disjoint, so each deletion of an L1 vertex exposes one L2

vertex and ensures that one L1 vertex will not be deleted; again, 2 vertices are included in
the induced outerplanar subgraph for every deleted vertex. This means that the subgraph
contains at least two thirds of the vertices of G.

�

This result is tight, as the disjoint union of multiple octahedrons (see Figure 1) is 2-
outerplanar, and its largest induced outerplanar subgraph is on 2

3
of its vertices. The result

is also tight for arbitrarily large connected 2-outerplanar graphs, as the same property holds
for graphs constructed by connecting disjoint octahedrons as shown in Figure 3.

Theorem 2.5 has an immediate corollary for k-outerplanar graphs. We first must extend
our notation for 2-outerplanar graphs. For a k-outerplanar graph G = (V,E), let L1 and L2

be defined as for 2-outerplanar graphs. Let L3 := V ∩f∞G[V \(L1∪L2)]
, L4 := V ∩f∞G[V \(L1∪L2∪L3)]

and so on.

Corollary 2.6. Let G = (L1, L2, . . . , Lk;E) be a k-outerplanar graph on n vertices. Then
G has an induced dk

2
e-outerplanar subgraph on at least 2n

3
vertices.

Proof. We apply Theorem 2.5 to pairs of successive layers in G, finding large induced out-
erplanar subgraphs Hi ⊆ G[Li ∪ Li−1] for i = 1, 3, 5, . . . , k − 1 (if k is even; if k is odd, we
end at i = k − 2). Let V ′ := ∪iV (Hi). G[V ′] is dk

2
e-outerplanar, as Li(G[V ′]) = V (Hi), and

|V ′| ≥ 2n
3

, as |V (Hi)| ≥ 2
3
|Li ∪ Li−1|. �

In combination with Corollary 2.2 and the fact that outerplanar graphs have treewidth 2,
Theorem 2.5 gives the following easy corollary.

Corollary 2.7. Let G=(V, E) be a 2-outerplanar graph on n vertices. G has an induced
forest on at least 4n

9
vertices.

Though this bound is an improvement on Borodin’s general bound, the fact that the
induced forest found in the above process is in fact an induced forest in an induced subgraph
of the original graph suggests that the bound need not be tight. It is possible that vertices
deleted from the 2-outerplanar graph to find the outerplanar induced subgraph could be
added to the induced forest found in that subgraph without creating cycles (see Figure 4).
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Figure 3. A 2-outerplanar graph whose largest induced outerplanar subgraph
is on 2

3
of its vertices. The white vertices induce such a subgraph, found by the

algorithm in Theorem 2.5. The bolded edges show an induced forest in this
outerplanar subgraph whose size satisfies the Albertson-Berman conjecture for
the 2-outerplanar graph.

3. Conjectures and Current Directions

Our first conjecture is an extension of the above result on 2-outerplanar graphs.

Conjecture 3.1. 3-outerplanar graphs on n vertices contain induced outerplanar subgraphs
on at least 3n

5
vertices.

If this conjecture is true, it would provide an alternate, and likely much simpler, proof of
Borodin’s bound for 3-outerplanar graphs. It should be noted that no tight examples have
been found for the conjecture; nor, indeed, have any examples been found by the authors of
3-outerplanar graphs with induced outerplanar subgraphs on less than 2

3
of the vertices.

A possible proof of this conjecture would take much the same form as the proof for 2-
outerplanar graphs, in which appropriately selected vertices in the 2 outer layers are deleted
to expose all vertices in the innermost layer and all remaining vertices in the middle layer.
In the 2-outerplanar proof, one structure that heavily influenced our algorithm was internal
vertices with between degree 1; this seems to remain true for this proof method for 3-
outerplanar graphs. In particular, to expose vertices in the innermost layer with between
degree 1, we must delete their neighbor in the next layer. This suggests that a step of
our algorithm should be to delete middle-layer vertices adjacent to between-degree 1 inner
vertices and then delete appropriate external vertices to expose the between-degree 1 inner
vertices. For any path of middle-layer vertices adjacent to between-degree 1 inner vertices,
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Figure 4. The outerplanar induced subgraph of this graph found by the
algorithm in Theorem 2.5 is induced by the white vertices. Every induced
forest on at least half of the vertices of this graph (an example is shown by
the bolded edges) includes vertices not in this outerplanar subgraph.

Figure 5. In this segment of a 3-outerplanar graph, the inner vertices (bot-
tom row) are exposed by deleting the white external (top row) and middle-layer
(middle row) vertices.

it seems we only need to delete 1 external vertex to expose them (see Figure 5); this saves
us from deleting more than 2 of every 5 vertices.

Our second conjecture requires additional context. The vertex-arboricity of a graph G =
(V,E), denoted a(G), is the least number of classes into which V can be partitioned such
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Figure 6. An example of an almost triangulated 2-outerplanar graph (dashed
edges) and its planar dual, a modified Halin graph (solid edges).

that each partition class induces a forest. Clearly, a(G) = 2 implies the existence of an
induced forest on at least half of the vertices of G. While it is true that a(G) ≤ 3 for all
planar graphs G [5], there are planar graphs with vertex arboricity 3 [10, 4]. However, all
examples of planar graphs with vertex arboricity 3 known to the authors of this paper are
at least 3-outerplanar. Additionally, all outerplanar graphs have vertex-arboricity at most
2, as they are acyclically 3-colorable. This leads us to the following conjecture.

Conjecture 3.2. If G is 2-outerplanar, then a(G)=2.

This conjecture, if true, would clearly imply the Albertson-Berman conjecture for 2-
outerplanar graphs.

Hakimi and Schmeichel have shown that, for a planar graph G, a(G) = 2 if and only if G∗

has a connected Eulerian spanning subgraph [8]. G∗ = (V ∗, E∗) here is the planar dual of
G, where V ∗ is the set of faces of G, including the infinite face, and, for f, g ∈ V ∗ fg ∈ E∗

if f and g share an edge in G.
A Halin graph is a planar graph constructed in the following manner: a tree in which

no vertex has exactly 2 neighbors is drawn in the plane with no edge crossings; edges are
then added to connect the leaves of the tree in a cycle in a manner that preserves planarity.
If G = (L1, L2;E) is a 2-outerplanar graph with triangulated finite faces such that L1 is a
block, G∗ is similar to a 3-regular Halin graph; it is a Halin graph with some edges in the
cycle subdivided by one or more vertices, each of which is adjacent to the dual vertex f∞G .
Additionally, no vertex in the tree is adjacent to f∞G (see Figure 6), and all vertices except
f∞G are degree 3. For convenience, we will call such graphs modified Halin graphs.
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Halin graphs are Hamiltonian, a result due to Bondy [2], and there is a fairly clear inductive
proof of this fact. Modified Halin graphs are not necessarily Hamiltonian, but it is possible
that the existence of a connected spanning Eulerian subgraph can be shown through an
inductive argument similar to that used for Halin graphs. The presence of subdivided edges,
however, complicates the inductive step.

As noted by Raspaud and Wang, if a counterexample to the conjecture exists, it must
have at least 21 vertices [10].
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