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Abstract. A function is private if there exists a protocol that is secure; that is, no party
can learn any additional information about the other parties’ inputs other than what follows
from their own input and the function’s output. Previous studies have investigated multi-
party computation with broadcast communication, but broadcast communication does not
fully capture all secure multiparty protocols. We investigate secure multiparty computation
with point to point communication in order to capture these protocols not captured by
broadcasting. We present a secure three party protocol that computes an ordered product
on a non-abelian group. We also begin a characterization of functions that can be securely
computed for four or more parties. We present a proof that shows if four or more parties
want to compute an ordered group product, then that group must be abelian.

1. Introduction

Secure multiparty computation has many applications in data mining such as, for example,
Yao’s millionaires’ problem [5]. Another application for secure multiparty computation is in
medical research [4]. Consider the scenario where multiple hospitals wish to jointly share data
obtained from their patients for medical research, without revealing any information about
the patient other than the required data. Privacy policies can prevent revealing confidential
patient information. Suppose that hospitals could learn the information required for their
research without the need for pooling patient records. They would then learn only the output
of the data mining algorithm. Hospitals having greater access to a larger amount of data
would greatly benefit research.

The purpose of this study was to provide a characterization for secure multiparty computa-
tion with point to point communication. Although we do not provide a full characterization
for all secure multiparty computation with point to point communication, we take a step
towards a more complete characterization using an interesting result found for secure multi-
party computation on a group. For the multiparty case, we consider a set of n parties who
wish to compute some ordered product with each of their inputs xi. The parties communicate
via point to point communication using secure channels.

In section 2, we present a simplified proof for one direction a theorem proven by Beaver
and Kushilevitz independently of one another. In section 3, we consider the multiparty case
and address the properties of an operation on a group. We present a secure protocol for the
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three party case computed on a non-abelian group, but find there is no such protocol that is
secure for the four party case on a non-abelian group. We present a proof for the following
lemma: if n ≥ 4 parties want to compute some ordered product on a group G, then G must
be abelian. This result is interesting because three party computation was thought to have
the same properties as other multiparty computation. However, we have found that this is
not true when the ordered product is on a group G. Near the end of section 3, we consider
whether an ordered operation must be associative for n ≥ 4 parties.

1.1. Definitions.

Real/Ideal Paradigm We can think of security in terms of the real world versus the
ideal world.

Suppose n parties with private inputs x1, x2, ...xn wish to compute some function of their
inputs, y = f(x1, x2, ...xn).

In the ideal world, there exists a trusted and incorruptible party, call it I. Each party
sends its input to I who then computes the value y and reveals y to all parties.

Trusted 
(incorruptible) 

party

x1

f(x1, x2)

x2

Figure 1. Ideal World: Two-party Example

In the real world, however, there does not exist a party who can be trusted and incorrupt-
ible. Instead, parties run a protocol amongst themselves, and by the end all parties learn
the value of y.

x1 x2

f(x1, x2)

Figure 2. Real World: Two-party Example
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The view of a party includes any messages they receive during the execution of the protocol
as well as their own input, the output of the function, and any information they can derive
based on these factors. For example, suppose we have a set of S parties with a set of possible
inputs ~x carrying out protocol π. Then viewπS(~x) represents the view of S on protocol π with
inputs ~x. Note that we use the symbol ≡ to denote when two distributions are equivalent.

Definition 1.1. A protocol is secure if for all S ⊆ [n] = {1, . . . , n}, there exists a simulation
sim, where ∀~x : viewπs ~x ≡ sim((xi∈S), f(~x)) where ~x = (x1, x2, . . . , xn).

In other words, a protocol is secure if for all actions in the real world, there is a way to
simulate that action in the ideal world with the same results. We use the ideal world as a
way to justify that a protocol is secure in the real world. In order to show that a protocol
is secure, we need to show that all of the probability distributions in the real world are
equivalent to all probability distributions in the ideal world.

Below is an example of how we can show a given protocol is secure:

r

r

x

y

x+r (mod 3)

y-r (mod 3)

(x+r)+(y-r) (mod 3)

= x+y (mod 3)

Figure 3. Real World Protocol

x y view distribution x+y (mod 3)

0 0 ⅓ (0, 0) + ⅓ (1, 2) + ⅓ (2, 1) 0

0 1 ⅓ (0, 1) + ⅓ (1, 0) + ⅓ (2, 2) 1

0 2 ⅓ (0, 2) + ⅓ (2, 0) + ⅓ (1, 1) 2

1 0 ⅓ (0, 1) + ⅓ (1, 0) + ⅓ (2, 2) 1

1 1 ⅓ (0, 2) + ⅓ (2, 0) + ⅓ (1, 1) 2

1 2 ⅓ (0, 0) + ⅓ (1, 2) + ⅓ (2, 1) 0

2 0 ⅓ (0, 2) + ⅓ (2, 0) + ⅓ (1, 1) 2

2 1 ⅓ (0, 0) + ⅓ (1, 2) + ⅓ (2, 1) 0

2 2 ⅓ (0, 1) + ⅓ (1, 0) + ⅓ (2, 2) 1

Figure 4. Real World Protocol View Distribution



4 Covington and Golbek

x

y
x + y (mod 3) = z 

Trusted 
party

z r’ = 0       r’ = 1     r’ = 2

0 ⅓ (0, 0) + ⅓ (1, 2) + ⅓ (2, 1)

1 ⅓ (0, 1) + ⅓ (1, 0) + ⅓ (2, 2)

2 ⅓ (0, 2) + ⅓ (1, 1) + ⅓ (2, 0)

Figure 5. Ideal World Protocol Simulation (left) and View Distribution (right)

In the ideal world simulation, r′ represents the simulated random variable r from the real
world protocol.

As you can see from the two figures above, if z = x + y(mod3) then the probability
distributions are equivalent. This is sufficient in showing that the protocol in the real world
is secure.

Other ideas used through the paper include:

A semi-honest adversary, also called honest-but-curious, follows the protocol, but may use
the messages they receive during the execution of the protocol to attempt to learn more
information that to which they are entitled. The [4]

From here on, we will be dealing with the case of the semi-honest adversary.
Point-to-point communication (as opposed to broadcasting - where every party learns

the same information) is made up of authenticated channels so that individual parties can
exchange certain information without other parties also receiving the messages [4].

Figure 6. Broadcast (left) versus Point-to-point (right) communication

2. Two Party

The set of secure two-party functions has been characterized by Beaver and Kushilevitz,
independently of one another. They proved that the set of finite functions that can be com-
puted privately in an information-theoretic sense by two parties is the set of decomposable
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functions [1]. In other words, there exists a secure protocol to compute a function if and
only if that function is decomposable [3].

Definition 2.1. A function, f , is decomposable if

(1) f is constant, or
(2) f is partitionable, meaning either:

• ∃P,Q with P ∪ Q = X; ∀y ∈ Y, x1 ∈ P, x2 ∈ Q; f(x1, y) 6= f(x2, y) and
f : P × Y, f : Q× Y are also decomposable
• ∃P,Q with P ∪ Q = Y ; ∀x ∈ X, y1 ∈ P, y2 ∈ Q; f(x, y1) 6= f(x, y2) and
f : X × P, f : X ×Q are also decomposable

Example 2.2. Below is an example of a decomposable and non-decomposable function.

  1

 1

  1

  1

  2

  3

  3

  3

  2

  4
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  4
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Figure 7. decomposable (left) versus non-decomposable (right) function

Building off of this proof, we present a simplified proof for one direction of the following
theorem:

Theorem 2.3. A secure protocol exists for f if and only if f is decomposable.

Proof. If a protocol π is secure, then f is decomposable.

Two parties, P1, P2 with inputs x ∈ X and y ∈ Y respectively, want to compute some
function f : X × Y → G. Let n(τ) be the expected number of rounds for some secure
protocol τ , when x and y are sampled uniformly. Let n∗ be the infimum over all the secure
protocols computing f .

There may not be protocol where the expected number of rounds is equal to n∗ because
it is defined as the greatest lower bound over all secure protocols. This means that we may
never reach that lower bound in terms of the expected number of rounds, but we know that
there exists a protocol δ where n(δ) is within the n∗ and n∗+1. Let us pick a secure protocol
π such that n(π) < n∗ + 1.

We will prove by contradiction.

Assume f is non-decomposable. Without loss of generality, assume that P1 sends the first
message. Let us denote this first message by m1. Let Dx be the probability distribution on
m1. Since m1 depends only on x, Dx is well defined.

We have two cases.
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Case 1: ∀x, x′ ∈ X Dx ≡ Dx′

Since the probability distributions are the same for all x ∈ X, then m1 is input independent
and does not rely on input by P1. Thus, P2 can sample from this distribution and generate
m1. Define a new protocol π′ such that P2 sends m1 along with a response to m1, then π′

proceeds as π does.

Since the probability distributions for π and π′ are equivalent because all the same messages
are still sent and π is secure, π′ must also be secure.

We eliminated the first round of protocol π, thus we have n(π′) = n(π)− 1, but:
n(π) < n∗ + 1
n(π)− 1 < n∗

n(π′) < n∗

This is a contradiction.

Case 2: ∃x, x′ Dx 6≡ Dx′

This means that Dx does depend on P1’s set of inputs.

For some arbitrary x0 ∈ X, we define a partition with P ∪Q = X.
P := {x | Dx ≡ Dx0}
Q := X \ P
Note that P,Q are both nonempty sets by definition of the sets and in Case 1 we have

shown that if all x are contained in P , we get a contradiction.

Since f is non-decomposable, then ∃y ∈ Y, xi ∈ P, xj ∈ Q such that f(xi, y) = f(xj, y).
Then, by the definition of security, viewπP2

(xi, y) = viewπP2
(xj, y). Therefore, since the views

are the same, then the distributions are also equivalent and Dxi ≡ Dxj by definition of
security. But this is a contradiction since xi ∈ P and xj ∈ Q and P contains all inputs with
the same message distribution.

Since both cases lead to a contradiction, f must be decomposable.
�

3. Protocols for multiparty group product

Characterizations of privately computable functions have been found for the multiparty
case, but these often encapsulates broadcast but not point to point communication. Künzler,
Müller-Quade, and Raub provided such a characterization [2], but it does not fully capture
all possibilities. No secure three-party protocol exists for broadcast communication, but we
find a secure three-party protocol for point-to-point communication, as we will present later
in this section.

For the two-party case, functions take the form f(x1, x2) = f1(x1)⊕f2(x2) on the group Z2.
We want to generalize the two party computation on this group to multiparty computation
on a group, G. Our results show that in the three party case, G can be non-abelian, but
in the four party case G must be abelian. This result shows that the three party case and
the four party case have different properties. In order to show that the three party case,
where the ordered product is computed on a non-abelian group, we need to present a secure
protocol for this case.
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3.1. Three Party Protocol.
Let there be three parties: A,B,C with inputs: a, b, c respectively want to compute the
value of abc.

We present a private three party protocol for computing some ordered group product
f(a, b, c) = abc, where the group is non-abelian.

(1) A chooses x uniformly in G.
(2) A computes the product xa and sends this value to B.
(3) B then computes this value with its input b and sends the new product xab to C
(4) C computes xabc and sends this product to A.
(5) Since A knows the value of x, A also knows x−1. A computes x−1(xabc). Since G is

a group, G is associative, therefore: x−1(xabc) = (x−1x)(abc) = abc. Finally, A sends
the value abc to B and C

Below is a figure of the secure three party protocol.

x

xa

xab

xabc

ab
c abc

(1)

(2)

(3)

(4)

(5) (5)

Figure 8. Secure Three Party Protocol with Point to Point Communication

The above protocol is secure, as we will show below.

In the ideal world, each party knows its own input, and each party learns the output of
the function f(a, b, c) = abc. We can create a simulator sim that accepts the party’s initial
input and abc as input. sim then outputs a view distribution based on these parameters.

Suppose A is corrupt. A holds input a and the output abc. If A runs the simulation in
the ideal world, they can also sample a random x′, to simulate the randomization of the
protocol. So, simA(a, abc) = (a, abc, bc).
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In the real world, we can see A’s view is: viewA(a) = (a, abc, bc) based on the messages
that A receives during the protocol. So simA(a, abc) ≡ viewA(a).

Suppose B is corrupt. B holds input b and the output abc. If B runs the simulation in
the ideal world, they can also sample a random x′, to simulate the randomization of the
protocol. So, simB(b, abc) = (b, abc).

In the real world, we can see B’s view is: viewB(b) = (b, abc), as well as incoming ran-
domized message xa (which can be simulated in the ideal world with a random x’) based on
the messages that B receives during the protocol. So simB(b, abc) ≡ viewB(b).

Suppose C is corrupt. C holds input c and the output abc. If C runs the simulation in
the ideal world, they can also sample a random x′, to simulate the randomization of the
protocol. So, simC(c, abc) = (c, abc, ab).

In the real world, C’s view is: viewC(c) = (c, abc, ab) based on the messages that C receives
during the protocol. So simC(c, abc) ≡ viewC(c).

Since the view of each party is equivalent in both the ideal and the real worlds, then the
protocol is secure.

3.2. Multiparty.

Theorem 3.1. Suppose n number of parties want to securely compute some ordered product
on a group G. If n ≥ 4, then G must be abelian.

We can restrict the four-party case by projecting it to the two-party case; we divide the
parties into two clusters (as seen in a figure below). If there exists a secure protocol for four
parties, it can be restricted to the two-party case, and then there exists a secure protocol for
the two party restriction.

We will prove by contradiction.

Proof. Suppose we have four parties: P1, P2, P3, P4 each holding the sets of possible inputs
A,B,C,D respectively, where A,B,C,D are non-abelian groups.

Consider the two-party restriction where P1, P3 are in a cluster together with the collective
set of inputs X = A×C, and P2, P4 are in a cluster together with the collective set of inputs
Y = B ×D.

For a ∈ A, b ∈ B, c ∈ C, d ∈ D, we define f : X × Y → G on some non-abelian group G
(with (a, c) ∈ X, (b, d) ∈ Y ) such that f((a, c), (b, d)) = abcd.

Since G is non-abelian, choose two arbitrary group elements x, y such that xy 6= yx.

Inductive Hypothesis: If X, Y ⊆ G2 have the property that (∀a ∈ A, ∃c ∈ C : (a, c) ∈
X) and (∀b ∈ B, ∃d ∈ D : (b, d) ∈ Y ) and f is of the form f((a, c), (b, d)) = abcd, then f is
not decomposable.

Base Case: Assume f is decomposable, this means ∃P,Q where P ∪ Q = X; ∀(b, d) ∈
Y, (a, c) ∈ P, (a′, c′) ∈ Q; f((a, c), (b, d)) 6= f((a′, c′), (b, d)). Then abcd 6= a′bc′d. Let (b, d) =
(1, d). Then a(1)cd 6= a′(1)c′d, so ac 6= a′c′.
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P1

P3

P2

P4

X Y

Figure 9. Two-Party Restriction

Then we can define partitions P and Q with SP , SQ ⊆ G such that P := {(a, c) | ac ∈ SP}
and Q := {(a′, c′) | a′c′ ∈ SQ}

Inductive Step: Let (x, y), (y, x) ∈ X ∪ Y . We have two cases.

Case 1: (x, y) ∈ P and (y, x) ∈ Q
Since f is decomposable, xbyd 6= ybxd and so xby 6= ybx. Choose a (b, d) such that b = x−1.

Then we get y 6= y, which is a contradiction.

Case 2: (x, y), (y, x) ∈ P
Since X ⊆ G2 and P ⊆ X, P ⊆ G2. Since P ⊆ X and P is the nontrivial group by

definition of P , P has the property ∀a ∈ A \ Q, ∃c ∈ C \ Q : (a, c) ∈ P . We know that
the group Y has the same property after partitioning f to f : P × Y → G. Since X ⊆ G2

and P ⊆ X, P ⊆ G2. Since partitioning a function does not alter the function’s output, the
output of f still satisfies the properties of the inductive hypothesis. Therefore f satisfies the
Inductive Hypothesis.

Therefore, f is not decomposable when G is non-abelian.
�

3.3. Associative Property.

Our results for the multiparty computation assume the protocol is on a group, but we know
that in the two-party case, weaker structures will suffice - for example, a quasi-group. We
believe that it can be shown that associativity is required when the number of participants
n is n ≥ 4. This proof is a work in progress:

Lemma 3.2. Suppose n number of parties want to securely compute some ordered product
on a set S. If n ≥ 4, then the operation on S must be associative.

We will prove by contradiction.

Proof. Suppose there exists a secure protocol for four parties P1, P2, P3, P4 to securely com-
pute an ordered product on the non-associative set S. Let P1, P2, P3, P4 hold the sets of
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inputs A,B,C,D ⊆ S respectively. Consider the following two party restriction: P1, P2 in a
cluster with the input A×B = X and P3, P4 in another cluster with the input C ×D = Y .

P1

P2

P3

P4

X Y

Figure 10. Two-Party Restriction

For a ∈ A, b ∈ B, c ∈ C, d ∈ D, define f : X × Y → S as f(a, b, c, d) = (a(bc))d.

Since S is not associative, choose x, y, z, z′ ∈ S such that x(yz) = (xy)z′.

There exists a secure protocol to compute f for this two-party restriction, therefore f must
be decomposable. So ∃P,Q such that ∀(a, b) ∈ X, (c, d) ∈ P, (c′, d′) ∈ Q (a(bc))d 6= (a(bc′))d′

Choose ∀(a, b) = (x, y), (c, d) = (z, 1) and (c′, d′) = (1, z′). Then, (x(yz))1 6= (x(y1))z′

but this yields x(yz) 6= (xy)z′ which contradicts our assumption.

Note that we have three other cases: f(a, b, c, d) = a(b(cd)) and f(a, b, c, d) = ((ab)c)d.
We believe that all three cases can be shown to fulfill Lemma 3.2. The two other cases
remain unproven.

�

4. Conclusion

We have presented a simpler proof for one direction of Theorem 2.3 that was previously
proven by Beaver and Kushilevitz. We have also shown that for the three party case, there
exists a secure protocol on a non-abelian group. This protocol combined with the results
of Theorem 3.1 uncovers an interesting result: though for four or more parties, an abelian
group is necessary for the existence of a secure protocol, in the three-party case, this does
not hold true. As such, the characterization for the three-party case is different than the
characterization needed for four or more parties, contrary to what we believed as we began
our research. We conjecture that if n ≥ 4 parties want to compute some ordered product
on a set, then the operation on that set must be associative in order for a secure protocol to
exist.

The purpose of this study was to provide a characterization for secure multiparty computa-
tion with point to point communication. Although we do not provide a full characterization
for secure multiparty computation with point to point communication, we provide the first
step in this characterization.
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This research helps provide more information about the ordered operations required for a
secure protocol to exist in the semi-honest setting. There are many applications for secure
multiparty computation with semi-honest parties, from Yao’s millionaires’ problem [5] to
research in the medical field.
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