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Abstract. Quantum walks are a powerful tool for developing efficient algorithms in quantum
computing. This paper explores two discrete-time one-dimensional quantum walks where the coin
operator varies along even and odd positions on the line. We find closed-form expressions for the
coefficients of the wave function for both walks and also arrive at a formula for the probability
distribution for one of the walks. A significant discovery in this paper is a way to model the
well-known Hadamard walk using two alternating coins.

1. Introduction

1.1. Motivation. A quantum walk is an analog of the classical random walk, a stochastic model
following the motion of a particle along the number line. Classical walks have been used to design
efficient computer algorithms for traditional computers. With the rise of quantum computing,
quantum walks have been used to create new algorithms, such as Grover’s search algorithm and
Shor’s algorithm for factoring numbers that provide quadratic and possibly exponential speedup,
respectively, over previous classical methods [2].

There exists substantial literature on single-coined quantum walks—in particular, the most well-
studied Hadamard walk. However, little light has been shed on two-coined walks. In this paper,
we seek to analyze quantum walks where the coin operator differs for even and odd locations on
the line. We refer to these types of walks as alternating space-inhomogeneous quantum walks. It is
worth mentioning that since our choice of initial condition is a pure state, the walks we will explore
are also time-inhomogeneous [3].

1.2. Background. In the classical discrete random walk, a particle begins at an initial position
and moves one unit left or right along the number line according to some probability. However, in
quantum walks we use a quantum particle, which can stay in a suspended superposition between
multiple positions. If measured or observed, that particle will “behave” and take on only a single
position, but all information about its superposition will be lost upon measurement. The trick with
quantum walks is that the measurement is not performed until the very end and we only keep track
of the probabilities of where the particle may be, in the form of a wave function [3]. As with many
types of waves, this can lead to some interesting constructive and destructive interference patterns.
This is a main difference between classical and quantum walks.
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1.3. Dirac Notation. The Dirac notation, sometimes also called the bra-ket notation, is the
standard notation used in quantum mechanics to describe quantum states. We define this notation
thusly:

Definition 1.1. A ket is a column vector: |ψ〉 := (ψ1, ψ2, . . . , ψn)T .

Definition 1.2. A bra is a row vector that is the conjugate transpose of a ket: ψ∗ = (ψ̄1, ψ̄2, . . . , ψ̄n).

Using Dirac notation, we may conveniently express the inner product over C as 〈ψ|φ〉 = ψ∗φ =∑n
i=1 ψ̄iφi.

1.4. Mathematically Encoding a Quantum Walk.

1.4.1. States. Quantum walks begin with a particle at an initial state, |ψ(0)〉. This state encap-
sulates two pieces of information: the particle’s position and its chirality or spin. The coin space
is defined as a Hilbert space, denoted Hc, spanned by the two basis states

{
|↑〉 , |↓〉

}
. That is, the

spin is a linear combination of

|↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
.

The position is recorded as a vector in a Hilbert space called Hp = {|j〉 ; j ∈ Z}. The state of
the total system is contained in the space H = Hc ⊗Hp.

We model the state of the total system using a wave function. Hence, we define |ψj(t)〉 =
aj(t) |↑〉+ bj(t) |↓〉 to be the wave function at a given position j and time t with coefficients aj(t),
bj(t). Then, the total wave function over all integers at time t is

|ψ(t)〉 =
∑
j∈Z
|ψj(t)〉 .

If we were to measure the particle at time t, then the probability of the particle being at position

j with spin up is equal to
∣∣aj(t)∣∣2. Similarly, the probability of being at position j with spin down

would be
∣∣bj(t)∣∣2, so the total probability of the particle being at j during time t is

Pj(t) =
∣∣aj(t)∣∣2 +

∣∣bj(t)∣∣2 . (1)

1.4.2. Unitary Transformations. To perform a quantum walk, we begin with our initial state |ψ(0)〉
and multiply it by a unitary matrix U . Recall that a matrix U is unitary if and only if UU∗ = U∗U =
I, that is, the inverse of a matrix is its conjugate transpose. So |ψ(1)〉 = U |ψ(0)〉. We may continue
to apply this transformation, multiplying by U each time, which means that |ψ(t)〉 = U t |ψ(0)〉,
where t represents the number of time steps.

The transformation U is defined as

U = S(C ⊗ I).

From right to left, I is the identity matrix in the position space. C represents the coin operator,
which will alter the spin of the particle, and S is the shift operator which shifts the position of the
particle by one unit to the left or to the right. If the spin is up, then S will move the particle to
the right (from j to j + 1) and a down spin will lead S to move the particle to the left (from j to
j − 1).
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1.4.3. The Coin and Shift Operators. Consider the coin operator as a literal coin being flipped,
creating a probability of landing heads up or tails down. In this paper, the coin operator will be a
unitary 2× 2 matrix.

A detailed explanation of the shift operator can be found in Appendix A. In short, the operator
increases the position by one if the particle is oriented up and decreases the position by one if the
particle is oriented down. That is,

|↑〉 ⊗ |j〉 7→ |↑〉 ⊗ |j + 1〉
|↓〉 ⊗ |j〉 7→ |↓〉 ⊗ |j − 1〉 .

2. The Hadamard Walk

One of the most common coin operators is called the Hadamard operator, defined as

H =
1√
2

(
1 1
1 −1

)
.

To explore the effects of this coin on the spin, multiply this matrix by the pure states |↑〉 and
|↓〉.

H |↑〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=

1√
2
|↑〉+

1√
2
|↓〉 (2)

H |↓〉 =
1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=

1√
2
|↑〉 − 1√

2
|↓〉 (3)

Note that the squared magnitudes of the coefficients are all 1/2. So when the Hadamard coin
operates on a pure state, it creates an equal probability of changing the spin up or down. We will
use the simple case of the Hadamard walk as an example of the approach used to analyze quantum
walks.

2.1. Demonstration of the Coin and Shift Operators. Let the initial state be |ψ(0)〉 =
|↓〉⊗|0〉. Since there is only one term and its coefficient is 1, the probability of the particle being at
position 0 at time 0 is P0(0) = 1. Now perform the first iteration by applying the transformation
U .

|ψ(1)〉 = U |ψ(0)〉 = S(H ⊗ I)(|↓〉 ⊗ |0〉)
= S(H |↓〉 ⊗ I |0〉) = S(H |↓〉 ⊗ |0〉)

This is a case where it is easier to know the mapping of the function rather than to actually
multiply the matrices. From above, we know the effects of the Hadamard operator on the pure
states |↑〉 and |↓〉. Substituting (2) for H |↑〉 results in:

|ψ(1)〉 = S

((
1√
2
|↑〉 − 1√

2
|↓〉
)
⊗ |0〉

)

= S

(
1√
2
|↑〉 ⊗ |0〉 − 1√

2
|↓〉 ⊗ |0〉

)
.
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Remember to increase the position if the spin is up and decrease if the spin is down.

|ψ(1)〉 =
1√
2
|↑〉 ⊗ |1〉 − 1√

2
|↓〉 ⊗ |−1〉

The probabilities of the particle being at 1 or at -1 are the same:
∣∣1/√2∣∣2 = 1/2.

Continuing the derivation for the wave function at time t = 2:

|ψ(2)〉 = S(H ⊗ I) |ψ(1)〉 Second iteration

= S(H ⊗ I)

(
1√
2
|↑〉 ⊗ |1〉 − 1√

2
|↓〉 ⊗ |−1〉

)
Substitution

=
1√
2
S
(
H |↑〉 ⊗ |1〉 −H |↓〉 ⊗ |−1〉

)
Factor out

1√
2

=
1√
2
S

((
1√
2
|↑〉+

1√
2
|↓〉
)
⊗ |1〉 −

(
1√
2
|↑〉 − 1√

2
|↓〉
)
⊗ |−1〉

)
Hadamard

=
1

2
S
(
|↑〉 ⊗ |1〉+ |↓〉 ⊗ |1〉 − |↑〉 ⊗ |−1〉+ |↓〉 ⊗ |−1〉

)
Factor out

1√
2

=
1

2
(|↑〉 ⊗ |2〉+ |↓〉 ⊗ |0〉 − |↑〉 ⊗ |0〉+ |↓〉 ⊗ |−2〉) Shift

We now have probabilities P−2(2) = 1
4 , P0(2) = 1

4 + 1
4 = 1

2 , and P2(2) = 1
4 . It takes one more

iteration to depart from classical random walk probabilities.

|ψ(3)〉 = S(H ⊗ I) |ψ(2)〉

=
1

2
S(H ⊗ I)(|↑〉 ⊗ |2〉+ |↓〉 ⊗ |0〉 − |↑〉 ⊗ |0〉+ |↓〉 ⊗ |−2〉)

=
1

2
S(H |↑〉 ⊗ |2〉+H |↓〉 ⊗ |0〉 −H |↑〉 ⊗ |0〉+H |↓〉 ⊗ |−2〉)

=
1

2
√

2
S((|↑〉+ |↓〉)⊗ |2〉+ (|↑〉 − |↓〉)⊗ |0〉 − (|↑〉+ |↓〉)⊗ |0〉+ (|↑〉 − |↓〉)⊗ |−2〉

=
1

2
√

2
(|↑〉 ⊗ |3〉+ |↓〉 ⊗ |1〉+���

��|↑〉 ⊗ |1〉 − |↓〉 ⊗ |−1〉︸ ︷︷ ︸−�����|↑〉 ⊗ |1〉 − |↓〉 ⊗ |−1〉︸ ︷︷ ︸+ |↑〉 ⊗ |−1〉 − |↓〉 ⊗ |−3〉

=
1

2
√

2
(|↑〉 ⊗ |3〉+ |↓〉 ⊗ |1〉 − 2 |↓〉 ⊗ |−1〉+ |↑〉 ⊗ |−1〉 − |↓〉 ⊗ |−3〉)

Now the probabilities differ from the classical random walk since

P−3(3) =
1

8
, P−1(3) =

1

2
+

1

8
=

5

8
, P1(3) =

1

8
, and P3(3) =

1

8
.

Notice the probabilities are beginning to drift towards the negative side. This stems from using
an initial state with down spin. If we had chosen an up spin to begin with, we would be drifting
at the same rate in the positive direction. If we began with a balanced initial state such as
|ψ(0)〉 = 1√

2
(|↑〉+ i |↓〉)⊗ |0〉, the probabilities would have been symmetrical [3].
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2.2. Recursion Formulas. Recall that for a given position j at a certain time t,

|ψj(t)〉 = aj(t) |↑〉+ bj(t) |↓〉 ,

So the aj(t) coefficient relates to the probability of the particle having up-spin (and thus having
come from below) and the bj(t) coefficient relates to the probability of having down-spin (and
thus having come from above). We can deduce the following recursion formulas for finding the
coefficients aj(t) and bj(t) at the next time step:

aj(t+ 1) =
1√
2
aj−1(t) +

1√
2
bj−1(t) (4)

bj(t+ 1) =
1√
2
aj+1(t)−

1√
2
bj+1(t). (5)

2.3. Fourier Transforms. We define a Fourier transform as below:

f̂t(s) =
∑
j

fj(t)e
−ijs, (6)

where i is the imaginary unit and s is a real number, summing over all integer positions j. As
such, combining (4) and (6) we get

ât+1(s) =
∑
j

aj(t+ 1)e−ijs Def. of Fourier Transform

=
∑
j

1√
2
aj−1(t)e

−ijs +
∑
j

1√
2
bj−1(t)e

−ijs Substitute (4)

=
1√
2

∑
k

e−i(k+1)sak(t) +
1√
2

∑
k

e−i(k+1)sbk(t) Change of variable: k = j − 1

=
1√
2

∑
k

e−iks−isak(t) +
1√
2

∑
k

e−iks−isbk(t) Distributed (k + 1)

=
1√
2

∑
k

e−ikse−isak(t) +
1√
2

∑
k

e−ikse−isbk(t) Exponent Rules: ea+b = eaeb

=
e−is√

2

∑
k

e−iksak(t)︸ ︷︷ ︸
ˆat(s)

+
e−is√

2

∑
k

e−iksbk(t)︸ ︷︷ ︸
b̂t(s)

Factored e−is

=
e−is√

2
ât(s) +

e−is√
2
b̂t(s). Def. of Fourier Transform (7)

Similarly, we derive

b̂t+1(s) =
eis√

2
ât(s)−

eis√
2
b̂t(s). (8)

If we were to create a column vector out of ât+1(s) and b̂t+1(s), then we could describe (7) and
(8) as a product of matrix multiplication.
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(
ât+1(s)

b̂t+1(s)

)
=

1√
2

(
e−is e−is

eis −eis

)
︸ ︷︷ ︸

M

(
ât(s)

b̂t(s).

)

So given initial states â0(s) and b̂0(s) and the matrix M as defined above, then we can define(
ât(s)

b̂t(s)

)
= M t

(
â0(s)

b̂0(s)

)
(9)

for all time steps t.

2.4. Diagonalization. To simplify the process of raising the matrix to the power t, we diagonalize
the matrix M as

M = UDU−1 = UDU∗, (10)

where U is a matrix whose columns are the eigenvectors of M . Since U is unitary, its inverse is its
adjoint. The matrix D is a diagonal matrix composed of the eigenvalues of M . That is,

M =

(
v1 v2
...

...

)(
λ1 0
0 λ2

)(
v1 · · ·
v2 · · ·

)
.

This way, when we raise M to a power, we see the following for any t.

M t =

(
v1 v2
...

...

)(
λ t
1 0
0 λ t

2

)(
v1 · · ·
v2 · · ·

)
(11)

Using the quadratic formula to solve det(M − λI) = 0, we obtain the following eigenvalues:

λ1,2 = ±
√

1 + cos2(s)√
2︸ ︷︷ ︸

Re(λ1,2)

−i sin(s)√
2︸ ︷︷ ︸

Im(λ1,2)

.

This complex number can be written in polar form. Recall that e−iθ = cos θ − i sin θ. Thus, we
can equate the real part of λ with cosωs or the imaginary part with sinωs. Choosing the simpler

of the two, we define ωs such that sin(ωs) = sin(s)√
2

. This is known as taking the argument of a

complex number. Therefore, λ1 expressed in polar form is

λ1 = e−iωs .

The second eigenvalue is the same imaginary number except the real part is negative. Hence, it
becomes

λ2 = e−i(π+ωs).

Substituting these eigenvalues and eigenvectors into (11) and performing the matrix multiplica-
tion we arrive at the following results.

ât(s) =
e−is

2
√

1 + cos2(s)

(
e−iωst − (−1)teiωst

)
(12)
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b̂t(s) =
1

2

(
1− cos(s)√

1 + cos2(s)

)
e−iωst +

(−1)t

2

(
1 +

cos(s)√
1 + cos2(s)

)
eiωst (13)

2.5. Inverse Fourier Transform. Our main objective is to derive the equations for aj(t) and
bj(t), so employ the inverse Fourier transform:

fj(t) =
1

2π

∫ π

−π
f̂t(s)e

ijsds. (14)

To do this, manipulate (12) into the form of (14).

aj(t) =
1

2π

∫ π

−π
ât(s)e

ijsds

=
1

2π

∫ π

−π

e−is

2
√

1 + cos2(s)

(
e−iωst − (−1)teiωst

)
eijsds

=
1

2π

[∫ π

−π

e−is

2
√

1 + cos2(s)
e−iωsteijsds− (−1)t

∫ 0

−2π

e−is

2
√

1 + cos2(s)
eiωsteijsds

]

Now use a change of variable where s∗ = s + π. Then, ds∗ = ds, and s = s∗ − π. Also,
ωs = ωs∗−π = −ωs∗ and cos(s∗ − π) = − cos(s∗), which means cos2(s∗ − π) = cos2(s∗).

aj(t) =
1

2π

∫ π

−π

e−is

2
√

1 + cos2(s)
e−iωsteijsds− (−1)t

∫ π

−π

e−i(s
∗−π)

2
√

1 + cos2(s∗ − π)
eitωs∗−πeij(s

∗−π)ds∗


=

1

2π

[∫ π

−π

e−is

2
√

1 + cos2(s)
e−iωsteijsds− (−1)t

∫ π

−π

e−iπe−is
∗

2
√

1 + cos2(s∗)
e−itωs∗ eijs

∗
e−πijds∗

]

=
1

2π

[∫ π

−π

e−is

2
√

1 + cos2(s)
e−iωsteijsds− (−1)t

∫ π

−π

(−1)e−is
∗

2
√

1 + cos2(s∗)
e−i(tωs∗+js

∗)(−1)jds∗

]

=
1

2π

[∫ π

−π

e−is

2
√

1 + cos2(s)
ei(js−ωst)ds+ (−1)j+t

∫ π

−π

eis
∗

2
√

1 + cos2(s∗)
ei(js

∗−ωs∗ t)ds∗

]

=
1 + (−1)j+t

4π

∫ π

−π

e−is√
1 + cos2(s)

ei(js−ωst)ds (15)

Continuing our derivations, we calculate bj(t).

bj(t) =
1

2π

∫ π

−π

1

2

(
1− cos(s)√

1 + cos2(s)

)
e−iωst +

(−1)t

2

(
1 +

cos(s)√
1 + cos2(s)

)
eiωst

 eijsds
=

1

2π

1

2

∫ π

−π

(
1− cos(s)√

1 + cos2(s)

)
ei(js−ωst)ds+

(−1)t

2

∫ 0

−2π

(
1 +

cos(s)√
1 + cos2(s)

)
eiωsteijsds


7
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=
1

2π

1

2

∫ π

−π

(
1− cos(s)√

1 + cos2(s)

)
ei(js−ωst)ds+

(−1)t

2

∫ π

−π

(
1 +

cos(s∗ − π)√
1 + cos2(s∗ − π)

)
eiωs∗−πteij(s

∗−π)ds∗


=

1

2π

1

2

∫ π

−π

(
1− cos(s)√

1 + cos2(s)

)
ei(js−ωst)ds+

(−1)t

2

∫ π

−π

(
1− cos(s∗)√

1 + cos2(s∗)

)
e−iωs∗ teijs

∗
eπijds∗


=

1

2π

1

2

∫ π

−π

(
1− cos(s)√

1 + cos2(s)

)
ei(js−ωst)ds+

(−1)j+t

2

∫ π

−π

(
1− cos(s∗)√

1 + cos2(s∗)

)
ei(js

∗−ωs∗ t)ds∗


=

1 + (−1)j+t

4π

∫ π

−π

(
1− cos(s)√

1 + cos2(s)

)
ei(js−ωst)ds (16)

These two integrals describe the coefficients of the wave function at a position j and time t.
Therefore, the probability of being at j at time t can be calculated using (1).

3. Results

An alternating quantum walk is a walk that uses different coin operators for even and odd times
and/or positions. A space-inhomogeneous quantum walk is one for which the coin operator varies
with the particle’s position in the position space Hp. Likewise, a time-inhomogeneous walk is one
where different coins are used at different times. For both of the walks we analyze below, we have
chosen the initial state |↑〉 ⊗ |0〉, so the particle will be at even positions at even times and at odd
positions at odd times. This makes our walks both space- and time-inhomogeneous, so we refer to
them as inhomogeneous walks.

3.1. PQ-Walk. The PQ-walk is an alternating quantum walk originally defined in [1] that uses
the coin operators below for even and odd positions The two parameters are fixed as 0 ≤ p, q ≤ 1.

Ceven =

( √
p

√
1− p√

1− p −√p

)
(17)

Codd =

( √
q

√
1− q√

1− q −√q

)
. (18)

Due to the nature of this walk, there are two separate sets of recursive formulas that determine
the coefficients aj(t) and bj(t), one for odd values of j and another for even values of j. Since our
initial condition starts at an even position, the time and position are either both even or both odd.
Thus, we interchange “even/odd positions” with “even/odd times” whenever it is convenient. For
example, instead of writing these recursive formulas with respect to even and odd positions, we
define them by even and odd times. For even times t, we use (17), giving us

aj(t+ 1) =
√
p aj−1(t) +

√
1− p bj−1(t) (19)

bj(t+ 1) =
√

1− p aj+1(t)−
√
p bj+1(t). (20)

Since t is even, t+ 1 is odd and we use the odd coin, (18). This yields the recursive formulas
8
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aj(t+ 1) =
√
q aj−1(t+ 1) +

√
1− q bj−1(t+ 1) (21)

bj(t+ 1) =
√

1− q aj+1(t+ 1)−√q bj+1(t+ 1). (22)

Working from here, our research determined that the coefficients aj(t) and bj(t) are representable
as integral equations in terms of p and q.

aj(t) =
1

2π|~v1|2
∫ π

−π

(√
q(1− p)e−2is −

√
(1− q)p

)(√
q(1− p)e2is −

√
(1− q)p

)
ei(ωs

t/2+js)ds

+
(−1)j

2π|~v2|2
∫ π

−π

(√
q(1− p)e−2is −

√
(1− q)p

)(√
q(1− p)e2is −

√
(1− q)p

)
ei(js−ωs

t/2)ds

bj(t) =
1

2π|~v1|2
∫ π

−π

(
eiωs −√qp e−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
ei(ωs

t/2+js)ds

+
(−1)j

2π|~v2|2
∫ π

−π

(
e−iωs −√qp e−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
ei(js−ωs

t/2)ds

When the parameters are chosen such that p = q = 1/2, then the PQ-walk simplifies to the
Hadamard walk. We used this fact to verify our calculations and results.

3.2. Rotations Walk. In this section, we present the results for the alternating quantum walk
with coin operators such that Codd = (Ceven)−1. More specifically, we define

Ceven =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
(23)

to be a clockwise rotation, and

Codd =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(24)

to be a counter-clockwise rotation, where θ is a fixed constant and θ ∈ [0, 2π].

Using the wave function and the definition of a quantum walk, we find recursion formulas for
both aj(t+ 1) and bj(t+ 1) from aj(t) and bj(t), respectively, for both coin operators.

For Ceven, this gives:

aj(t+ 1) = cos(θ)aj−1(t) + sin(θ)bj−1(t) (25)

bj(t+ 1) = − sin(θ)aj+1(t) + cos(θ)bj+1(t) (26)

for j ∈ Z.

Similarly, for Codd we get:

aj(t+ 1) = cos(θ)aj−1(t)− sin(θ)bj−1(t) (27)

bj(t+ 1) = sin(θ)aj+1(t) + cos(θ)bj+1(t) (28)

for j ∈ Z.
9
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Similar to the Hadamard walk, we take the Fourier transform of the recursion formulas in order
to be able to express the recursion with a 2× 2 matrix. We then diagonalize the matrix to obtain
its eigenvalues and eigenvectors and plug these values into (11) to get the formulas for ât(s) and

b̂t(s). Finally, we take the inverse Fourier transform to arrive at final closed-form formulas for aj(t)
and bj(t).

aj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

(
1− cos(s) cos(θ)√

1−A

)
ei(js+ωst/2) (29)

bj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

eis sin(θ)√
1−A

ei(js+ωst/2) (30)

As the aforementioned integrals cannot be exactly calculated, we must approximate the integrals
asymptotically using the method of stationary phase (refer to Appendix C). Applying this method,
we find the following asymptotic expressions:

aj(αt, t)

bj(αt, t)

 ∼ 1 + (−1)αt√
2πt
∣∣ω′′sα∣∣ ×


(1 + α) cos

(
φ(sα, α) t+ π/4

)
−α tan(θ) cos

(
φ(sα, α) t+ π/4

)
−
√

1− α2 sec2(θ) sin
(
φ(sα, α) t+ π/4

)
where we substituted j = αt for α ∈ [−1, 1].

Therefore, we can calculate the probability of observing the particle at any point j = αt. The
asymptotic distribution for points α = j/t between − cos(θ) + ε and cos(θ) − ε, for any small
constant ε > 0 is

P (α, t) =
∣∣a(αt, t)

∣∣2 +
∣∣b(αt, t)∣∣2 . (31)

3.3. Alternative Representation of the Hadamard Walk. Our numerical calculations (see
Figure 1) suggest that for θ = π

4 , the alternating Rotations walk collapses exactly into the Hadamard
walk. This was a rather unexpected and surprising finding, so we aim to prove it analytically.

First, we begin by slightly modifying the integral forms for aj(t) and bj(t) presented in (15) and
(16). In our original calculations for (15) and (16) we used an initial condition of |↓〉 ⊗ |0〉, but for
our Rotations walk the initial condition is |↑〉 ⊗ |0〉, so we need to convert (15) and (16) to match
the initial condition used in the Rotations walk.

To do this, we first substitute −j for j into both (15) and (16) and then take the conjugate of the
entire integral expression. We can do this because the amplitudes are real since the entries in the
coin operators are real which implies that aj(t) = aj(t) and bj(t) = bj(t). After these modifications,
the coefficients of the wave function with initial condition of |↑〉⊗|0〉 for the Hadamard walk become:

aj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

(
1− cos(s)√

1 + cos2(s)

)
ei(js+ω̃st) (32)

bj(t) =
1 + (−1)j+t

2

∫ π

−π

ds

2π

eis√
1 + cos2(s)

ei(js+ω̃st) (33)

where sin(ω̃s) = − sin(s)√
2

. We use ω̃s in place of ωs to distinguish from the ωs in (29) and (30).

10
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Figure 1. The probability distributions of the single-coined Hadamard walk and
our double-coined alternating Rotations walks match exactly.

We have defined ωs = 2 arcsin
(
sin(s) cos(θ)

)
(see Section 5 for the reasoning behind this choice),

so we have cos(ωs) = 1 − 2 sin2(s) cos2(θ). If we substitute θ = π/4 into the expression for ωs,

we get cos(ωs) = 1 − 2 sin2(s) cos2(π4 ) = 1 − 2
(

1√
2

)2
sin2(s) = 1 − sin2(s) = cos2(s). Thus,

cos(ωs) = cos2(s).

Next, we observe that cos(2ω̃s) = 1 − 2 sin2(ω̃s) = 1 − 2 sin2(s)
2 = 1 − sin2(s) = cos2(s). Hence,

we have that cos(ωs) = cos(ω̃s)⇒ ω̃s = ωs
2 .

Now we substitute θ = π/4 into (54) and (55).

aj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

1−
cos(s) cos(π4 )√

1− sin2(s) cos2(π4 )

 ei(js+ωst/2)

=
1 + (−1)j

2

∫ π

−π

ds

2π

1−
1√
2

cos(s)√
1− 1

2 sin2(s)

 ei(js+ωst/2)

=
1 + (−1)j

2

∫ π

−π

ds

2π

1−
1√
2

cos(s)√
1− 1

2

(
1− cos2(s)

)
 ei(js+ωst/2)

=
1 + (−1)j

2

∫ π

−π

ds

2π

1−
1√
2

cos(s)√
1
2

(
1 + cos2(s)

)
 ei(js+ωst/2)

11
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=
1 + (−1)j

2

∫ π

−π

ds

2π

(
1− cos(s)√

1 + cos2(s)

)
ei(js+(ωs

2
)t)

which is exactly (32) when we replace ωs
2 with ω̃s.

bj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

eis sin(π4 )√
1− sin2(s) cos2(π4 )

ei(js+ωst/2)

=
1 + (−1)j

2

∫ π

−π

ds

2π

1√
2
eis√

1
2

(
1 + cos2(s)

)ei(js+ωst/2)
=

1 + (−1)j

2

∫ π

−π

ds

2π

eis√
1 + cos2(s)

ei(js+(ωs
2
)t)

Again. this is exactly (33) after substituting ωs
2 with ω̃s.

Therefore, we have shown that the Hadamard walk, a walk with one coin operator, can be
replicated with two coins when θ = π

4 in the Rotations walk.

4. PQ-Walk Analysis

Consider the alternating quantum walk with an even coin defined by (17) and an odd coin defined
as (18).

4.1. Fourier Transformation. To analyze the results of this walk, we will describe its recursive
nature. Let t be even. After taking the Fourier transform of (19) and (20), combine them into the
matrix equation

(
ât+1(s)

b̂t+1(s)

)
=

( √
p e−is

√
1− p e−is√

1− p eis −√p eis

)
︸ ︷︷ ︸

Me

(
ât(s)
ât(s)

)
. (34)

Since t + 1 is odd, we use the odd recursive equations. Writing the Fourier transforms of (21)
and (22) (in the form of matrix multiplication) yields

(
ât+2(s)

b̂t+2(s)

)
=

( √
q e−is

√
1− q e−is√

1− q eis −√q eis

)
︸ ︷︷ ︸

Mo

(
ât+1(s)

b̂t+1(s)

)
. (35)

Substituting (34) into (35), a recursive formula appears for any even time t+ 2.

(
ât+2(s)

b̂t+2(s)

)
=

( √
q e−is

√
1− q e−is√

1− q eis −√q eis

)( √
p e−is

√
1− p e−is√

1− p eis −√p eis

)(
ât(s)

b̂t(s)

)
12
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=

(√
qp e−2is +

√
(1− q)(1− p)

√
q(1− p)e−2is −

√
(1− q)p√

(1− q)p−
√
q(1− p) e2is

√
(1− q)(1− p) +

√
qp e2is

)
︸ ︷︷ ︸

M

(
ât(s)

b̂t(s)

)
(36)

This reduces down to an equation for any even time step t from initial conditions â0(s) and b̂0(s).(
ât(s)

b̂t(s)

)
= M t/2

(
â0(s)

b̂0(s)

)
(37)

Now we once again need to diagonalize M to be able to efficiently raise it to a power. For
simplicity’s sake, we will focus only on the even time values.

4.2. Diagonalization. First we solve for eigenvalues and normalized eigenvectors of M . The
derivations of both are included in Appendix B. To summarize, the eigenvalues of M are

λ1,2 =
√
qp cos(2s) +

√
(1− q)(1− p)︸ ︷︷ ︸

Re(λ)

±i
√

1−
(√

qp cos(2s) +
√

(1− q)(1− p)
)2

︸ ︷︷ ︸
Im(λ)

.

Then the eigenvalues for M can be written as complex numbers in polar form: eiωs and e−iωs ,
where cos(ωs) =

√
qp cos(2s) +

√
(1− q)(1− p). The corresponding eigenvectors are then

~v1,2 =


√
q(1− p) e−2is −

√
(1− q)p

e±iωs −√qp e−2is −
√

(1− q)(1− p)

 ,

which can both be normalized by dividing by their magnitudes, |~v1| and |~v2|, respectively.∣∣~v1,2∣∣2 = 2− 2
√
qp cos(2s) cos(ωs)− 2

√
(1− q)(1− p) cos(ωs)± 2

√
qp sin(2s) sin(ωs)

Now we may diagonalize the matrix and raise it to the t/2-th power.

M t

(
â0(s)

b̂0(s)

)
=

(
v1 v2
...

...

)
︸ ︷︷ ︸

U

(
λ

t/2
1 0

0 λ
t/2
2

)
︸ ︷︷ ︸

Dt

(
v̄1 · · ·
v̄2 · · ·

)
︸ ︷︷ ︸

U∗

(
â0(s)

b̂0(s)

)

= UD
t/2

 1
|~v1|

(√
q(1− p)e2is −

√
(1− q)p

)
1
|~v1|

(
e−iωs −√qpe2is −

√
(1− q)(1− p)

)
1
|~v2|

(√
q(1− p)e2is −

√
(1− q)p

)
1
|~v2|

(
eiωs −√qpe2is −

√
(1− q)(1− p)

)
(1

0

)

= U

(
eiωst/2 0

0 e−iωst/2

) 1
|~v1|

(√
q(1− p)e2is −

√
(1− q)p

)
1
|~v2|

(√
q(1− p)e2is −

√
(1− q)p

)


13
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= U


eiωs

t/2

|~v1|

(√
q(1− p)e2is −

√
(1− q)p

)
e−iωs

t/2

|~v2|

(√
q(1− p)e2is −

√
(1− q)p

)


=



eiωs
t/2

|~v1|2

(√
q(1− p)e−2is −

√
(1− q)p

)(√
q(1− p)e2is −

√
(1− q)p

)
+ e−iωs

t/2

|~v2|2

(√
q(1− p)e−2is −

√
(1− q)p

)(√
q(1− p)e2is −

√
(1− q)p

)
eiωs

t/2

|~v1|2

(
eiωs −√qpe−2is −

√
(1− q)(1− p)

)(√
q(1− p)e2is −

√
(1− q)p

)
+ e−iω

t/2

|~v2|2

(
e−iωs −√qpe−2is −

√
(1− q)(1− p)

)(√
q(1− p)e2is −

√
(1− q)p

)


Now we have expressions for ât(s) and b̂t(s).

ât(s) =

(
eiωst/2

|~v1|2
+
e−iωst/2

|~v2|2

)(√
q(1− p)e−2is −

√
(1− q)p

)(√
q(1− p)e2is −

√
(1− q)p

)

b̂t(s) =
eiωst/2

|~v1|2
(
eiωs −√qpe−2is −

√
(1− q)(1− p)

)(√
q(1− p)e2is −

√
(1− q)p

)
+
e−iωt/2

|~v2|2
(
e−iωs −√qpe−2is −

√
(1− q)(1− p)

)(√
q(1− p)e2is −

√
(1− q)p

)

4.3. Inverse Fourier Transform. Using the inverse Fourier transformation described in (14), we
can derive final results for aj(t) and bj(t). We also use the substitution s∗ = s + π from before.
This also implies ds∗ = ds and s = s∗ − π. We can also derive that

ωs = ωs∗−π =
√
qp cos

(
2
(
s∗ − π

))
+
√

(1− q)(1− p)

=
√
qp cos

(
2s∗ − 2π

)
+
√

(1− q)(1− p)

=
√
qp cos

(
2s∗
)

+
√

(1− q)(1− p) = ωs∗ .

Using these substitutions, perform the following inverse Fourier transforms.

aj(t) =
1

2π

∫ π

−π
ât(s)e

ijsds

=
1

2π

∫ π

−π

eiωst/2

|~v1|2
(√

q(1− p)e−2is −
√

(1− q)p
)(√

q(1− p)e2is −
√

(1− q)p
)
eijsds︸ ︷︷ ︸

A

+
1

2π

∫ 0

−2π

e−iωst/2

|~v2|2
(√

q(1− p)e−2is −
√

(1− q)p
)(√

q(1− p)e2is −
√

(1− q)p
)
eijsds

= A+
1

2π|~v2|2
∫ π

−π

(√
q(1− p)e−2i(s∗−π) −

√
(1− q)p

)(√
q(1− p)e2i(s

∗−π) −
√

(1− q)p
)
e−iωs∗−πt/2eij(s

∗−π)ds∗

14
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= A+
1

2π|~v2|2
∫ π

−π

(√
q(1− p)e−2is∗ −

√
(1− q)p

)(√
q(1− p)e2is

∗
−
√

(1− q)p
)
e−iωs∗

t/2eijs
∗
e−iπjds∗

= A+
(−1)j

2π|~v2|2
∫ π

−π

(√
q(1− p)e−2is∗ −

√
(1− q)p

)(√
q(1− p)e2is

∗
−
√

(1− q)p
)
ei(js

∗−ωs∗ t/2)ds∗

=
1

2π|~v1|2
∫ π

−π

(√
q(1− p)e−2is −

√
(1− q)p

)(√
q(1− p)e2is −

√
(1− q)p

)
ei(ωs

t/2+js)ds

+
(−1)j

2π|~v2|2
∫ π

−π

(√
q(1− p)e−2is −

√
(1− q)p

)(√
q(1− p)e2is −

√
(1− q)p

)
ei(js−ωs

t/2)ds

And on to bj(t).

bj(t) =
1

2π

∫ π

−π

eiωst/2

|~v1|2
(
eiωs −√qp e−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
eijsds

+
1

2π

∫ 0

−2π

e−iωt/2

|~v2|2
(
e−iωs −√qpe−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
eijsds

=
1

2π|~v1|2
∫ π

−π

(
eiωs −√qp e−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
ei(ωs

t/2+js)ds︸ ︷︷ ︸
B

+
1

2π|~v2|2
∫ π

−π

(
e−iωs −√qp e−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
e−iωs

t/2eijsds

= B +
1

2π|~v2|2
∫ π

−π

(
eiωs∗ −√qp e−2is∗ −

√
(1− q)(1− p)

)(√
q(1− p) e2is

∗
−
√

(1− q)p
)
eiωs∗

t/2eij(s
∗−π)ds∗

= B +
(−1)j

2π|~v2|2
∫ π

−π

(
eiωs∗ −√qp e−2is∗ −

√
(1− q)(1− p)

)(√
q(1− p) e2is

∗
−
√

(1− q)p
)
ei(ωs∗

t/2+js∗)ds∗

=
1

2π|~v1|2
∫ π

−π

(
eiωs −√qp e−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
ei(ωs

t/2+js)ds

+
(−1)j

2π|~v2|2
∫ π

−π

(
e−iωs −√qp e−2is −

√
(1− q)(1− p)

)(√
q(1− p) e2is −

√
(1− q)p

)
ei(js−ωs

t/2)ds

5. Rotations Walk Analysis

Recall the alternating Rotations quantum walk with coin operators as defined in (23) and (24).

5.1. Fourier Transformation. Now we would like to find the Fourier transform of the recursion
formulas for the Ceven operator by substituting the formulas for aj(t+ 1) and bj(t+ 1) into (6).
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ât+1(s) =
∑
j

aj(t)e
−ijs

=
∑
j

cos(θ)aj−1(t)e
−ijs +

∑
j

sin(θ)bj−1(t)e
−ijs

=
∑
k

cos(θ)ak(t)e
−i(k+1)s +

∑
k

sin(θ)bk(t)e
−i(k+1)s Change of variable: k = j − 1

= cos(θ)e−is
∑
k

ak(t)e
−iks + sin(θ)e−is

∑
k

bk(t)e
−iks

= cos(θ)e−isât(s) + sin(θ)e−isb̂t(s) Defn. of Fourier transform (38)

b̂t+1(s) =
∑
j

bj(t)e
−ijs

= −
∑
j

sin(θ)aj−1(t)e
−ijs +

∑
j

cos(θ)bj−1(t)e
−ijs

= −
∑
k

sin(θ)ak(t)e
−i(k−1)sak(t) +

∑
k

cos(θ)bk(t)e
−i(k−1)s Change of variable: k = j + 1

= − sin(θ)eis
∑
k

ak(t)e
−iks + cos(θ)eis

∑
k

bk(t)e
−iks

= − sin(θ)eisât(s) + cos(θ)eisb̂t(s) Defn. of Fourier transform
(39)

There the recurrence relations for the walk at even times may be written as a product of matrices
in the following manner:(

ât+1(s)

b̂t+1(s)

)
=

(
cos(θ)e−is sin(θ)e−is

− sin(θ)eis cos(θ)eis

)(
ât(s)

b̂t(s)

)
.

We define

Me =

(
cos(θ)e−is sin(θ)e−is

− sin(θ)eis cos(θ)eis

)
(40)

to represent the evolution of the walk at even positions.

In a similar manner, using the recurrences obtained for Codd, we define the operator to represent
the evolution of the quantum walk at odd positions as:

Mo =

(
cos(θ)e−is − sin(θ)e−is

sin(θ)eis cos(θ)eis

)
. (41)

Although we apply the operators in alternating order1, we may still write them as:

1Note that the operators Me and Mo are noncommutative.
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M t = (MoMe)
t/2 (t even)

M t = Me(MoMe)
(t−1)/2 (t odd)

where

MoMe =

(
e−2is cos2(θ) + sin2(θ) cos(θ) sin(θ)

(
e−2is − 1

)
− cos(θ) sin(θ)

(
e2is − 1

)
e2is cos2(θ) + sin2(θ)

)
. (42)

Given initial states â0(s) and b̂0(s) and the matrix MoMe as defined above, we define(
ât(s)

b̂t(s)

)
= (MoMe)

t/2

(
â0(s)

b̂0(s)

)
(43)

for even time steps. For convenience let us rename M := MoMe, so that we can diagonalize M
as in (10).

5.2. Diagonalization. Once again diagonalizing M as defined in (42) involves finding its eigen-
values and a pair of orthonormal eigenvectors. The full details of finding these formulas may be
found in Appendix D.

For the eigenvalues we find

λ1,2 = 1− 2 sin2(s) cos2(θ)± 2i sin(s) cos(θ)

√
1− sin2(s) cos2(θ). (44)

Both eigenvalues lie on the unit circle, and are conjugates of each other, so we can take the
argument of each eigenvalue. Let λ1 = eiωs and λ2 = e−iωs where ωs is the angle in

[−π
2 ,

π
2

]
where

ωs = 2 arcsin(sin(s) cos(θ)) is uniquely defined. Additionally, we have cos(ωs) = 1−2 sin2(s) cos2(θ).
Let A := sin2(s) cos2(θ), so we have cos(ωs) = 1− 2A. Note the definition of A from now on.

Now, we would like to find the corresponding orthonormal eigenvectors, ~u1 and ~u2, for each

eigenvalue. This is accomplished by solving (M−λI)~v = 0 for λ = λ1 and λ = λ2 where v =

(
η1
η2

)
.

First, we find an orthonormal eigenvector for λ1 = eiωs . We have(
cos2(θ)e−2is + sin2(θ)− eiωs

)
η1 + cos(θ) sin(θ)

(
e−2is − 1

)
η2 = 0. (45)

The details of solving (45) to obtain an eigenvector and then normalizing this eigenvector are
left to Appendix D. After doing so, we have the following normalized eigenvector for λ1 = eiωs .

~u1 :=
1√
N1(s)

(
cos(θ) sin(θ)

(
e−2is − 1

)
eiωs − cos2(θ)e−2is − sin2(θ)

)
(46)

where N1(s) := 8A
(

1−A+ cos(s) cos(θ)
√

1−A
)

.

Now find an orthonormal eigenvector for λ2 = e−iωs . We obtain the following equation(
cos2(θ)e−2is + sin2(θ)− e−iωs

)
η1 + cos(θ) sin(θ)

(
e−2is − 1

)
η2 = 0. (47)
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Again, it remains to solve (47) for η2 to find an eigenvector and then normalize it for which we
leave the details in Appendix D. To sum up, we get

~u2 :=
1√
N2(s)

(
cos(θ) sin(θ)

(
e−2is − 1

)
e−iωs − cos2(θ)e−2is − sin2(θ)

)
, (48)

whereN2(s) := 8A
(

1−A− cos(s) cos(θ)
√

1−A
)

, as an orthonormal eigenvector for λ2 = e−iωs .

5.3. Finding Formulas for ât(s) and b̂t(s). For now, we assume that the initial condition is
|↑〉 ⊗ |0〉, which is purely up. From this we know that a0(t) = δ0,j , so

â0(s) =
∑
j

δ0,je
−ijs = δ0,0e

0 = 1(1) = 1.

Likewise, b0(t) = 0 which implies that b̂0(s) = 0.

Therefore, we have that (
â0(s)

b̂0(s)

)
=

(
1
0

)
(49)

Hence, if we let U = ( ~u1, ~u2) and D =

(
λ1 0
0 λ2

)
we have the diagonalization of M . Then, if we

substitute (49) into the general formula in (37) and perform the matrix multiplications, then we
obtain the expressions presented below.

ât(s) =

(
cos2(θ) sin2(θ)

(
e−2is − 1

) (
e2is − 1

))
N1(s)

eiωst/2

+

(
cos2(θ) sin2(θ)

(
e−2is − 1

) (
e2is − 1

))
N2(s)

e−iωst/2 (50)

b̂t(s) =
cos(θ) sin(θ)

(
e2is − 1

) (
eiωs − cos2(θ)e−2is − sin2(θ)

)
N1(s)

eiωst/2

+
cos(θ) sin(θ)

(
e2is − 1

) (
e−iωs − cos2(θ)e−2is − sin2(θ)

)
N2(s)

e−iωst/2 (51)

The formulas in (50) and (51) can be simplified further simplified to a form that is easier to work
with. Since these are longer calculations, we have placed them in Appendix D and only present the
final forms of ât(s) and b̂t(s) here.

ât(s) =
1

2

[(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 +

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2

]
(52)

b̂t(s) =
eis sin(θ)

2
√

1−A

(
eiωst/2 − e−iωst/2

)
(53)
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5.4. Inverse Fourier Transform. Our main objective is to find formulas for aj(t) and bj(t). This
is accomplished by taking inverse Fourier transforms of (52) and (53). We substitute both (52) and
(53) into (14) to obtain the following coefficients for the quantum walk at even positions.

aj(t) =
1

2π

∫ π

−π
ât(s)e

ijsds

=
1

2π

∫ π

−π

1

2

[(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 +

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2

]
eijsds

=
1

2π

∫ π

−π

1

2

(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 · eijsds+

1

2π

∫ 0

−2π

1

2

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2 · eijsds

Now we perform a change of variable. Let s∗ := s + π. Then, we have that s = s∗ − π,
ds∗ = ds, s∗(−2π) = −π, and s∗(0) = π. Furthermore, it can be shown that ωs∗−π = −ωs∗ and
that cos(s∗−π) = − cos(s∗) and sin2(s∗−π) = sin2(s∗). Using this information the second integral
above may be rewritten as:

=
1

2π

∫ π

−π

1

2

(
1 +

cos(s∗ − π) cos(θ)√
1− sin2(s∗ − π) cos2(θ)

)
e−iωs∗−πt/2 · eij(s∗−π)ds∗

=
1

2π

∫ π

−π

1

2

(
1− cos(s∗) cos(θ)√

1− sin2(s∗) cos2(θ)

)
eiωs∗ t/2 · eijs∗ · e−iπjds∗

=
1

2π

∫ π

−π

1

2
· (−1)j

(
1− cos(s∗) cos(θ)√

1− sin2(s∗) cos2(θ)

)
ei(js

∗+ωs∗ t/2)ds∗

=
(−1)j

2π

∫ π

−π

1

2

(
1− cos(s∗) cos(θ)√

1− sin2(s∗) cos2(θ)

)
ei(js

∗+ωs∗ t/2)ds∗

At this stage, rename s := s∗ in the derivation above. Combine and simplify the two halves of
the integral to get the final form of aj(t).

aj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

(
1− cos(s) cos(θ)√

1−A

)
ei(js+ωst/2) (54)

Continuing with our calculations, we derive the formula for bj(t) in a similar manner.

bj(t) =
1

2π

∫ π

−π
b̂t(s)e

ijsds

=
1

2π

∫ π

−π

eis sin(θ)

2
√

1−A

(
eiωst/2 − e−iωst/2

)
eijsds

=
1

2π

∫ π

−π

eis sin(θ)

2
√

1−A

(
eiωst/2 · eijs

)
ds− 1

2π

∫ 0

−2π

eis sin(θ)

2
√

1−A

(
e−iωst/2 · eijs

)
ds
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As before let s∗ := s + π within the second integral from above and reduce the integral in the
following way:

=
−1

2π

∫ π

−π

ei(s
∗−π) sin(θ)

2
√

1− sin2(s∗ − π) cos2(θ)
e−iωs∗−πt/2 · eij(s∗−π)ds∗

=
−1

2π

∫ π

−π

eis
∗ · e−iπ sin(θ)

2
√

1− sin2(s∗) cos2(θ)
eiωs∗ t/2eijs

∗ · e−iπjds∗

= ��
−1

2π

∫ π

−π

��
�(−1)(−1)jeis

∗
sin(θ)

2
√

1− sin2(s∗) cos2(θ)
ei(js

∗+ωs∗ t/2)ds∗

=
(−1)j

2π

∫ π

−π

eis
∗

sin(θ)

2
√

1− sin2(s∗) cos2(θ)
ei(js

∗+ωs∗ t/2)ds∗

Once again rename s := s∗ in the derivation above and combine the two halves of the integral
to get the final formula for bj(t).

bj(t) =
1 + (−1)j

2

∫ π

−π

ds

2π

eis sin(θ)√
1−A

ei(js+ωst/2) (55)

We observe that for odd positions of j, the amplitudes of both aj(t) and bj(t) cancel out, as
desired.

Thus, we have obtained two integrals that describe the coefficients of the wave function at a
position j and time t. Therefore, we calculate the probability of being at j at time t as Pj(t) =∣∣aj(t)∣∣2 +

∣∣bj(t)∣∣2.
5.5. Asymptotic Expansion of aj(t) and bj(t). Using the method of stationary phase, described
in Appendix C, we would like to asymptotically expand the integrals (54) and (55) in order to
analyze the behavior of the wave function as t tends to +∞. To do this, we consider an integral of
the form:

I(α, t) =

∫ π

−π

ds

2π
g(s)eiφ(s,α)t (56)

If we substitute j = αt for α ∈ [−1, 1] into the expressions in (54) and (55), we can obtain
integrals in the form of (56). After doing so we can define2

I1(α, t) :=
1 + (−1)αt

2

∫ π

−π

ds

2π

(
1− cos(s) cos(θ)√

1−A

)
eit(αs+ωs/2) for aj(t)

I2(α, t) :=
1 + (−1)αt

2

∫ π

−π

ds

2π

eis sin(θ)√
1−A

eit(αs+ωs/2) for bj(t)

Furthermore, we can let

2Note that t is defined to be the total number of steps taken during the walk.
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g1(s) :=

(
1− cos(s) cos(θ)√

1−A

)
,

g2(s) :=
eis sin(θ)√

1−A

and since both I1 and I2 have the same phase term, define

φ(s, α) := αs+
1

2
ωs

Initially, we would like to calculate some derivatives which will be useful in our analysis later.

∂φ

∂s
= α+

1

2
ωs = α+

cos(θ) cos(s)√
1− sin2(s) cos2(θ)

∂2φ

∂s2
=

1

2
ω′′s =

− sin(s) cos(θ) sin2(θ)(
1− sin2(s) cos2(θ)

)3/2
∂3φ

∂s3
=

1

2
ω′′′s =

− sin2(θ) cos(θ) cos(s)
(
1 + 2 sin2(s) cos2(θ)

)(
1− sin2(s) cos2(θ)

)5/2
After calculating these derivatives, we need to find an appropriate region in terms of α for which

to analyze the asymptotic behavior of the wave function Ψ as t → +∞. We would like to choose
α, so that I1(α, t) and I2(α, t) decay faster than any inverse polynomial in t in the region |α| + ε,

go as t−1/3 in the regions around |α|, and as t−1/2 in the third interval [4].

In order to look for stationary points of order 2 around |α|, we would like to have ∂φ
∂s = ∂2φ

∂s2
= 0,

but ∂3φ
∂s3
6= 0.

First off, if

∂2φ

∂s2
=
− sin(s) cos(θ) sin2(θ)(
1− sin2(s) cos2(θ)

)3/2 = 0,

we must have sin(s) = 0, so s = 0, π are the stationary points.

For

∂φ

∂s
= α+

cos(θ) cos(s)√
1− sin2(s) cos2(θ)

= 0

= α+
± cos(θ)

√
1− sin2(s)√

1− sin2(s) cos2(θ)
= 0

α =
∓ cos(θ)

√
1− sin2(s)√

1− sin2(s) cos2(θ)

If s = 0, π, then α = ± cos(θ). However, we must be careful and observe that for φ, s = 0 ⇒
α = − cos(θ) and s = π ⇒ α = cos(θ).
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Now we would like to analyze the behaviors of I1 and I2 for |α| = cos(θ) and |α| < cos(θ)− ε for
any constant ε > 0.

We begin with the points α = cos(θ),− cos(θ) where φ has stationary points of order 2 at s = 0, π.
Therefore we apply the method of stationary phase with p = 3 to find the leading terms for I1 and
I2.

First, we evaluate φ(3)(s, α) at s = 0, π which will be used in the formula for the integral.

φ(3)(0, α) = − sin2(θ) cos(θ)

φ(3)(π, α) = sin2(θ) cos(θ).

Thus, using the above formulas we get

I1(α, t) ∼
1 + (−1)αt

2

g1(s)

2π
ei(φ(s,α)t±π/6)

Γ
(
1
3

)
3

[
3!

t
∣∣φ(3)(s, α)

∣∣
]1/3

∼ 1 + (−1)αt

2

g1(s)

6π
ei(φ(s,α)t±π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

and

I2(α, t) ∼
1 + (−1)αt

2

g2(s)

6π
ei(φ(s,α)t±π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

We also need that for I1, g1(0) = 1−cos(θ) and g1(π) = 1+cos(θ). Similarly, for I2, g2(0) = sin(θ)
and g2(π) = − sin(θ). Furthermore, we can find that φ(0,− cos(θ)) = 0 and φ(π, cos(θ)) = π cos(θ).

Using all of the above information we can finally write more specific for the leading terms in the
integrals I1 and I2.

I1
(
− cos(θ), t

)
∼ 1 + (−1)αt

2

g1(0)

6π
ei(φ(0,− cos(θ))t−π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

∼ 1 + (−1)αt

2

(1− cos(θ))

6π
e−iπ/6Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

∼ 1 + (−1)αt

2

(1− cos(θ))

6π

(√
3

2
− 1

2
i

)
Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

(57)

I1
(
cos(θ), t

)
∼ 1 + (−1)αt

2

g1(π)

6π
ei(φ(π,cos(θ))t+π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

∼ 1 + (−1)αt

2

(1 + cos(θ))

6π
ei(π cos(θ)t+π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3
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∼ 1 + (−1)αt

2

(1 + cos(θ))

6π

(
cos

(
π cos(θ)t+

π

6

)
+ i sin

(
π cos(θ)t+

π

6

))

× Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

(58)

I2
(
− cos(θ), t

)
∼ 1 + (−1)αt

2

g2(0)

6π
ei(φ(0,− cos(θ))t−π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

∼ 1 + (−1)αt

2

sin(θ)

6π
e−iπ/6Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

∼ 1 + (−1)αt

2

sin(θ)

6π

(√
3

2
− 1

2
i

)
Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

(59)

I2
(
cos(θ), t

)
∼ 1 + (−1)αt

2

g2(π)

6π
ei(φ(π,cos(θ))t+π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

∼ 1 + (−1)αt

2

− sin(θ)

6π
ei(π cos(θ)t+π/6)Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

∼ 1 + (−1)αt

2

− sin(θ)

6π

(
cos

(
π cos(θ)t+

π

6

)
+ i sin

(
π cos(θ)t+

π

6

))

× Γ

(
1

3

)[
6∣∣t sin2(θ) cos(θ)

∣∣
]1/3

(60)

Now we turn to the interval of most importance to us,
[
− cos(θ) + ε, cos(θ)− ε

]
. When α lies in

this region we would like to have ∂φ
∂s = 0, but ∂2φ

∂s2
6= 0, so each of φ has two stationary points in

this region.

Recall that

∂φ

∂s
= α+

cos(θ) cos(s)√
1− sin2(s) cos2(θ)

= 0

Solving for s gives

sα = ± arccos

−
√
α2 tan2(θ)

1− α2


sα = ± arccos

(
−α tan(θ)√

1− α2

)
. (61)

Note that we get two stationary points for each value of alpha, namely sα and −sα.
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Once again, we can employ the method of stationary phase but this time for p = 2. In the most
general form, we have 3

I1,2(α, t) ∼ �2×
1 + (−1)αt

2

g1,2(sα)

2π
ei(φ(sα),α)t±π/4)

[
2!

t
∣∣φ(2)(sα, α)

∣∣
]1/2

Γ(12)

�2

∼ 1 + (−1)αt

2

√
2π

2π
· g1,2(sα)√

t
∣∣ω′′sα∣∣e

i(φ(sα,α)t±π/4)

∼ 1 + (−1)αt

2

g1,2(sα)√
2πt
∣∣ω′′sα∣∣

(
cos

(
φ(sα, α)t+

π

4

)
± sin

(
φ(sα, α)t+

π

4

))

which can be simplified to

I1,2(α, t) ∼
g1,2(sα)√
2πt
∣∣∣ω′′sα1,2 ∣∣∣

×

{
2 cos

(
φ(sα, α)t+ π/4

)
if g is even

2i sin
(
φ(sαα)t+ π/4

)
if g is odd

(62)

The phase is

φ(±sα, α) = ±αsα +
1

2
ωsα

where

ω(±sα) = 2 arcsin
(
sin(±sα) cos(θ)

)
= 2 arcsin

sin

(
± arccos

(
−α tan(θ)√

1− α2

))
cos(θ)


= 2 arcsin

(
± cos(θ)

√
1− α2 sec2(θ)

1− α2

)

= ±2 arcsin

(√
cos2(θ)− α2

1− α2

)
(63)

and the second derivative is 4

∂2

∂s2
(±sα, α) =

− sin(±sα) sin2(θ) cos(θ)(
1− sin2(±sα) cos2(θ)

)3/2
= ∓ sin2(θ) cos(θ)

√
1− α2 sec2(θ)

1− α2

(
sin2(θ)

1− α2

)−3/2
3Note that Γ( 1

2
) =
√
π.

4See Appendix D for the expansion of sin(sα) and 1− sin2(sα) cos2(θ).
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= ∓ sin2(θ) cos(θ)

√
1− α2 sec2(θ)

1− α2

(
1− α2

sin2(θ)

)3/2

= ∓ sin2(θ) ·
(

sin2(θ)
)−3/2 (

1− α2
)−1/2

·
(

1− α2
)3/2

cos(θ)
√

1− α2 sec2(θ)

= ∓
(

sin(θ)2
)−1 (

1− α2
)

cos(θ)
√

1− α2 sec2(θ)

=
∓(1− α2)

√
cos2(θ)− α2

sin(θ)

Therefore, for
∣∣∣ω′′sα∣∣∣ we can just use∣∣∣ω′′sα∣∣∣ =

(1− α2)
√

cos2(θ)− α2∣∣sin(θ)
∣∣ . (64)

Next, we would also like to find g1(±sα) and g2(±sα):

g1(±sα) =

(
1− cos(±sα) cos(θ)√

1− sin2(±sα) cos2(θ)

)

=

(
1− −α tan(θ) cos(θ)

���
��√

1− α2
· �
���

�√
1− α2√
sin2(θ)

)

=

(
1 +

α tan(θ) cos(θ)

sin(θ)

)
=
(
1 + α arctan(θ) · tan(θ)

)
= (1 + α)

Also, we get

g2(±sα) =
e±isα sin(θ)√

1− sin2(±sα) cos2(θ)

= e±isα1 sin(θ)

(
sin2(θ)

1− α2

)−1/2

= e±isα1���sin(θ)

(
1− α2

���
�sin2(θ)

)1/2

=
√

1− α2e±isα1

=
√

1− α2
(
cos(sα1)± i sin(sα1)

)
=���

��√
1− α2

(
−α tan(θ)

���
��√

1− α2
± i
√

1− α2 sec2(θ)

���
��√

1− α2

)
= −α tan(θ)± i

√
1− α2 sec2(θ)
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Combining the aforementioned calculations, we can write asymptotic expression for aj(αt, t) and
bj(αt, t), where aj(αt, t) := I1 and bj(αt, t) := I2.

aj(αt, t)

bj(αt, t)

 ∼ 1 + (−1)αt√
2πt
∣∣ω′′sα∣∣ ×


(1 + α) cos

(
φ(sα, α) t+ π/4

)
−α tan(θ) cos

(
φ(sα, α) t+ π/4

)
−
√

1− α2 sec2(θ) sin
(
φ(sα, α) t+ π/4

) (65)

Therefore, we can calculate the probability of observing the particle at any point j = αt. The
asymptotic distribution for points α = j/t between − cos(θ) + ε and cos(θ) − ε, for any small
constant ε > 0 is given by (31).

6. Future Work

Many aspects of our project could be further generalized. We worked with the same initial state,
|↑〉 ⊗ |0〉, for both our walks, but there are infinitely many initial conditions that could be tested.
Similarly, there are many ways to make a coin space-inhomogeneous. For example, we could define
a coin that is different at every point on the line. We could also study a walk that is strictly time-
inhomogeneous, independent of position, and compare results with similar space-inhomogeneous
walks.

However, there is still much to learn about the two specific walks we covered. Time constraints
prevented us from finding asymptotic approximations for the PQ-walk. Having accurate approx-
imations could let us better examine key features of the probability distributions for any set of
parameters. We found some key features of the Rotation walk, but more could be discovered and
justified using our asymptotics. Learning to predict and control the behavior of quantum walks
using these variables could make them even more powerful tools in computing and other applica-
tions.

The discovery that the Rotations walk could replicate the Hadamard walk raises several poignant
questions. Are there other walks we can model using the Rotations walk or the PQ-walk? Further-
more, can all homogeneous walks be modeled by inhomogeneous walks? Methods to control walks
by adjusting their parameters could lead to insights for answering these questions.

Appendix A. Shift Operator

The shift operator is defined as

S =
∑
j∈Z
|↑〉 〈↑| ⊗ |j + 1〉 〈j|+

∑
j∈Z
|↓〉 〈↓| ⊗ |j − 1〉 〈j| .

This looks rather intimidating at first, so consider an example. Assume that after applying the
coin operator we have an expression |↑〉 ⊗ |1〉 . Now apply the shift operator.

S(H ⊗ I) |ψ(t)〉 = S(|↑〉 ⊗ |1〉)

=

∑
j∈Z
|↑〉 〈↑| ⊗ |j + 1〉 〈j|+

∑
j∈Z
|↓〉 〈↓| ⊗ |j − 1〉 〈j|

 (|↑〉 ⊗ |1〉)
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=

∑
j∈Z
|↑〉 〈↑| ⊗ |j + 1〉 〈j|

 (|↑〉 ⊗ |1〉)

+

∑
j∈Z
|↓〉 〈↓| ⊗ |j − 1〉 〈j|

 (|↑〉 ⊗ |1〉)

One useful property of the tensor product is that for any matrices A, B, C, and D,

(A⊗B)(C ⊗D) = (AC ⊗BD).

This identity leads to a useful result:

S(H ⊗ I) |ψ(t)〉 =
∑
j∈Z
|↑〉 〈↑ | ↑〉 ⊗ |j + 1〉 〈j|1〉+

∑
j∈Z
|↓〉 〈↓ | ↑〉 ⊗ |j − 1〉 〈j|1〉 .

Recall that a bra multiplied by a ket is an inner product. Since Hc has an orthonormal basis
of {|↑〉 , |↓〉}, we know 〈↑ | ↓〉 = 〈↓ | ↑〉 = 0 and 〈↑ | ↑〉 = 〈↓ | ↓〉 = 1. The elements of Hp follow a
similar convention. For positions |u〉 , |v〉 ∈ Hp,

〈u|v〉 = δu,v =

{
1 if u = v

0 if u 6= v.

This means the sum containing the inner product of up and down is zero, canceling out that
term completely. Only the first sum containing the inner product of up with itself remains.

S(H ⊗ I) |ψ(t)〉 =
∑
j∈Z
|↑〉 ⊗ |j + 1〉 〈j|1〉

The inner product of j and 1 will always equal 0 if j 6= 1, so the only term that doesn’t cancel
out will be the j = 1 term. After substituting j = 1, we get

S(H ⊗ I) |ψ(t)〉 = |↑〉 ⊗ |2〉 〈1|1〉
= |↑〉 ⊗ |2〉 .

Appendix B. PQ-walk Eigenvalues and Eigenvectors

Find the eigenvalues using the characteristic equation.

det (M − λI) = (
√
qp e−2is +

√
(1− q)(1− p)− λ)(

√
(1− q)(1− p) +

√
qp e2is − λ)

− (
√

(1− q)p−
√
q(1− p) e2is)(

√
q(1− p) e−2is −

√
(1− q)p)

=
((((

((((
((((√

qp(1− q)(1− p) e−2is + qp−√qp e−2isλ+ (1− q)(1− p)

+
((((

((((
(((√

qp(1− q)(1− p) e2is − 2
√

(1− q)(1− p)λ−√qp e2isλ+ λ2
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−
(((

((((
(((

((√
qp(1− q)(1− p) e−2is + p(1− q) + q(1− p)−

((((
((((

(((√
qp(1− q)(1− p) e2is

= λ2 −
(√

qp e2is +
√
qp e−2is + 2

√
(1− q)(1− p)

)
λ

+
(
qp+ (1− q)(1− p) + p(1− q) + q(1− p)

)
= λ2 −

(√
qp
(
cos(2s) +���

��i sin(2s) + cos(2s)−���
��i sin(2s)
)

+ 2
√

(1− q)(1− p)
)
λ+ 1

= λ2 − 2
(√

qp cos(2s) +
√

(1− q)(1− p)
)
λ+ 1

Solve for the roots of the characteristic equation.

λ1,2 =
2
(√

qp cos(2s) +
√

(1− q)(1− p)
)
±
√

4
(√

qp cos(2s) +
√

(1− q)(1− p)
)2
− 4

2

=
√
qp cos(2s) +

√
(1− q)(1− p)±

√(√
qp cos(2s) +

√
(1− q)(1− p)

)2
− 1

=
√
qp cos(2s) +

√
(1− q)(1− p)︸ ︷︷ ︸

Re(λ)

±i
√

1−
(√

qp cos(2s) +
√

(1− q)(1− p)
)2

︸ ︷︷ ︸
Im(λ)

Using these eigenvalues, we can solve for the corresponding eigenvectors ~v1, ~v2.

(√
qp e−2is +

√
(1− q)(1− p)− e±iωs

)
x1 +

(√
q(1− p) e−2is −

√
(1− q)p

)
︸ ︷︷ ︸

Call this x1

x2 = 0

Choose x1 to be the second coefficient, then we can factor and divide x1 out. The derivation
becomes much simpler this way.

x1

(√
qp e−2is +

√
(1− q)(1− p)− e±iωs + x2

)
= 0(√

qp e−2is +
√

(1− q)(1− p)− e±iωs
)

+ x2 = 0

x2 = e±iωs −√qp e−2is −
√

(1− q)(1− p)

This would result in these non-normalized eigenvectors.

~v1,2 =


√
q(1− p) e−2is −

√
(1− q)p

e±iωs −√qp e−2is −
√

(1− q)(1− p)


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In rectangular complex form, that can be written as

~v1,2 =



a︷ ︸︸ ︷(√
q(1− p) cos(2s)−

√
(1− q)p

)
− i

b︷ ︸︸ ︷(√
q(1− p) sin(2s)

)
(

cos(ωs)−
√
qp cos(2s)−

√
(1− q)(1− p)

)
︸ ︷︷ ︸

c

+ i
(√
qp sin(2s)± sin(ωs)

)︸ ︷︷ ︸
d


.

So the magnitude squared of the eigenvector is |~v|2 = a2 + b2 + c2 + d2.∣∣~v1,2∣∣2 =
(√

q(1− p) cos(2s)−
√

(1− q)p
)2

+
(√

q(1− p) sin(2s)
)2

+
(

cos(ωs)−
√
qp cos(2s)−

√
(1− q)(1− p)

)2
+
(√
qp sin(2s)± sin(ωs)

)2
=
︷ ︸︸ ︷
q(1− p) cos2(2s)−2

√
qp(1− q)(1− p) cos(2s) + p(1− q) +

︷ ︸︸ ︷
q(1− p) sin2(2s) + cos2(ωs)︸ ︷︷ ︸

− 2
√
qp cos(2s) cos(ωs)− 2

√
(1− q)(1− p) cos(ωs) +

︷ ︸︸ ︷
qp cos2(2s)

+ 2
√
qp(1− q)(1− p) cos(2s) + (1− q)(1− p) +

︷ ︸︸ ︷
qp sin2(2s)

± 2
√
qp sin(2s) sin(ωs) + sin2(ωs)︸ ︷︷ ︸

= q(1− p)−
((((

(((
((((

(((

2
√
qp(1− q)(1− p) cos(2s) + p(1− q) + 1− 2

√
qp cos(2s) cos(ωs)

− 2
√

(1− q)(1− p) cos(ωs) + qp+
(((

((((
(((

((((

2
√
qp(1− q)(1− p) cos(2s)

+ (1− q)(1− p)± 2
√
qp sin(2s) sin(ωs)

= 2− 2
√
qp cos(2s) cos(ωs)− 2

√
(1− q)(1− p) cos(ωs)± 2

√
qp sin(2s) sin(ωs)

Now plug in our identities for cos(ωs) and sin(ωs).

∣∣~v1,2∣∣2 = 2− 2
√
qp cos(2s)

(√
pq cos(2s) +

√
(1− q)(1− p)

)
− 2
√

(1− q)(1− p)
(√

pq cos(2s) +
√

(1− q)(1− p)
)
± 2
√
qp sin(2s) sin(ωs)

= 2− 2qp cos2(2s) +((((
((((

((
2
√
qp(1− q)(1− p) cos(2s)−(((((

((((
(

2
√
qp(1− q)(1− p)

− 2(1− q)(1− p)± 2
√
qp sin(2s) sin(ωs)

= 2q + 2p− 2qp− 2qp cos2(2s)± 2
√
qp sin(2s)

√
1−

(√
pq cos(2s) +

√
(1− q)(1− p)

)2
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Appendix C. The Method of Stationary Phase

The integral expressions for our coefficients aj(t) and bj(t) clearly cannot be solved by ordinary
integration techniques, so we must consider a well-known method which allows for the asymptotic
expansion of integrals called the method of stationary phase [4].

We consider an integral of the form:

I(t) =

∫ b

a
g(s)eitφ(s)ds (66)

as t tends to infinity. We assume that the exponential term in the integral oscillates rapidly
when t is large and if φ, called the phase of the integral, is not constant in any sub-interval. Also, if
g(s) is a smooth function of s, then terms from adjacent sub-intervals will almost cancel each other
out, meaning that the major contribution to the value of the integral comes from regions where the
oscillations are slow. These regions of slow oscillations occur exactly at the stationary points, i.e
the points where the phase term is stationary. More precisely, the points c where φ′(c) = 0. Thus,
the significant terms in the expansion come from a small interval around the stationary points.

Without loss of generality, we assume that φ has exactly one stationary point occurring at the
left endpoint of the interval, a. Furthermore, we make the assumption that g is smooth and non-
vanishing at a. The order of a stationary point, c, corresponds to the last derivative of φ in the
Taylor expansion of φ(s) at c which is nonzero at c. Suppose that the order of a is p − 1, then

φ′(a) = φ(2)(a) = · · · = φ(p−1)(a) = 0, but φ(p)(a) 6= 0. Then, the dominant behavior of I is given
by

I(t) ∼ g(s)eitφ(s)±iπ/2p

[
p!

t
∣∣φ(p)(a)

∣∣
]1/p

Γ(1/p)

p
, t→ +∞, (67)

where we use eiπ/2p (e−iπ/2p) if φ(p)(a) > 0 (φ(p)(a) < 0).

Appendix D. Alternating Rotation Walk Calculations

D.1. Eigenvalues and Eigenvectors. In order to diagonalize the matrix M , we first solve for
the eigenvalues of (42). The determinant of the matrix M is 1 and its trace is

trace(M) = e−2is cos2(θ) + sin2(θ) + e2is cos2(θ) + sin2(θ)

=
(
e−2is + e2is

)
cos2(θ) + 2 sin2(θ)

= 2

(
cos(2s)︸ ︷︷ ︸ cos2(θ) + sin2(θ)

)
= 2

(
(−2 sin2(s) + 1) cos2(θ) + sin2(θ)

)
= 2

(
−2 sin2(s) cos2(θ) + cos2(θ) + sin2(θ)︸ ︷︷ ︸

)
= 2

(
1− 2 sin2(s) cos2(θ)

)
.
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Therefore, the characteristic equation is

λ2 − 2
(

1− 2 sin2(s) cos2(θ)
)
λ+ 1 = 0.

Solving for the roots of the characteristic equation, we get

λ1,2 =
2
(
1− 2 sin2(s) cos2(θ)

)
±
√(
−2
(
1− 2 sin2(s) cos2(θ)

))2
− 4

2

=

2
(
1− 2 sin2(s) cos2(θ)

)
±
√

4
((

1− 2 sin2(s) cos2(θ)
)2 − 1

)
2

= 1− 2 sin2(s) cos2(θ)±
√(

1− 2 sin2(s) cos2(θ)
)2 − 1

= 1− 2 sin2(s) cos2(θ)±
√

4 sin4(s) cos4(θ)− 4 sin2(s) cos2(θ) + �1− �1

= 1− 2 sin2(s) cos2(θ)±
√

4 sin2(s) cos2(θ)
(
sin2(s) cos2(θ)− 1

)
= 1− 2 sin2(s) cos2(θ)± 2 sin(s) cos(θ)

√
−1
(
1− sin2(s) cos2(θ)

)
= 1− 2 sin2(s) cos2(θ)± 2i sin(s) cos(θ)

√
1− sin2(s) cos2(θ).

If we let η1 = cos(θ) sin(θ)
(
e−2is − 1

)
, solving (45) for η2 gives η2 = eiωs − cos2(θ)e−2is− sin2(θ).

Therefore, we can define

~v1 :=

(
cos(θ) sin(θ)

(
e−2is − 1

)
eiωs − cos2(θ)e−2is − sin2(θ)

)
.

It remains to normalize ~v1.

|~v1|2 =

∣∣∣∣cos(θ) sin(θ)
(
e−2is − 1

)∣∣∣∣2 +
∣∣∣eiωs − cos2(θ)e−2is − sin2(θ)

∣∣∣2
= 4A sin2(θ) + 4A

(
1 + cos(2s) cos2(θ) + 2 cos(s) cos(θ)

√
1−A

)
See Notes 1 and 2 for details.

= 4A

(
1 + sin2(θ) + cos(2s)︸ ︷︷ ︸ cos2(θ) + 2 cos(s) cos(θ)

√
1−A

)
= 4A

(
1 + sin2(θ) + (1− 2 sin2(s)) cos2(θ) + 2 cos(s) cos(θ)

√
1−A

)
= 4A

(
1 + sin2(θ) + cos2(θ)︸ ︷︷ ︸−2 sin2(s) cos2(θ) + 2 cos(s) cos(θ)

√
1−A

)
= 4A

(
2− 2A+ 2 cos(s) cos(θ)

√
1−A

)
= 8A

(
1−A+ cos(s) cos(θ)

√
1−A

)
Denote N1(s) := 8A

(
1−A+ cos(s) cos(θ)

√
1−A

)
as the squared-norm of ~v1.
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Once again, let η1 = cos(θ) sin(θ)
(
e−2is − 1

)
and solve (47) for η2 to get

η2 = e−iωs − cos2(θ)e−2is − sin2(θ). Define:

~v2 :=

(
cos(θ) sin(θ)

(
e−2is − 1

)
e−iωs − cos2(θ)e−2is − sin2(θ)

)
.

Again we need to normalize ~v2.

|~v2|2 =

∣∣∣∣cos(θ) sin(θ)
(
e−2is − 1

)∣∣∣∣2 +
∣∣∣e−iωs − cos2(θ)e−2is − sin2(θ)

∣∣∣2
= 4A sin2(θ) + 4A

(
1 + cos(2s) cos2(θ)− 2 cos(s) cos(θ)

√
1−A

)
See Notes 1 and 2 for details.

= 4A

(
1 + sin2(θ) + cos(2s)︸ ︷︷ ︸ cos2(θ)− 2 cos(s) cos(θ)

√
1−A

)
= 4A

(
1 + sin2(θ) + (1− 2 sin2(s)) cos2(θ)− 2 cos(s) cos(θ)

√
1−A

)
= 4A

(
1 + sin2(θ) + cos2(θ)︸ ︷︷ ︸−2 sin2(s) cos2(θ)− 2 cos(s) cos(θ)

√
1−A

)
= 4A

(
2− 2A− 2 cos(s) cos(θ)

√
1−A

)
= 8A

(
1−A− cos(s) cos(θ)

√
1−A

)
Denote N2(s) := 8A

(
1−A− cos(s) cos(θ)

√
1−A

)
.

Note 1: Expansion of
∣∣∣cos(θ) sin(θ)

(
e−2is − 1

)∣∣∣2:
∣∣∣∣cos(θ) sin(θ)

(
e−2is − 1

)∣∣∣∣2 =

∣∣∣∣cos(θ) sin(θ)
((

cos(2s)− i sin(2s)
)
− 1
)∣∣∣∣2

=
∣∣∣(cos(θ) sin(θ) cos(2s)− cos(θ) sin(θ)

)
− i
(
cos(θ) sin(θ) sin(2s)

)∣∣∣2
=
(

cos(θ) sin(θ)
(
cos(2s)− 1

))2
+
(
cos(θ) sin(θ) sin(2s)

)2
= cos2(θ) sin2(θ)

(
cos2(2s)︸ ︷︷ ︸−2 cos(2s) + 1

)
+ cos2(θ) sin2(θ) sin2(2s)︸ ︷︷ ︸

= cos2(θ) sin2(θ)

(
cos2(2s) + sin2(2s)︸ ︷︷ ︸−2 cos(2s) + 1

)
= cos2(θ) sin2(θ)

(
2− 2 cos(2s)

)
= 2 cos2(θ) sin2(θ)

(
1− cos(2s)︸ ︷︷ ︸

)

= 2 cos2(θ) sin2(θ)

(
�1−

(
�1− 2 sin2(s)

))
= 4A sin2(θ)
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Note 2: Expansion of
∣∣∣eiωs − cos2(θ)e−2is − sin2(θ)

∣∣∣2:
∣∣∣eiωs − cos2(θ)e−2is − sin2(θ)

∣∣∣2
=
∣∣∣cos(ωs) + i sin(ωs)− cos2(θ)

(
cos(2s)− i sin(2s)

)
− sin2(θ)

∣∣∣2
=

∣∣∣∣(cos(ωs)− cos2(θ) cos(2s)− sin2(θ)
)

+ i
(

sin(ωs) + cos2(θ) sin(2s)
)∣∣∣∣2

=

(
cos(ωs)︸ ︷︷ ︸− cos2(θ) cos(2s)︸ ︷︷ ︸− sin2(θ)

)2

+
(

sin(ωs) + cos2(θ) sin(2s)
)2

=

(
1− 2 sin2(s) cos2(θ)− cos2(θ)

(
1− 2 sin2(s)

)
− sin2(θ)

)2

+
(

sin(ωs) + cos2(θ) sin(2s)
)2

=

1−(((((
(((

2 sin2(s) cos2(θ) +((((
((((2 sin2(s) cos2(θ)−

(
cos2(θ) + sin2(θ)︸ ︷︷ ︸

)2

+
(

sin(ωs) + cos2(θ) sin(2s)
)2

= (1− 1)
2

+
(

sin(ωs) + cos2(θ) sin(2s)
)2

=
(

sin(ωs) + cos2(θ) sin(2s)
)2

= sin2(ωs)︸ ︷︷ ︸+2 cos2(θ) sin(2s) sin(ωs) + cos4(θ) sin2(2s)︸ ︷︷ ︸
=
(

2 sin(s) cos(θ)
√

1−A
)2

+ 2 cos2(θ) sin(2s) · 2 sin(s) cos(θ)
√

1−A+ cos4(θ) sin2(2s)

= 4 sin2(s) cos2(θ)(1−A) + 4 cos3(θ) sin(s) sin(2s)︸ ︷︷ ︸√1−A+ cos4(θ) sin2(2s)︸ ︷︷ ︸
= 4 sin2(s) cos2(θ)(1−A) + 4 cos3(θ) sin(s) · 2 sin(s) cos(s)

√
1−A+ 4 cos4(θ) sin2(s) cos2(s)

= 4 sin2(s) cos2(θ)(1−A) + 8 cos3(θ) sin2(s) cos(s)
√

1−A+ 4 cos4(θ) sin2(s) cos2(s)

= 4A

1 + cos2(θ)

(
cos2(s)− sin2(s)︸ ︷︷ ︸

)
+ 2 cos(s) cos(θ)

√
1−A


= 4A

(
1 + cos(2s) cos2(θ) + 2 cos(s) cos(θ)

√
1−A

)
D.2. Formula Simplification of ât(s) and b̂t(s). We begin by reducing the formula for ât(s).
First, reduce the first coefficient in the formula.(

cos2(θ) sin2(θ)
(
e−2is − 1

) (
e2is − 1

))
N1(s)

=
1

N1(s)

(
cos2(θ) sin2(θ)

(
e−2is · e2is − e2is − e−2is − 1

))

=
1

N1(s)

cos2(θ) sin2(θ)

(
1−

(
e2is + e−2is︸ ︷︷ ︸

)
− 1

)
=

1

N1(s)

cos2(θ) sin2(θ)

(
−2 cos(2s)︸ ︷︷ ︸+2

)
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=
1

N1(s)

(
cos2(θ) sin2(θ)

(
−2
(

1− 2 sin2(s)
)

+ 2

))

=
1

N1(s)

(
cos2(θ) sin2(θ)

(
��−2 + 4 sin2(s)��+2

))
=

4 sin2(s) cos2(θ) sin2(θ)

N1(s)

=
4A sin2(θ)

N1(s)

=
4A sin2(θ)

8A
(

1−A+ cos(s) cos(θ)
√

1−A
)

=
sin2(θ)

2
(

1−A+ cos(s) cos(θ)
√

1−A
) ×

(
1−A− cos(s) cos(θ)

√
1−A

)
(

1−A− cos(s) cos(θ)
√

1−A
)

=
���

�sin2(θ)���
�(1−A)
(

1− cos(s) cos(θ)(1−A)−1/2
)

2���
�sin2(θ)���

�(1−A)

=
1

2

(
1− cos(s) cos(θ)√

1−A

)

Second, we need to simplify the second coefficient in ât(s). However, since the numerator is the
same as in the first coefficient, we can skip directly to the step where:

cos2(θ) sin2(θ)
(
e−2is − 1

) (
e2is − 1

)
N2(s)

=
4A sin2(θ)

N2(s)

=
4A sin2(θ)

8A
(

1−A− cos(s) cos(θ)
√

1−A
)

=
sin2(θ)

2
(

1−A− cos(s) cos(θ)
√

1−A
) ×

(
1−A+ cos(s) cos(θ)

√
1−A

)
(

1−A+ cos(s) cos(θ)
√

1−A
)

=
���

�sin2(θ)��
��(1−A)
(

1 + cos(s) cos(θ)(1−A)−1/2
)

2���
�sin2(θ)��

��(1−A)

=
1

2

(
1 +

cos(s) cos(θ)√
1−A

)

Therefore, ât(s) is reduced to the more manageable form:

ât(s) =
1

2

[(
1− cos(s) cos(θ)√

1−A

)
eiωst/2 +

(
1 +

cos(s) cos(θ)√
1−A

)
e−iωst/2

]
.

Similarly, we would like to simplify the complicated formula for b̂t(s) beginning with the first

coefficient in b̂t(s).
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cos(θ) sin(θ)
(
e2is − 1

) (
eiωs − cos2(θ)e−2is − sin2(θ)

)
N1(s)

=
1

N1(s)
cos(θ) sin(θ)

−2ieis

(
−1

2
i

(
eis − e−is︸ ︷︷ ︸

))(eiωs − cos2(θ)e−2is − sin2(θ)
)

=
−2ieis

N1(s)
sin(s) cos(θ) sin(θ)

(
eiωs − cos2(θ)e−2is − sin2(θ)

)
=
−2ieis

N1(s)
sin(s) cos(θ) sin(θ)

(
cos(ωs) + i sin(ωs)− cos2(θ)

(
cos(2s)− i sin(2s)

)
− sin2(θ)

)
=
−2ieis

N1(s)
sin(s) cos(θ) sin(θ)

(cos(ωs)︸ ︷︷ ︸− cos2(θ) cos(2s)︸ ︷︷ ︸− sin2(θ)

)
+ i
(

sin(ωs) + cos2(θ) sin(2s)
)

=
−2ieis

N1(s)
sin(s) cos(θ) sin(θ)

((
1− 2 sin2(s) cos2(θ)− cos2(θ)(1− 2 sin2(s))− sin2(θ)

)
+ i

(
sin(ωs) + cos2(θ) sin(2s)

))
=
−2ieis

N1(s)
sin(s) cos(θ) sin(θ)

((
�1−(((((

(((
2 sin2(s) cos2(θ)−(((((

(((((cos2(θ) + sin2(θ)) +(((
((((

(
2 sin2(s) cos2(θ)

)
+ i

(
sin(ωs) + cos2(θ) sin(2s)

))
=
−2i2eis

N1(s)
sin(s) cos(θ) sin(θ)

(
sin(ωs) + cos2(θ) sin(2s)

)
=

2eis

N1(s)
sin(s) cos(θ) sin(θ)

(
sin(ωs)︸ ︷︷ ︸+ cos2(θ) sin(2s)

)

=
2eis

N1(s)
sin(s) cos(θ) sin(θ)

(
2 sin(s) cos(θ)

√
1−A+ cos2(θ) sin(2s)︸ ︷︷ ︸

)

=
2eis

N1(s)
sin(s) cos(θ) sin(θ)

(
2 sin(s) cos(θ)

√
1−A+ 2 sin(s) cos(s) cos2(θ)

)
=

4eis

N1(s)
sin2(s) cos2(θ) sin(θ)

(
cos(s) cos(θ) +

√
1−A

)
=

4Aeis

N1(s)
sin(θ)

(
cos(s) cos(θ) +

√
1−A

)
=

4Aeis sin(θ)
(

cos(s) cos(θ) +
√

1−A
)

8A
(

1−A+ cos(s) cos(θ)
√

1−A
)

=
eis sin(θ)

(
cos(s) cos(θ) +

√
1−A

)
2
(

1−A+ cos(s) cos(θ)
√

1−A
) ×

(
1−A− cos(s) cos(θ)

√
1−A

)
(

1−A− cos(s) cos(θ)
√

1−A
)

=
eis sin(θ)

(
((((

((cos(s) cos(θ)−(((((
(

cos(s) cos(θ)−����A cos(s) cos(θ) +((((
(((A cos(s) cos(θ)−

√
1−A

(
1−A− cos2(s) cos2(θ)

))
2 sin2(θ) (1−A)
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=
eis
√

1−A
(
1−A− cos2(s) cos2(θ)

)
2 sin(θ) (1−A)

=
eis
√

1−A
(

1− sin2(s) cos2(θ)− cos2(s) cos2(θ)
)

2 sin(θ) (1−A)

=

eis

1− cos2(θ)

(
sin2(s) + cos2(s)︸ ︷︷ ︸

)
2 sin(θ)

√
1−A

=
eis
(
1− cos2(θ)

)
2 sin(θ)

√
1−A

=
eis sin2(θ)

2 sin(θ)
√

1−A

=
eis sin(θ)

2
√

1−A

Next, it remains to reduce the second coefficient in the formula for b̂t(s). Given that the difference
in the numerator from the first coefficient is e−iωs instead of eiωs , the first few steps may be simplified
by exchanging sin(ωs) with − sin(ωs). Thus, we arrive at:

cos(θ) sin(θ)
(
e2is − 1

) (
e−iωs − cos2(θ)e−2is − sin2(θ)

)
N2(s)

=
2eis sin(s) cos(θ) sin(θ)

(
− sin(ωs) + cos2(θ) sin(2s)

)
N2(s)

=

2eis sin(s) cos(θ) sin(θ)

(
−2 sin(s) cos(θ)

√
1−A+ cos2(θ) sin(2s)︸ ︷︷ ︸

)
N2(s)

=
2eis sin(s) cos(θ) sin(θ)

(
−2 sin(s) cos(θ)

√
1−A+ 2 cos2(θ) sin(s) cos(s)

)
N2(s)

=
4eis sin2(s) cos2(θ) sin(θ)

(
cos(s) cos(θ)−

√
1−A

)
N2(s)

=
4Aeis sin(θ)

(
cos(s) cos(θ)−

√
1−A

)
N2(s)

=
4Aeis sin(θ)

(
cos(s) cos(θ)−

√
1−A

)
8A
(

1−A− cos(s) cos(θ)
√

1−A
)

=
eis sin(θ)

(
cos(s) cos(θ)−

√
1−A

)
2
(

1−A− cos(s) cos(θ)
√

1−A
) ×

(
1−A+ cos(s) cos(θ)

√
1−A

)
(

1−A+ cos(s) cos(θ)
√

1−A
)

=
eis sin(θ)

(
((((

((cos(s) cos(θ)−(((((
(

cos(s) cos(θ)−����A cos(s) cos(θ) +((((
(((A cos(s) cos(θ)−

√
1−A

(
1−A− cos2(s) cos2(θ)

))
2 sin2(θ) (1−A)
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=
eis
√

1−A
(
−1 +A+ cos2(s) cos2(θ)

)
2 sin(θ) (1−A)

=
eis
√

1−A
(
−1 + sin2(s) cos2(θ) + cos2(s) cos2(θ)

)
2 sin(θ) (1−A)

=

eis

−1 + cos2(θ)

(
sin2(s) + cos2(s)︸ ︷︷ ︸

)
2 sin(θ)

√
1−A

=
eis
(
−1 + cos2(θ)

)
2 sin(θ)

√
1−A

=
eis(− sin2(θ))

2 sin(θ)
√

1−A

=
−eis sin(θ)

2
√

1−A

Hence, from the above results, b̂t(s) is simplified to:

b̂t(s) =
eis sin(θ)

2
√

1−A

(
eiωst/2 − e−iωst/2

)

Note 3: Multiplication of
(

1−A− cos(s) cos(θ)
√

1−A
)(

1−A+ cos(s) cos(θ)
√

1−A
)

used in the

rationalization of the denominator.

(
1−A− cos(s) cos(θ)

√
1−A

)(
1−A+ cos(s) cos(θ)

√
1−A

)

= 1−A−A+A2 − cos2(s) cos2(θ)(1−A)

=
(

(1−A)−A(1−A)− cos2(s) cos2(θ)(1−A)
)

= (1−A)(1−A− cos2(s) cos2(θ))

= (1−A)(1− sin2(s) cos2(θ)− cos2(s) cos2(θ)) Re-substitute A= sin2(s) cos2(θ)

= (1−A)
(

1− cos2(s)((((
((((

(
(sin2(θ) + cos2(θ))

)
= (1−A)(1− cos2(θ))

= sin2(θ)(1−A)

D.3. Derivatives of φ.

∂φ

∂s
= α+

1

2
ωs

= α+
1

�2
· ∂
∂s

(
arcsin

(
�2 sin(s) cos(θ)

))
= α+

∂

∂s

(
arcsin

(
sin(s) cos(θ)

))
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= α+
cos(θ) cos(s)√

1−
(
sin(s) cos(θ)

)2
= α+

cos(θ) cos(s)√
1− sin2(s) cos2(θ)

∂2φ

∂s2
=

1

2
ω′′s

=
∂

∂s

(
cos(θ) cos(s)√

1− sin2(s) cos2(θ)

)

=
− cos(θ) sin(s)

(
1− sin2(s) cos2(θ)

)1/2 − 1
2 cos3(θ) cos2(s)

(
1− sin2(s) cos2(θ)

)−1/2 (−2 sin(s)
)

1− sin2(s) cos2(θ)

=
− cos(θ) sin(s)

(
1− sin2(s) cos2(θ)

)1/2
+ cos3(θ) cos2(s) sin2(s)

(
1− sin2(s) cos2(θ)

)−1/2
1− sin2(s) cos2(θ)

=
cos3(θ) cos2(s) sin(s)(
1− sin2(s) cos2(θ)

)3/2 − cos(θ) sin(s)(
1− sin2(s) cos2(θ)

)1/2
=

cos3(θ) cos2(s) sin(s)− cos(θ) sin(s)
(
1− sin2(s) cos2(θ)

)(
1− sin2(s) cos2(θ)

)3/2
=

cos3(θ) cos2(s) sin(s)− cos(θ) sin(s) + cos3(θ) sin3(s)(
1− sin2(s) cos2(θ)

)3/2

=

sin(s) cos(θ)

(
cos2(θ)

(
cos2(s) + sin2(s)︸ ︷︷ ︸

)
− 1

)
(
1− sin2(s) cos2(θ)

)3/2
=

sin(s) cos(θ)
(
cos2(θ)− 1

)(
1− sin2(s) cos2(θ)

)3/2
=
− sin(s) cos(θ) sin2(θ)(
1− sin2(s) cos2(θ)

)3/2
∂3φ

∂s3
=

1

2
ω′′′s

=
∂

∂s

 − sin(s) cos(θ) sin2(θ)(
1− sin2(s) cos2(θ)

)3/2


=
− sin2(θ) cos(θ) cos(s)(
1− sin2(s) cos2(θ)

)3/2 − 3 sin2(θ) cos3(θ) sin2(s) cos(s)(
1− sin2(s) cos2(θ)

)5/2
=
− sin2(θ) cos(θ) cos(s)

(
1− sin2(s) cos2(θ)

)
− 3 sin2(θ) cos3(θ) sin2(s) cos(s)(

1− sin2(s) cos2(θ)
)5/2
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=
− sin2(θ) cos(θ) cos(s) + sin2(θ) cos3(θ) sin2(s) cos(s)− 3 sin2(θ) cos3(θ) sin2(s) cos(s)(

1− sin2(s) cos2(θ)
)5/2

=
− sin2(θ) cos(θ) cos(s)− 2 sin2(θ) cos3(θ) sin2(s) cos(s)(

1− sin2(s) cos2(θ)
)5/2

=
sin2(θ) cos(θ) cos(s)

(
−1− 2 sin2(s) cos2(θ)

)(
1− sin2(s) cos2(θ)

)5/2
=
− sin2(θ) cos(θ) cos(s)

(
1 + 2 sin2(s) cos2(θ)

)(
1− sin2(s) cos2(θ)

)5/2
D.4. Expansion of sin(sα) and 1− sin2(sα) cos2(θ):

sin(sα) = sin

(
± arccos

(
±α tan(θ)√

1− α2

))

= ±

√
1− α2 tan2(θ)

1− α2

= ±

√
1− α2 − α2 tan2(θ)

1− α2

= ±

√√√√−α2(1 + tan2(θ)︸ ︷︷ ︸) + 1

1− α2

= ±
√

1− α2 sec2(θ)

1− α2

1− sin2(sα) cos2(θ) = 1− cos2(θ)

(
±
√

1− α2 sec2(θ)

1− α2

)

= 1− cos2(θ)

(
1− α2 sec2(θ)

1− α2

)

=
1−��α2 − cos2(θ) +��α2

1− α2

=
1− cos2(θ)

1− α2

=
sin2(θ)

1− α2
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Appendix E. Numerical Results and Graphs

E.1. PQ-Walk Numerical Simulations. Below we present numerical simulations for 100 time
steps for the alternating PQ-walk with initial condition |↑〉⊗ |0〉 with the restriction p = 1− q with
0 ≤ p, q ≤ 1. Note that only the points for even positions are graphed, since the probabilities at
odd positions are zero.
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E.2. Rotations Walk Numerical Simulations. Below we present numerical simulations for 100
time steps for the alternating Rotations quantum walk with initial condition |↑〉 ⊗ |0〉. Note that
only the points for even positions are graphed as the probabilities at odd positions are zero.

The vertical dashed lines mark the stationary points of order 2 which occur at ± cos(θ) t.
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E.3. MatLab Code.

E.3.1. Generating a General Alternating Quantum Walk. The following code provides a generic
algorithm for simulating any alternating quantum walk with initial condition |↑〉 ⊗ |0〉.

%This program simulates an alternating quantum walk.

%N is the total number is steps, C_even and C_odd are 2x2 unitary matrices

function returnVal = AlternateWalkSim(N, C_even, C_odd)

%These are the starting chirality amplitudes of the particle whose

%sum of squares must be equal to 1.

tup = 1;

tdown = 0;

%vertical vectors to store the ampitudes

a = zeros(2 * N + 1, 1);

b = zeros(2 * N + 1, 1);

a(N + 1) = tup;

b(N + 1) = tdown;

dstep = floor(N/2); %number of combined steps

for t = 1:dstep

%First, do the even step

% chirality update (action of the coin operator C_even)

e = zeros(size(a));

f = zeros(size(b));

e(1:end) = a(1:end) * C_even(1,1) + b(1:end) * C_even(1,2);

f(1:end) = a(1:end) * C_even(2,1) + b(1:end) * C_even(2,2);

% particle movement (action of the shift operator)

a(2:end) = e(1:end-1);

b(1:end-1) = f(2:end);

%Now for the odd step.

% chirality update (action of the coin operator C_odd)

e = zeros(size(a));

f = zeros(size(b));

e(1:end) = a(1:end) * C_odd(1,1) + b(1:end) * C_odd(1,2);

f(1:end) = a(1:end) * C_odd(2,1) + b(1:end) * C_odd(2,2);

% particle movement (action of the shift operator)

a(2:end) = e(1:end-1);

44



REU 2015 Space-Inhomogenous Quantum Walks

b(1:end-1) = f(2:end);

end

% Square and add the amplitudes to get the probabilities of the

% particle’s location regardless of chirality.

amp = zeros(size(a));

amp(1:end) = a(1:end).^2 + b(1:end).^2;

returnVal = amp; % returns a 1-D vector of the probabilities

E.3.2. Generating the PQ-walk. The program below was used to generate the simulations for the
PQ-walk in Appendix E.1.

%This program simulates the PQ-Walk in the case where p = 1-q for various

%values of q.

function PQWalkSim(N) % N is the number of time steps

inc = 0.1; % This value may be modified.

for q = 0:inc:1

p = 1-q; %Definition of p which may be changed.

C_even = [sqrt(p), sqrt(1-p); sqrt(1-p), -sqrt(p)];

C_odd = [sqrt(q), sqrt(1-q); sqrt(1-q), -sqrt(q)];

prob = AlternateWalkSim(N, C_even, C_odd);

figure

plot(-N:2:N, prob(1:2:end))% Plot only even points b/c odd points

% have probability zero.

str = sprintf(’Alternating PQ-Walk with p = 1-q for p = %.2f’, p);

title(str)

xlabel(’Position’)

ylabel(’Probability’)

end

E.3.3. Generating the Rotations Walk. The program below was used to generate the simulations
for the Rotations walk in Appendix E.2.

%This program simulates the alternating walk where C_odd = (C_even)^-1

%for various values of theta.

function InversesWalkSim(N) % N is the number of time steps

inc = pi/8; % This value may be modified.
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for theta = 0: inc: 2* pi % increments of theta to 2*pi

C_even = [cos(theta), sin(theta); -sin(theta), cos(theta)];

C_odd = [cos(theta), -sin(theta); sin(theta), cos(theta)];

prob = AlternateWalkSim(N, C_even, C_odd);

figure

plot(-N:2:N, prob(1:2:end))% Plot only even points b/c odd points

% have probability zero.

x = cos(theta) * N;

line([-x, -x], ylim, ’Color’, ’r’, ’LineStyle’, ’--’)

line([x, x], ylim, ’Color’, ’r’, ’LineStyle’, ’--’)

str = sprintf(’Alternating Walk with Codd = (Ceven)^-1 for Theta = %d deg’,round(radtodeg(theta)));

title(str) %Note degrees are rounded in the title

xlabel(’Position’)

ylabel(’Probability’)

end
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