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ABSTRACT. In this paper we will use the known link between covering spaces of a topological
space and subgroups of its fundamental group to investigate the subgroup structures of the
free groups on two and more generators. Some of our conclusions, such as Marshall Hall’s
formula for the number of subgroups of a free group of finite index, have been shown before.
(Hopefully others, such as some calculations for the number of normal subgroups of finite
index, have not been. That would be cool.)

1. INTRODUCTION

The correspondence between the covering spaces of a space X and subgroups of m (X, x),
the fundamental group of X at a base point z( is well known from topology. In particular,
for any subgroup H of m (X, z¢), there exists a unique (up to covering equivalence) covering
p :E—X and a point eq in p~!(zp) so that 7 (E, ep) is homomorphic to H under a homo-
morphism induced by p and E is path connected. Also, each covering space E corresponds
in this way to a conjugacy class of subgroups of (X, x¢) as e ranges through p~*(z,). For
more information see Munkres[4] Chapter 8. Throughout this paper we say that a subgroup
corresponds to a particular covering and choice of base point or that a covering and choice of
base point corresponds to a particular subgroup, referring to the correspondence described
here.

We note that if for a given eg, E corresponds to a normal subgroup of m(X, zg), then
E corresponds to this subgroup for any choice of ey in p~!(zp), since a normal subgroup is
alone in its conjugacy class.

We note also that if E is an n-covering of X (that is, for each z€X, |p~!(z)|=n), the
subgroup H of 71 (X, z¢) to which E corresponds is of index n in (X, x).

1.1. The Figure Eight Space.

Definition 1.1. The figure eight space (Figure 1) is a graph consisting of one vertex and
two labeled, directed loops beginning and ending at the vertex. More generally, a wedge of
circles is a graph consisting of one vertex and a number of labeled, directed loops beginning
and ending at the vertex. The figure eight space is the wedge of two circles.

The fundamental group of a wedge of r circles is the free group on r generators, which we
will write F(r). The fundamental group of the figure eight space, therefore, is F(2). We will
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b a

FIGURE 1. The figure eight space

write the generators of F(2) a and b, and these will correspond to the labels which we have
given to the loops in the figure eight space.

Definition 1.2. Let p : E — B be continuous and surjective. If every point b of B has a
neighborhood U such that the inverse image p~*(U) can be written as the union of disjoint
open sets V,, in E and for each « the restriction of p to V, is a homeomorphism of V,, onto
U, then p is called a covering map, and E is said to be a covering space of B.

Definition 1.3. Let p : E — B be a covering map; let B be connected. If p~*(by) has k
elements for some by € B, then p~(b) has k elements for every b € B. In such a case, E is
called a k-covering of B. k is called the degree of the covering.

An n-covering of a wedge of r circles will consist of n vertices each the origin of r differently
labeled directed edges and the terminus of r differently labeled directed edges. Some edges
may be loops. We will be interested only in connected n- coverings.

Definition 1.4. An element of F(r) may be represented as a string of symbols from the
set {ay, as, ...,ar, a7t a5t ..., a7ty where ay,as, ..., a, are the generators of F(r). This string
is called a word in aq,as, ...,a,, or, if confusion is not likely, a word. More generally, an
element may be represented as a word in any appropriate symbols, such as the generators of
a subgroup to which the element represented belongs.

Words appear in covering spaces as paths along the directed edges of the space, where ay,
is represented by travel along an a; edge in the direction of an arrow and a,;l is represented
by travel in the direction opposite the arrow. Words in covering spaces are read from left to
right, with aja; representing travel first along the edge a; and then along the edge ay. a,;l
will sometimes be written @,.

Example 1.5. There are three distinct 2-coverings of the figure eight space. (Figure 2.)
Each consists of two vertices, each of which is the origin of an a-edge and a b-edge and the
terminus of an a-edge and a b-edge.

They correspond respectively to the following subgroups of F(2): < b?, bab, al >,
< a?,aba, b| >, and < a2, ab, ab) >. These are the subgroups of F(2) of index 2.

2. HALL’S FORMULA FOR SUBGROUPS OF F(r) OF FINITE INDEX

In 1949, Marshall Hall, Jr. published an algebraic proof of a recursive formula to calculate
the number of subgroups of F(r) of a given finite index [1]. He gave this formula as

n—1

Now =n(nl)"™" = [(n = )] "Ny,

i=1
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b a b a b a
FIGURE 2. 2-coverings of the figure eight space

where N, , is the number of subgroups of F(r) of index n and Ny, = 1, since any group is
its own single subgroup of index 1. This proof was modified slightly and related to coverings
of the wedge of circles by Jin Ho Kwak and Jaeun Lee [3]. We give here an expanded and
somewhat more concrete proof for F(2).

Theorem 2.1. The number N,, of subgroups of index n of F(2) is given by

n—1

Ny =n(nl) = [(n—i)|N;.

i=1
Proof. Ny = 1(1) — 0 = 1. Obviously, since there is one subgroup of F(2) of index 1, the
formula works for n = 1. Then supposing that the formula holds for all natural numbers less
than n, we will show that it holds for n. We first observe that we may consider any (connected
or unconnected) n-covering of the figure eight space to be represented by an element of
Sy xSy, and we may consider any element of S, x5, as representing some (connected or
unconnected) n-covering of the figure eight space. We do this by naming the vertices of an
n-covering 1, 2, ...,n, with the base point e labeled 1 for convenience and the other vertices
labeled in any way. We can then follow the a-edges in cycles which together make an element
a of S, and the b-edges in cycles which make an element 3 of S,,. Then we associate the

covering with the element (o, 3) in S, xS,,. For example, the 3-covering s! hown in Figure
3 is represented by ((12)(3), (132))€S3x.S;.

3
2
1
b a
FIGURE 3

We can also easily reverse this process to find a covering represented by any element of
SpXSy,. Since we know that each subgroup of F(2) of index n is associated with a connected
n-covering, and each covering is represented by at least one element of S, x.5,,, we start by
considering all elements of S, x.5,, and proceed to remove elements until we are considering
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only elements which represent connected n-coverings which are either distinct from each
other or have distinct base points: in other words, until we are considering only elements
which are associated to distinct subgroups of index n. We are starting by considering the
(n!)? elements of S, XS,,.

Some of these elements do not represent connected n- coverings; we will now count these
elements and subtract them from the total number of elements in which we are interested.
We will sum over 7, the number of vertices in the connected component containing the base
point in the covering represented by the element. ¢ cannot be less than 1, since the base
point must always be connected to itself, nor are we interested when ¢ > n, since it does not
make sense for ¢ > n and when ¢ = n we have a connected covering which we do not want
to subtract from our count.

For each ¢+ we must choose from n — 1 labeled vertices which are not the ba(se p?int 1—1

n—1

which are to be connected to the base point. We can do this in (7:11) = W(n)ﬂ)' ways.

Also, this connected component will be associated with a subgroup of F(n) of index i, and
there are NV; distinct subgroups to choose from. Of the ¢ vertices connected to the base
point, the only one whose labeling is determined by the subgroup of F(2) with which the
component is associated is the base point, which is labeled 1. The other 7 — 1 vertices may
be anywhere in the component, so there are (i — 1)! ways to arrange them. Furthermore, the
n — 1 vertices not connected to the base point must also be accounted for. These vertices
may or may not be connected to each other: since they are labeled already because we are
dealing with their representations in S,, XS, there are ((n —i)!)? ways to arrange both their
a-edges and b-edges! in products of cycles, or permutations.

Now we have counted the elements of S, x.S,, that represent unconnected n- coverings and
subtracted them, but we are still left with elements of S, x5, where we want subgroups of
F(2). We solve this problem by noting that while elements of S, x.S,, account for the labeling
of all n vertices in a covering, subgroups of F(2) are associated with coverings with only one
vertex, the base point, labeled. So we have in each case n —1 too many points labeled, which
means that we have (n — 1)! times more elements of S, xS,, than subgroups. Thus we get
the following formula.

a2 — S (NG — DING(n — )2 n—1
R i | T RN Y

7

Corollary 2.2. The number N, , of subgroups of index n of F(r) is given by

n—1

Npw = n(nl)" ™" = "[(n = i)]"7"N;.

=1

Proof. We can see this in the argument above by replacing a and b edges with edges labeled
by the set {a1, as, ..., a,}. We then are dealing throughout the proof with the (n!)" elements
of S, xS, x...x8, (formed by r copies of S,,).

O
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3. NORMAL SUBGROUPS OF F(2) oF FINITE INDEX

Covering spaces of the figure eight space give us a powerful and intuitive tool for finding
and examining the normal subgroups of F(2). As we mentioned above, a covering of the
figure eight space that corresponds to a normal subgroup of F(2) does so independent of the
choice of base point within the covering. Therefore, such a covering is highly symmetric, with
every point in some sense the same as every other point [2]. In particular, every word that is
a loop at one point is a loop starting from every other point, since such a loop corresponds
to a word in the subgroup to which the covering space corresponds.

Definition 3.1. A covering E of a space X which corresponds to a normal subgroup of my (X,
xg) is a regular covering.

The task of finding and classifying the normal subgroups of F(2) of index n can thus be
reduced to the task of finding and classifying the regular n- coverings of the figure eight
space. This task, in turn, is made easier because the n-coverings of the figure eight space,
particularly for small n, are easy to imagine or draw and to check for regularity.

a b
> < 3
a a a a
< a,_
z )

Q

FI1GURE 4. Three 4-coverings of the figure eight space

Example 3.2. The covering to the left in Figure 4 is reqular, while the coverings in the
center and to the right are not. In the covering in the center, note that one of the b-edges
forms a loop, or 1-cycle, while the others are arranged in a 3-cycle. Whenever the a or b
edges are not divided into cycle all of the same length, we immediately know that the covering
1s not reqular. It is not, however, true that whenever a covering is not reqular either the a or
b edges are not divided into cycles all of the same length, as the covering to the right shows.
In this covering the word ab forms a loop at some vertices and not at others, so the vertices
are not all the same.

It is thus possible to find many normal subgroups of F(2) (or even F(r)) of very low index
without an organized way of attacking the problem. Such a method would however become
both tedious and unreliable as the index of the subgroups desired (and thus the size of the
covering graphs needed) increased.

3.1. An Algorithm for Generating Normal Subgroups of F(r) of Index n. In order
to more quickly and thoroughly investigate normal subgroups of F(2) of finite index, we
developed an algorithm suitable for programming that would generate and count subgroups
and normal subgroups of F(r) of a given finite index. Since we were interested primarily in
normal subgroups of F(2), we then implemented it for F(2). generating normal subgroups.
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These adjustments prevented the algorithm from generating many subgroups which were
not normal, but as Hall’s Formula already gives the number of such subgroups, and as that
number quickly becomes too high for individual inspection of the subgroups to make sense,
this was acceptable to us. (We need this if we include the modifications to the program. We
would also need to explain those modifications, I think.)

Theorem 3.3. An algorithm ezists to generate uniquely the subgroups of F(r) of a given
index n.

Proof. We note first that given the one-to-one correspondence between subgroups of F(r) of
index n and n- coverings (E, eg) of the wedge of r circles, it is enough to find an algorithm
to generate uniquely the n-coverings (E, eg) of the wedge of r circles.

We will define algorithmically a map f : C' — M(n,Z) where C' is the set of connected
n-coverings (E, eg) of the wedge of r circles and M(n,Z) is the set of nxn matrices with
entries in Z. We will show that f is a bijective function when the range is restricted to a set
B of matrices which can be generated uniquely by an algorithm.

We define f((E,eo)) as follows: let A={ay, as, ..., a,} be the generators of F(r), and let the
set of edges with origin v for any v€E contain one edge labeled with each element of A. Also
let the set of edges with terminus v for any v€E contain one edge labeled with each element
of A. Then we label the vertices of E with {1, 2, ..., n} by the following procedure. Label ¢,
as 1. Following in order the edges {a1, as, ..., a,} with origin ep=1, if the terminus of edge ay
is not yet labeled, label it with the next unused element of {1, 2, ..., n}. When this has been
accomplished for {ay, as, ..., a,.} with origin 1, follow the same procedure with {ay, as, ..., a,}
with origin 2. Repeat for the set of edges with each origin in {1, 2, ..., n} until all vertices
have been labeled and all labels have been used. (Since there are n vertices and n labels,
these events will happen s! imultaneously.) Now construct a nxn matrix. In the ith row,
jth column, place an entry 21 if the edge a; with origin ¢ has terminus j, and an entry 0 if
there is no edge with origin ¢ and terminus j. If more than one edge has origin ¢ and terminus
J, add the entries together and place their sum in the appropriate place in the matrix. (For
example, if edge a; and edge ay with origin ¢ both have terminus 7, place 2° + 2! = 3 in the
ith row, jth column of the matrix.) The matrix thus constructed is f((E,eg)).

We claim that f is a bijective function onto a set B of matrices which we will now define.
Let B be the set generated by the following algorithm:

(1) Make a stack of nxn matrices containing only the matrix with all entries zero. Make
an empty set B of nxn matrices.

(2) Take the top matrix off the stack.

(3) Find the bottom-most row ¢ so that the entries in row i sum to 20 +2! + ...+ 271 If
there is no such row, go to the next step. Read the sub-matrix consisting of rows 1
through 7 and columns 1 through ¢. If the entries of each row in the sub-matrix sum
to 20 + 21 + ...+ 27! discard the matrix and return to step 2. Otherwise, continue.

(4) Find the topmost row j whose entries sum to less than 20 + 2! + ... + 2"~ If there
is no such row, go to step 7. In row j, find the least k so that 2! is greater than
the sum of the entries in the row. Such a k£ will exist because each of the terms in
the sequence 2° 4+ 2! + ... + 2"~1 is greater than the sum of the previous terms.
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(5) Find all of the places in row j which are in columns not already containing an entry
whose binary decomposition includes a term 2*~' and which are in columns so that
every column to their left other than the 1st column contains a non-zero entry.

(6) Make a new copy of the matrix for each place found in step 5, in each copy adding
2F=1 to the entry in the place found in step 5 to which the new matrix corresponds.
Discard the old matrix. Put the new copies on the stack and return to step 2.

(7) Add the matrix to the set B.

We need to prove that f : C' — B is well- defined, injective, and surjective, and that its
range really is contained in B.

We begin by showing that f is well-defined. Consider a connected n-covering (E, ey). Let
D=f((E, eg)) and let G=f((E, €g)). Suppose D#G. Then there is some i < n and some
J < m so that the entry d,; in the ith row jth column of D is not equal to the entry g;; in the
1th row, jth column of G. Without loss of generality, suppose that the binary representation
of d;; includes a term not included in the binary representation of g;;. This term is 2* for
some k. By the construction of f, it is 2 for some k so that k41 < r, and it represents and
edge ay41 with origin ¢ and terminus j in (E, eg). Then either there is an edge in (E, eg) which
is not in (E, eg), a clear contradiction, or i and j refer to different points in D than they do
in G. In other words, in constructing f((E, ey)) twice, we must have labeled the points in
(E, eg) in two different ways. ! But since (E, eg) is connected, this is impossible, since the
algorithm for f specifies the exact order in which we must label the points connected to the
base point, which is ey in both cases. Only if E were not connected would we ever be able
to make a choice of which point to label next. Then it is a contradiction that D#G, so f is
well defined on C since the choice of (E, ey) was arbitrary.

We show next that f is injective. Let (E, eq)e C, (D, dy)e C, and let f((E, eo))=f((D,
dp)). Then for any vertices ¢ and j in (E, eg) connected by an edge a; with origin 4, by the
construction of f there is a pair of vertices ¢ and j in (D, dy) connected by an edge aj with
origin 7. Also, for any two vertices i' and j" in (D, dy) connected by an edge aj, with origin
i’, there is a pair of vertices ¢ and j' in (E, eg) connected by an edge @, with origin i’. Then
the vertices, edges, labels, and orientations in (E, ey) are the same as those in (D, dp), and
(E, e0)=(D, dp). Then f is injective.

Now we show that the range of f is contained in B. We have shown that f is well-defined
on all elements of C'. Consider D = f((E, ey)) for some (E, eg)e C. We assert that D € B.
We know by the construction of D = f((E, ep)) that D is an nxn matrix, and that 2%!
appears exactly once in each row for every 1 < k < r, since each edge from {ay, ..., a, } leaves
each vertex exactly once, although numbers of the form 2¢¥~! may be summed together in
an entry to represent multiple edges leaving the same vertex and entering the same vertex.
Similarly, we know that each 2¢~! appears exactly once in each column, since each edge
from {aq,...,a,} enters each vertex exactly once. These facts about D ensure that it will
be generated through the algorithm that places elements in B, except that we must also
show that the matrices along the way to generating D are never discarded in step 3 of t! he
algorithm, and that no entry 2¢~! need be placed by the algorithm so that a column to its
left (other than the 1st column) has all zero entries.

For the matrices which become D to be discarded at step 3 of the algorithm, it would be
necessary for there to be some number of rows i, 1 < i < n, so that all of the nonzero entries
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in the first ¢ rows of D fall in the first ¢ columns of D. This is clear from the description
of step 3. In particular, it is important that this step deals only with rows whose entries
will no longer be changed by the algorithm, and which therefore will come through to D
unchanged. If there is some such number of rows ¢, then by the construction of D there are
i vertices in (E, eg) such that all entries leaving them (nonzero entries in rows 1 through 7)
return to these same ¢ vertices (columns 1 through 7). But then each of the vertices would
have all r edges leaving it accounted for, and all r edges entering it accounted for, without
these i vertices being connected to the other n — i vertices in the covering, and (E, e!y), not
being connected, would not be an element of C'. Then the matrices which will become D
may never be discarded at step 3.

Assume that at some point in producing D the algorithm had to place an entry 27! so
that a column to its left (other than the 1st column) had all zero entries. Let first such
entry be in row ¢, column j. Let some column to the left with all zero entries be column
J'. Then consider the process by which D = f((E, ey)) was originally defined. According
to this process, the entry 2¥~1 in row ¢, column j was placed there because there is an edge
ar in (E, eg) going from the vertex labeled i to the vertex labeled j. Also, there is no edge
going to vertex j' from any vertex ¢’ with ¢ < 7, and there is no edge aj, going from vertex
i to vertex j° with &’ < k. Furthermore, we know that j' < j, since column j" is the further
left of the two. But according to the construction process for f((E, eg)), if 7/ < 7, then there
is an edge going to vertex j' from a vertex ¢’ with ¢ < 4, or there is an edge a}, going from v!
ertex 7 to vertex j' with &’ < k. This contradicts the assumption, so D is produced by the
algorithm and is an element of B. Then the range of f is contained in B.

Finally we show that f : C — B is surjective. Let D € B. Draw a graph with n
vertices and label them from {1, ..., n}. For each entry in D, decompose it into the form
2kl 4 ok2=1 1 with each k; represented at most once. There is only one way to do this.
Then for 1 <7 <nand 1 < j < n, draw an edge a; with origin ¢ and terminus j for every
k in the decomposition of the entry of matrix D in row ¢ column j. This is a graph with
n vertices, each of which has an edge a; leaving for 1 < k < r and an edge a; entering for
1 < k < r because each row and column in D has exactly one entry whose decomposition
includes exactly one copy of 2¥~! for every such k. Furthermore, it is a connected graph
because D was never discarded in step 3 and so there are no ¢ points including the point
labeled 1 which are only connected to each other so that 1 < i < n. Then ca! 1l this graph
E and the vertex labeled 1 eg. (E, ) € C.

We claim that D = f((E, ep)). Consider the construction of f((E, ep)). We label ¢, as
1 and proceed to label the other vertices and create an nxn matrix as described above.
Suppose that this matrix were not D. Then in some ¢th row and jth column, the values of
the entries in D and in f((E, ep)) would not agree. Suppose without loss of generality that
the entry in D had in its binary decomposition the number 2¥1~1 and the entry in f((E, eo))
did not. Then by the construction of E from D, there is an edge a, in E with origin ¢ and
terminus j, and by the construction of f((E, eg)) there is no such edge in E. Then either
there is a contradiction or the vertices of E were labeled differently in the construction of E
than in the construction of f((E, eg)). But the vertices cannot have been labeled differently:
in the construction of E from D, a vertex after the 1st one gets labeled when a new column
I gets its first entry. This in turn happens strictly in order from left to right (1 < j < n) as
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entries are filled in starting with all of the entries in the first row in ascending order and then
moving down the matrix. In the construction of E, this order means labeling in order each
vertex with the next element of the set {1, ..., n} as the vertex first appears as the terminus
of an edge, starting with all the edges with origin 1 in the order {ay, ..., a,} and moving in
order through the edges going from other vertices. But this is the very same labeling given
to the vertices in the construction of f((E, eg)), so D = f((E, eg)), and f is surjective.
Then the elements of B are in one-to-one correspondence with the elements of C', which
are in one-to-one correspondence with the subgroups of F(r) of index n, so the algorithm to
generate the elements of B generates uniquely all subgroups of F(r) of index n. 0

Theorem 3.4. An algorithm ezists to tell whether a given subgroup of F(r) of finite index
15 normal.

Proof. Given the known correspondence between subgroups and covering spaces, as well as
the results of the previous theorem, it is enough to find an algorithm to tell whether one
of the matrices from set B of the previous theorem corresponds to a regular covering space
and therefore a normal subgroup. Let D € B, and let D = f((E, ej)) for some covering
space (E, eg) of the wedge of r circles. If E is regular, then any vertex of E is equivalent to
any other vertex in E. In particular, the choice of ¢y, does not affect the subgroup to which
E corresponds. This in turn implies that the choice of ¢y does not affect the matrix in B
to which E corresponds. The choice of ey in E corresponds, as we have seen, to the choice
of vertex to associate with the first row and column of D. An algorithm that would check
each vertex to see whether it could be substituted interchangeably with ey would determine
whether E was regular. An algorithm to determine whether! D corresponds to a regular
covering space E would therefore check to see whether the vertex associated with the each
row and column of D could be substituted for the vertex associated with the first row and
column without changing D.

To rename a vertex ¢ in E j, we switch the ¢th and jth rows of D and the ¢th and jth
columns of D. Then according to the correspondence between E and D, those edges that had
been leaving or entering a vertex labeled ¢ are now leaving or entering a vertex labeled 5 and
vice versa. However, the matrix D’ that results after we have performed this operation on D
may no longer be an element of B. In particular, sometimes D’ will have a column k& whose
first entry appears in an earlier row than the first entry in a column k' while 1 # k' < k
or whose first entry is 2/~! while the first entry in column &’ is 2“~' in the same row, with
1 # kK < kand I’ > [. In this case D’ needs to be converted into an element of B in
order to be meaningfully compared with other elements of B, including D itself, because the
one-to-one correspondence that has been established is between elements of B and covering
spaces rather than b! etween nxn matrices and covering spaces.

Example 3.5. The following matriz is the image under f of the covering to the left in Figure
4

O = N O
N OO -
— O O N
NN = O
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If we try to rename vertex 2 as 1, we switch the first and second rows and columns of the
matriz to obtain :

N O = O
S = O N
— o NN O
o O

which is no longer an element of B.

When we convert D’ into an element of B, we must take care to preserve the association
between vertices in E and row-column pairs in D’ so that we maintain the association between
D' and E as we did in the first step of creating D’. To convert D’ into an element of B
while maintaining this association, we look for a column ¢ whose first entry would have been
placed by the algorithm of Theorem 3.3 before the first entry of some earlier column j # 1,
and then switch these columns and then the rows ¢ and j. This is equivalent to switching
the labels of vertex ¢ and vertex j in E. When there are no more such columns, D’ will be
an element of B, since the labels in E will have been rearranged so that they follow the rules
in the definition of f in Theorem 3.3. If E is regular, at this point D’ = D.

Example 3.6. In order to convert the second matrix of Fxample 3.5 into an element of B,
we first switch the second and fourth rows and columns and then the third and fourth rows
and columns:

0 2 01 010 2 0120
10 20 . 2010 . 2 001
010 2 0 2 01 1 00 2
2010 10 20 0210

We end with the same matriz with which we began Fxample 3.5, as we would expect, since
the covering to which this matrix corresponds is reqular.

Then the algorithm for checking to see whether an nxn matrix D € B corresponds to a
regular n-covering of the wedge of r circles is as follows:
Forl<i<n:

(1) Switch row ¢ with row 1 and column ¢ with column 1.

(2) For 1 < j < n switch column j + 1 with the column &, j < k < n, having the entry
placed first in the algorithm of Theorem 3.3 of all such columns & (that is, the entry
in the topmost row of all such columns k or the entry in the topmost row with the
lowest term 2!~1 in its binary decomposition of all such columns k.) Switch row j + 1
with row k. Begin step 2 for next j.

(3) Compare this matrix to D. (This is D" € B formed by switching vertex ¢ with vertex
1.) If this matrix is identical to D, begin the process for next 4. If this matrix is not
identical to D, then D does not correspond to a regular covering, so stop checking.
If this matrix is identical to D for all ¢, then D corresponds to a regular covering.

O

We implemented this algorithm in C++ for subgroups of F(2) with index < 14. The code
is contained in the appendices; Table 1 contains the numbers produced by Hall’s Formula
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and our algorithm. Notably, while the total number of subgroups increases steadily with
the index of the subgroups, the number of normal subgroups fluctuates, although showing a
general upward trend. This fluctuation is linked to the prime factorization of the index.

Total Normal

Index Subgroups | Subgroups
1 1 1
2 3 3
3 13 4
4 71 7
5 461 6
6 3447 15
7 29093 8
8 273343 19
9 2829325 13
10 31998903 21
11 392743957 12
12 5201061455 41
13 73943424413 14
14 | 1123596277863 27

TABLE 1. Subgroups and Normal Subgroups of F(2) of Index < 14

4. ENUMERATING NORMAL SUBGROUPS OF F(2)

Definition 4.1. The order of a generator, a, at a vertex is the smallest integer k such that

a® is a loop at that vertex.

Since in a regular covering one must be able to choose any vertex as the base point and
still obtain the same fundamental group, any word that forms a loop at one vertex of a
regular covering must form a loop at every vertex of that covering. Therefore, if a generator
a has order k at one vertex of a regular covering, then it has order k at every other vertex
of the covering, and the order of a can be referred to without specifying a base point.

Definition 4.2. A reqular covering of the figure eight space is a k X j covering if a has order
k and b has order j.

Lemma 4.3. The order of a generator in a regular covering must divide the degree of the
covering.

Proof. Let a be the generator and let k£ be the order of a. Pick an initial vertex and label it 1.
Since a has order k£ and each vertex has exactly one a edge leaving and one a edge arriving,
there will be k — 1 other vertices that can be reached from vertex 1 by a word in a and these
form the set X;. Each of the vertices lead to another vertex in the same set by the word a,
and therefore each vertex can be reached by a word in a if and only if the starting vertex is
in the same set. If there are any vertices left, pick a new vertex that has not been previously
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FIGURE 5. A 3 X 2 covering

reached and label it 2. There will again be k — 1 other vertices that can be reached from
vertex 2 and they will not be in any previous set. We can continue in this fashion. Since
the degree of the covering is assumed to be finite and k£ more vertices are reached at each
step, eventually all the vertices will have been reached. This means that the vertices can be
divided into sets of size! k. Therefore k divides the degree of the covering. O

Lemma 4.4. There are n reqular n-coverings of the figure eight space such that a has order
n.

Proof. There is a unique way to arrange n undistinguished vertices such that a has order
n. We can pick an arbitrary vertex and label it 0, and then label the rest of the vertices 1
through n — 1 according to the order in which they are reached by repeatedly traveling along
a edges starting at 0. The b edge that leaves vertex 0 may arrive at any of the n vertices. If
the b edge that leaves vertex 0 arrives at vertex i, then the word a’b~! is a loop beginning at
vertex 0. In order to ensure regularity, a’b~! must be a loop beginning at every vertex, and
therefore the b edge that leaves vertex j must arrive at vertex j 4+ ¢ (mod n). This implies
that once a single b edge is placed, the rest of the covering space is completely determined.
Since there are n ways to place the initial b edge, there are n possible regular coverings when
a has order n. The way the initial b edge is placed also uniquely determines the number
li € Z/nZ such that a’b~! is a loop, which means that the n possible regular coverings are
distinct. Each of the coverings can also be rotated to make any point the base point and
still be the exact same covering, which means that they are in fact regular. Therefore there
are n regular coverings such that a has order n. 0

4.1. Covering spaces that “skip” and “twist”. A convenient way to view a regular
covering space of the figure eight space is as a stack of cycles. Consider the case when a has
order p and b has order ¢ and the degree of the covering is pq, where p and ¢ are primes,
not necessarily distinct. Since the vertices can be partitioned into sets of size p as in Lemma
4.3 according to which are connected by words in a, the vertices can be organized as a stack
of ¢ p-gons where the sides of the p-gons are a edges organized as a cycle oriented in a
counter-clockwise direction.
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FIGURE 6. A 6 x 6 covering and a 6 x 3 and a 6 X 1 covering

If a b edge were to connect two vertices on the same a-cycle, then there would be a word
of the form a™b~! that would be a loop at one of the vertices. Since we are assuming the
space is regular, this means that this word must be a loop at all vertices and therefore all
b edges connect vertices on the same a-cycle. This is impossible since the space would then
be unconnected. Therefore b edges must connect vertices that belong to different a- cycles.

Since b has order ¢, the b edges can also be organized as cycles of ¢ edges which travel
between the a-cycles. If a b-cycle visits the same a- cycle more than once during one trip
through the b edges of that cycle, then there is a word of the form b%a’ where 0 < s < ¢
that forms a loop at a vertex. In order for the space to be regular, this word must be a loop
at all vertices, and therefore the b-cycle must visit all the a-cycles it visits more than once.
For each repeat visit to an a-cycle there is another word of that form that is a loop, and
therefore, if a space is to be regular, a b-cycle must visit all the a-cycles it visits an equal
number of times. Since each b edge in the cycle corresponds to exactly one visit to an a-cycle,
the number of times each a-cycle is visited must divide the order of b. We are assuming the
order of b is prime, however, and since we have already established that a b-cycle cannot
simply visit th! e same a-cycle ¢ times, this implies that a b- cycle can only visit the same
cycle once. Since there are ¢ a-cycles and b has order ¢, each b- cycle must visit every a-cycle
exactly once.

In any regular covering of this kind, one of the b- cycles may be chosen to be the ”backbone”
of the stack and and the a-cycles may be oriented so that this b-cycles visits each a-cycle in
order from bottom to top and each visited vertex is directly above the others. Each a-cycle
in the stack can then be numbered 0 through ¢ — 1 beginning with the bottom cycle, and
within each cycle the vertices can be labeled 0 through p — 1 beginning with the vertex that
is visited by the backbone. Each vertex can then be named v; ; where ¢ is the number of the
cycle and 7 the number of the vertex within the cycle.

Once a backbone has been chosen, we may consider the possibilities for the b edge that
begins at vy ;.

Definition 4.5. If the b edge that begins at vy 1 ends on the a-cycle numbered k, the covering
s considered to be skipping by k. If that edge ends on a vertex numbered [, the covering is
considered to be twisting by . A regular covering that is skipping by 1 is considered to be
not skipping and a covering that is twisting by 1 is considered to be not twisting.
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FIGURE 7. Stack with a backbone

Ficure 8. “Skipping” and “Twisting”

If that edge ends at v; ;, then the word aba™?b~" is a loop beginning at vgo. The covering
is regular, therefore aba=7b~* must be a loop beginning at every vertex. In order for it to be
a loop at vertex v, o, the b edge beginning at a vertex v,; must end at v,4; (mod ¢),;- Then
in order for it to be a loop at vertex v, 1, the b edge beginning at vertex v, » must end at
Un+i2 (mod ¢),2j (mod p)- Continuing around the cycles in this manner, we can see that the b
edge beginning at vertex v, ,, must end at v,1im (mod q),mj (mod p)-

This must be true even after a full circle around the cycles; i.e. vy must obey the above
rule as if it were named v ,. However, since the b edge beginning at vy already has a
predetermined end, this places restrictions on i. The b edge beginning at vy, (vg) already



Subgroups of the free group 15

ends at vy, therefore vip (mod ¢),pj (mod py Must be the same vertex as vyg. Thus, 7 must
satisfy i = 1 (mod q).

The requirement that b have order ¢ places a restriction on j. We must be able to follow
the path of the word 09 beginning at vertex vy ; and return to the same vertex. According to
the rules established above, the word follows the path: vg1 — v;j — Vit (mod ¢),2 (mod p) —

v — = Ugae = vp1. Thus, j must satisfy j¢ =1

i+i7+i7? (mod ¢),j3 (mod p) :t ™ (mod ¢),j¢ (mod p)
(mod p).

These restrictions imply that the ord,(i) | p and ord,(j) | ¢, but since p and ¢ are prime
either i = 1 or ord,(i) = p and either j = 1 or ord,(j) = q. By Fermat’s Little Theorem,
7' =1 (mod ¢) and 77! =1 (mod p); therefore ord,(i) | ¢ — 1 and ord,(j) | p — 1. This
means that ¢ can take values other than 1 only if p | ¢ — 1 and j can take values other than
Lonlyifg|p—1. But p|¢—1implies p < g and ¢q | p— 1 implies ¢ < p; therefore only one
of i or j can have a value other than 1 and then only if p | g—1or ¢ |p— 1.

If p | ¢g—1, then it is a known result in number theory that the congruence equation
2P =1 (mod q) has exactly p solutions [5]. Since, as stated earlier, ¢ completely determines
a regular covering, this implies that there are p p x ¢ coverings when p | ¢ — 1. Similarly,
when ¢ | p — 1 there are ¢ p X ¢ coverings.

This discussion has proven the following lemma:

Lemma 4.6. Let p and q be primes, not necessarily distinct and consider reqular pq-
coverings. If p | ¢ — 1, then there are p reqular p X q coverings, 1 that does not skip or
twist and p— 1 that skip but do not twist. If q | p—1, then there are q reqular p X q coverings,
1 that does not skip or twist and q — 1 that twist but do not skip. If ptq—1 and gtp—1,
then there is 1 regular p X q covering and it does not skip or twist.

FIGURE 9. A 3 x 7 covering that skips and a 7 x 3 covering that twists

4.2. Normal subgroups and quotient groups. For normal subgroups of certain forms,
it is helpful to consider the quotient group of F(2) over the subgroup. Results from group
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theory, such as the Sylow Theorems, can then be applied to determine whether such sub-
groups actually exist. In particular, we will use this approach to study the normal subgroups
of index pg which correspond to p x p coverings, where p and ¢ are distinct primes.

a and b haver order p, which means that p is the smallest integer r such that a” is a loop
and such that 0" is a loop. This means that the corresponding subgroup contains a” and O?
but no smaller powers of a or b. When the quotient is taken, we have that p is the smallest
integer r such that " = 1 and such that 0" = 1. Therefore the subgroup of the quotient
group generated by a, < a >, and the subgroup generated by b, < b >, both have order p.

Consider an a-cycle. If a b edge were to connect two vertices on the same a-cycle, then
there would be a word of the form a™b~! that would be a loop at one of the vertices. Since
we are assuming the space is regular, this means that this word must be a loop at all vertices
and therefore all b edges connect vertices on the same a-cycle. This is impossible since the
space would then be unconnected. Therefore b edges must connect vertices that belong to
different a-cycles, which means that words of the form a™b~! cannot be loops.

If a™b~! is not a loop in the covering space, then a™b~! is not a member of the subgroup
to which that covering space corresponds and is therefore not trivial in the quotient group
of F(2) over the subgroup. This implies that a™ # b for all m and therefore b ¢< a > and
< a >#< b >. This means that any p X p covering must correspond to a quotient group
that contains at least two distinct subgroups of order p.

Since the subgroups we are interested in have index pq in F'(2), when we take the quotient
of F'(2) over one of these subgroups, we obtain a group of order pg. p and ¢ are assumed to be
distinct primes, therefore a subgroup of order p in the quotient group is a Sylow p-subgroup.
The Third Sylow Theorem states that the number, n,, of Sylow p-subgroups in a group of
order pq satisfies the following conditions [6]:

°nylq
e n, =1 (mod p)

Since q is prime, n, | ¢ implies that n, is 1 or ¢. We already know that the quotient groups
we are considering have at least two Sylow p- subgroups, < a > and < b >, so n, cannot
be 1. Therefore n, must be ¢. But the second condition implies that ¢ = 1 (mod p), which
is true only when p | ¢ — 1. This means that if p 4 ¢ — 1 then we have a contradiction and
therefore no such quotient group and therefore no such subgroup of index pq can exist. This
proves the following lemma:

Lemma 4.7. Let p and q be primes, not necessarily distinct and consider reqular pq-
coverings. If ptq— 1, then there are no reqular p X p coverings.

4.3. Counting the normal subgroups of particular indices.
Theorem 4.8. F(2) has p+ 1 normal subgroups of index p, where p is prime.

Proof. Each normal subgroup of index p is represented by a regular covering of degree p and
the correspondence is 1 to 1; therefore it suffices to count the regular p-coverings of the figure
eight space. Since the orders of the generators must divide the degree of the covering and p
is prime, there are two possible orders for the generators, 1 and p. Therefore, we can divide
the possible regular p- coverings into the following cases:
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(1) 1 x 1 coverings: These could not possibly be connected, therefore there are no such
regular coverings.

(2) 1 x p coverings: There is a unique way to arrange p undistinguished vertices such
that b has order p. There is also a unique way to arrange the a edges so that each is
a loop. Since each of the vertices of this covering are indistinct from the others, it is
regular. Therefore there is one 1 X p covering.

(3) px 1 and p x p coverings: By Lemma 4.4, there are p regular coverings such that
a has order p.

FIGURE 10. A 5 x 5 covering

Summing over all the possible forms of a regular p- covering, we find that there are p + 1
regular p- coverings. Because of the direct correspondence between regular coverings and
normal subgroups, this implies that there are p + 1 normal subgroups of F(2) of index p
when p is prime. 0

Theorem 4.9. F(2) has p*> + p + 1 normal subgroups of index p*, where p is prime.

Proof. As in Theorem 4.8, it suffices to count the regular p?-coverings and we can divide the
possible regular p?-coverings into the following cases:

(I) 1 x1 and 1 x p and p x 1 coverings: These could not possibly be connected,
therefore there are no such regular coverings.

(2) p* x 1 and p? x p and p? x p* coverings: By Lemma 4.4, there are p? regular
coverings such that a has order p?.

(3) 1 x p? and p x p* coverings: Just as there are p* regular coverings such that a has
order p?, there are p? regular coverings such that b has order p?>. In some of those
coverings, however, a also has order p? and these coverings should not be counted
twice; therefore we must count them and subtract them from the total number of
regular coverings such that b has order p?. Using the numbering of the vertices
established in Lemma 4.4, let vertex ¢ be the terminal point of the a edge starting at
vertex 0. Since the word @’ beginning at vertex 0 ends at vertex ij (mod p?), a’ is a
loop if and only if 75 = 0 (mod p?). This implies that a has order p? if and only if p?
is the smallest positive integer k such that ik = 0 (mod p?), which is equivalent to
saying that i and p? are relatively prime. There are ¢(p*) = p(p—1) such i in Z/p*Z,
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wher! e ¢ is the Euler phi function. Therefore in p(p — 1) of the p? regular coverings
where b has order p?, a also has order p?. This means that there are p regular 1 x p?
and p x p? coverings.

(4) p x p coverings: Coverings of this type are discussed in the section on twisting and

skipping. Since p cannot possibly divide p — 1, by Lemma 4.6 there is 1 regular p x p

dgl

FIGURE 11. A 2 x 2 covering and a 3 X 3 covering

Summing over all the possible forms of a regular p?- covering, we find that there are p?+p+1
regular p?-coverings. Because of the direct correspondence between regular coverings and
normal subgroups, this implies that there are p* + p + 1 normal subgroups of F(2) of index
p? when p is prime. 0

Theorem 4.10. F(2) has pqg + p + q + 1 normal subgroups of index pq, where p and q are
distinct primes, p < q, and p{q — 1.

Proof. As in Theorem 4.8, it suffices to count the regular pg-coverings and we can divide the
possible regular pg-coverings into the following cases:

(1)
(2)
(3)

1x1,1xp, 1xq, px1and ¢x1 coverings: These could not possibly be connected,
therefore there are no such regular coverings.

pq X 1, pqg X p, pq X q, and pq X pq coverings: By Lemma 4.4, there are pq regular
coverings such that a has order pq.

1 X pg, p X pq, and q X pq coverings: Just as there are pq regular coverings such
that a has order pq, there are pg regular coverings such that b has order pq. As in
Theorem 4.9, we must avoid counting those coverings where both a and b have order
pq twice; therefore we must count them and subtract them from the total number
of regular coverings such that b has order pq. Using the numbering of the vertices
established in Lemma 4.4, let vertex ¢ be the terminal point of the a edge starting at
vertex 0. Since the word @/ beginning at vertex 0 ends at vertex ij (mod pq), @’ is
a loop if and only if i = 0 (mod pq). This implies that a has order pq if and only if
pq is the smallest positive integer k such that ik = 0 (mod pq), which is equivalent
to saying that ¢ and pq are relatively prime. There are ¢(pq) = (p — 1)(¢ — 1) such i
in Z/pqZ. ! Therefore in (p — 1)(¢ — 1) of the pq regular coverings where b has order
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pq, a also has order pq. This means that there are p + ¢ — 1 regular 1 X pq, p X pq,
and ¢ X pq coverings.

(4) p X p coverings: ptq — 1, therefore by Lemma 4.7, there are no p X p coverings.

(5) p x ¢ coverings: Coverings of this type are discussed in the section on twisting and
skipping. Since ¢ > p, ¢ does not divide p — 1, and we have assumed that p does not
divide ¢ — 1; therefore, by Lemma 4.6 there is 1 regular p X ¢ covering.

(6) ¢ x p coverings: Since ¢tp— 1 and pfq— 1, by Lemma 4.6 there is 1 regular ¢ X p
covering.

(7) g x q coverings: Since ¢ > p, q 1 p — 1; therefore, by Lemma 4.7, there are no ¢ x ¢
coverings.

Summing over all the possible forms of a regular pg- covering, we find that there are pg+p-+
q + 1 regular pg-coverings. Because of the direct correspondence between regular coverings
and normal subgroups, this implies that there are pg 4+ p + ¢ + 1 normal subgroups of F'(2)
of index pg when p and ¢ are distinct primes, p < ¢, and p{ ¢ — 1. O

FIGURE 12. A 5 x 3 covering and a 3 x 5 covering

Theorem 4.11. F(2) has 3(p + 2) normal subgroups of index 2p, where p is an odd prime.

Proof. As in Theorem 4.8, it suffices to count the regular 2p-coverings and we can divide the
possible regular 2p-coverings into the following cases:

(1) 1x1,1x2, 1xp, 2x1 and px 1 coverings: These could not possibly be connected,
therefore there are no such regular coverings.

(2) 2p x 1, 2p x 2, 2p X p, and 2p X 2p coverings: By Lemma 4.4, there are 2p regular
coverings such that a has order 2p.

(3) 1 x2p, 2 x 2p, and p x 2p coverings: Just as there are 2p regular coverings such
that a has order 2p, there are 2p regular coverings such that b has order 2p. As in
Theorem 4.9, we must avoid counting those coverings where both a and b have order
2p twice; therefore we must count them and subtract them from the total number
of regular coverings such that b has order 2p. Using the numbering of the vertices
established in Lemma 4.4, let vertex ¢ be the terminal point of the a edge starting at
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vertex 0. Since the word @/ beginning at vertex 0 ends at vertex ij (mod 2p), @’ is a
loop if and only if i = 0 (mod 2p). This implies that a has order 2p if and only if 2p
is the smallest positive integer k such that ik = 0 (mod 2p), which is equivalent to
saying that i and 2p are relatively prime. There are ¢(2p) = p — 1 such ¢ in Z/2pZ.
Theref! ore in p— 1 of the 2p regular coverings where b has order 2p, a also has order
2p. This means that there are p + 1 regular 1 x 2p, 2 x 2p, and p X 2p coverings.

2 x 2 coverings: Consider the 2p-covering formed by placing 2p vertices in a circle,
numbering them vy to vg,_1 as we travel clockwise around the circle (with vy also
referred to as vep when necessary), and placing p a edges such that they start at
vg, and end at v9,41 and p a edges such that they start at vy, 1 and end at v, for
0 < n < p and then placing p b edges such that they start at v, 1 and end at wvs,
and p b edges such that they start at vg, and end at vy, 1 for 1 < n < p. Both a
and b have order 2 in this covering, making it a 2 x 2 covering. Any even numbered
point v,, can be taken to the base point vy by the transformation v; — v;_ay (mod 2p)
and the above rules on placement of a and b edges will still hold. Any odd numbered
point vy, can be taken to the base point vy by the transformation ve,—1-; (mod 2p)
and the above rules on placement will also still hold. Therefore this is a regular 2 x 2
covering.

FIGURE 13. A 2 x 2 covering

Suppose there was another, distinct 2 x 2 covering. Pick an initial vertex and label
it vg. Travel along the a edge beginning at vy and label the terminal vertex v;, then
travel along the b edge beginning at v; and label the terminal vertex vs. Continue
in this manner, alternating between a and b edges until vy is reached again. Let n
be the number of vertices that were reached during this process. Let v; be one of
these vertices and let 7 be even. According to our numbering process, the a edge
arriving at v; must have come from v;y1 (mod n) and the b edge leaving v; must arrive
at Vi—1 (mod n). Since a and b are assumed to have order 2, the a edge leaving v; must
arrive at viy1 (mod n) and the b edge arriving at v; must have come from v;_1 (mod n)-
This accounts for all edges arriving at or leaving from v; where ¢ is even. Let v; be one
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of these vertices and let j be! odd. According to our numbering process, the a edge
arriving at v; must have come from v;_; (mod ny and the b edge leaving v; must arrive
at Vj41 (mod n)- Since a and b are assumed to have order 2, the a edge leaving v; must
arrive at vj_1 (mod n) and the b edge arriving at v; must have come from ;41 (mod n)-
This accounts for all edges arriving at or leaving from v; where j is odd. Therefore,
no numbered vertex is connected to an unnumbered vertex. Since the covering must
be connected, n = 2p. But this gives the same covering as the one given earlier and
depicted in Figure 13. Therefore there is only one 2 x 2 covering.

2 x p coverings: Coverings of this type are discussed in the section on twisting and
skipping. Since p is odd, 2 divides p — 1; therefore, by Lemma 4.6 there are 2 regular
2 X p covering.

(6) p x 2 coverings: Since 2 | p — 1, by Lemma 4.6 there are 2 regular p x 2 covering.
(7) p x p coverings: Since p > 2, p{2 — 1; therefore, by Lemma 4.7, there are no p X p

coverings.

Summing over all the possible forms of a regular 2p- covering, we find that there are 3(p+2)
regular 2p- coverings. Because of the direct correspondence between regular coverings and
normal subgroups, this implies that there are 3(p + 2) normal subgroups of F(2) of index 2p
when p is an odd prime. U

Theorem 4.12. F(2) has 4(p + 3) normal subgroups of index 3p, where p is a prime such
that 3 | p— 1.

Proof. As in Theorem 4.8, it suffices to count the regular 3p-coverings and we can divide the
possible regular 3p-coverings into the following cases:

(1)
(2)
(3)

(4)
()

1x1,1x3,1xp,3x1and px1 coverings: These could not possibly be connected,
therefore there are no such regular coverings.

3p x 1, 3p x 2, 3p X p, and 3p x 3p coverings: By Lemma 4.4, there are 3p regular
coverings such that a has order 3p.

1 x 3p, 3 x 3p, and p x 3p coverings: Just as there are 2p regular coverings such
that a has order 3p, there are 3p regular coverings such that b has order 3p. As in
Theorem 4.9, we must avoid counting those coverings where both a and b have order
3p twice; therefore we must count them and subtract them from the total number
of regular coverings such that b has order 3p. Using the numbering of the vertices
established in Lemma 4.4, let vertex ¢ be the terminal point of the a edge starting at
vertex 0. Since the word a’/ beginning at vertex 0 ends at vertex ij (mod 3p), o’ is
a loop if and only if ij = 0 (mod 3p). This implies that a has order 3p if and only if
3p is the smallest positive integer k such that ¢k = 0 (mod 3p), which is equivalent
to saying that ¢ and 3p are relatively prime. There are ¢(3p) = 2(p — 1) such ¢ in
Z/3pZ. The! refore in 2(p — 1) of the 3p regular coverings where b has order 3p, a
also has order 3p. This means that there are p + 2 regular 1 x 3p, 3 x 3p, and p X 3p
coverings.

3 x 3 coverings: This section will be completed later.

3 x p coverings: Coverings of this type are discussed in the section on twisting and
skipping. Since 3 divides p — 1, by Lemma 4.6 there are 3 regular 3 X p covering.

(6) p x 3 coverings: Since 3 | p— 1, by Lemma 4.6 there are 3 regular p x 3 covering.
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FIGURE 14. A 3 x 3 covering

(7) p x p coverings: Since p > 3, p{ 3 — 1; therefore, by Lemma 4.7, there are no p x p
coverings.

Summing over all the possible forms of a regular 3p- covering, we find that there are 4(p+ 3)
regular 3p- coverings. Because of the direct correspondence between regular coverings and
normal subgroups, this implies that there are 4(p + 3) normal subgroups of F(2) of index 3p
when p is an odd prime. 0

5. ENUMERATING NORMAL SUBGROUPS OF F(R)

Our enumeration of normal subgroups of F(2) provides a basis for the enumeration of
normal subgroups of F(r).

Definition 5.1. A regular covering of the wedge of r circles is a ki X ko X ... X k,. covering
if a; has order k; for all 1 < i <.

FIGURE 15. A 6 x 3 x 1 covering of degree 6

Once we have r > 2, it remains useful to consider the generators pairwise.

Definition 5.2. We consider an arrangement of a; edges to be regular relative to an ar-
rangement of a; edges if the (not necessarily connected) covering of the figure eight space
defined by these arrangements is reqular. In a covering where this is true we say that a; and
a; are pairwise regular. If the covering of the figure eight space defined by the arrangements
of a; and a; edges is connected, we say that a; and a; are pairwise connected.

It is easy to see that in a given covering of the wedge of r circles, if there are any two
generators which are pairwise connected, the covering is connected, and if there are any two
generators which are not pairwise regular, the covering is not regular.
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Lemma 5.3. When in an n-covering of the wedge of r circles some generator a; has order
n and is pairwise reqular with every other generator, the covering space is reqular.

Proof. Let a; have order n and be pairwise regular with a; for all j # ¢, 1 < 7 <r. Then
for each j the covering of the figure eight space defined by the arrangement of the a; and
a; edges is regular, so we can think of it as one of the coverings described in Lemma 4.4.
In fact, we can allow the vertices in the covering of the wedge of r circles to be labeled by
choosing one vertex and labeling it 0 and then labeling the rest of the vertices 1 through
n — 1 according to the order in which they are reached by traveling along a; edges from 0.
We then notice that, as in Lemma 4.4, the a; edge leaving vertex 0 enters some vertex k;
and the constraints of regularity then impose that the a; edge leaving vertex [ must enter
vertex [ + k; (mod n). Then at any given vertex [, the a; edge leaving [ enters vertex [ + k;
(mod n), the as edge leaving [ enters vertex [ 4+ ks (mod n), and so on up to the a, edge !
which enters vertex [ + k, (mod n). (k; = 1.) Each vertex is then clearly symmetric to each
other vertex, and so the covering is regular. U

5.1. Counting the normal subgroups of particular indices.

Theorem 5.4. There are

r—1
pr—1
D0 ="
k=0 p
normal subgroups of F(r) of index p where p is prime.

Proof. 1t is enough to consider the regular p-coverings of the wedge of r circles, since there
is a one-one correspondence between these and the normal subgroups of F(r) of index p.

By Lemma 4.3, in such a covering the order of each generator must divide p, and thus
must be either 1 or p. If the order of every generator is 1, then the covering will obviously
not be connected, so there must be at least one generator a; with order p. By Lemma 5.3, it
is enough to show that a; is pairwise regular with every other generator in order to see that
the covering as a whole is regular. By Lemma 4.4, there are p ways to construct a regular
covering of the figure eight space with a; of index p and one other generator of unknown
index. Now we can begin to count the possible regular p- coverings of the wedge of r circles.
In order to avoid double-counting, we will sum over the first generator from {ay,...,a,} to
have index p. If we call this generator a;, then there is only one possibility for the generators
before and including a;: those generators appearing in the list before a; must have order !
1 and there is only one way for this to happen, and a; must have order p and there is also
only one way for this to happen. The generators that appear after a; may have any order
so long as taken pairwise with a; they are regular: then each such generator has p possible
configurations in order to be pairwise regular with a; and each of these choices yields a
distinct regular covering of the wedge of r circles. So we have

r r—1
r—i _ k:pr_l

distinct regular p-coverings of the wedge of r circles. O
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Theorem 5.5. There are

) _4pr+2pr71+2p2r_2p2r71+1_‘_(2p_1)r
2r—k—1 k—1
(2
Zp +;];+1p] = 2(p— 1)

normal subgroups of F(r) of index p* where p is prime.

Proof. Again, it is enough to consider the regular p- coverings of the wedge of r circles.

By Lemma 4.3, a given generator may have order 1, p, or p?. If all of the generators have
order 1, then the covering is clearly not connected. We divide the possible coverings into two
cases, that where the generator of highest order has order p? and that where the generator
of highest order has order p.

If some generator a; has order p?, then by Lemma 5.3 in order for the covering to be
regular it is enough for a, to be pairwise regular with every other generator. Furthermore,
the covering is connected by a; alone. Then to avoid double- counting, we take a; to be
the first generator of {ai,...,a,} to have order p?>. There is one possible arrangement of
aj, that has order p? when the vertices, prior to the imposition of that arrangement, are
undistinguished. We note that the generators {as,...,ax_1} may each have order either 1
or p and must each be pairwise regular with a;. From Theorem 4.9 we see that there
are p regular 1 x p? and p x p? coverings of the figure eight space, and thus p choices for
the configuration of each element of {ay,...,a;_1}. Finally, the generators {ayy1,...,a,} are
subject only to the condition that they be pairwise regular with a; and need! not have
any particular order, so there are p? possible configurations for each of these generators by
Lemma 4.4. Then summing over the choice of a; we find that there are

Zpkl ZPZTkl

regular p-coverings of the wedge of r circles where at least one generator has order p?.

If no generator has order p?, then clearly at least two generators must have order p. Call
these generators a, and a;. They must be pairwise regular. From the discussion preceding
Lemma 4.6, we see that either each a;-cycle has only one ag-cycle which it visits, and a; and
a; are not pairwise connected, since they do not connect the space any more than a; alone
did, or each aj;-cycle visits each aj-cycle exactly once and a;, and a; are pairwise connected.
If a;, and a; are not pairwise connected, there must be some other pair of generators that is,
so without loss of generality we will suppose that a; and a; are pairwise connected. Then
by Lemma 4.6, since p { p— 1, there is exactly one possible arrangement of the a; edges that
is regular with respect to a;. The other generators each have either order 1 or order p. If a
generator has order 1, it leaves the regularity of the covering un! changed. If a generator a;
other than a; and a; has order p, then we must consider how to arrange the a; edges so that
the covering remains regular.

We label the points as in Figure 7, where the aj-cycles are in a stack connected by the
a;-cycles and some arbitrary vertex is vgo. If the a; edge leaving vy enters some vg;, then
the a; edge leaving vy, must enter vg,,4;, (mod p) in order to ensure pairwise regularity
with a; and the a; edge leaving v,, o must enter v,,;, (mod p) in order to ensure pairwise
regularity with a;. In general, then, the a; edge leaving v, ,, enters vy, ,+;;, (mod p) and the
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FIGURE 16. A 3 x 3 x 3 covering of degree 9

covering is regular. If the a; edge leaving vy enters some v;, o then by a similar argument
the a; edge leaving vy, ,, enters vy, 4, , (mod p) and the covering is regular. If on the other
hand the a; edge leaving vy enters v, ;; with l; # 0 and [} # 0 then by Lemma 4.6 a; and
aj are not pairwise regular. Then we have exhausted the possibilitie! s for arranging the a;
edges in a manner that preserves regularity.

Now we count the possible regular coverings with no generator of order p?. To avoid
double-counting, we will let aj be the first generator from {ay, ..., a,} to have order p and a;
be the first generator from {ay, ..., a,} to be pairwise connected with a,. Obviously, j > k.
ap can be any generator from {ay,...,a,_1}, allowing at least one choice for a;. Once we
have ag, there is one choice for the configuration of the edges from the set {a, ..., ax}, since
all of the generators before a, have order 1 and a; simply arranges undistinguished points
into p-cycles. Then we can choose a; from {ay+1, ..., a, }, and we will have one choice for the
arrangement of the a; edges by Lemma 4.6. Any generator a; from the set {ay41,...,a;-1}
can have order 1 or p, but since we know that it is not pairwise connected with a, we know
that the edge a; leaving vy enters some lvg;, (with /; possibly equal to 0). Then there are
p choices for the arrangement of the a; edges. Any generator a; from the set {a;i1,...,a,}
can have order either 1 or p and has the full complement of possible arrangements from the
preceding paragraph, or 2p — 1 possible arrangements. (The a; edge leaving vy o enters some
Vg, Or some vy, o, but we are careful not to count its entering vo twice.) Then the number
of possible regular coverings with no generator of order p? is

i > P e -1

k=1 j=k+1

and the total number of regular p?-coverings of the wedge of r circles is

r r—1 r
e e L A 2p T 2T — 2T 1T+ (2p— 1)
2r—k—1 k—1 r
ZP +Zzp7 (p ) 2(]?—1)2

k=1 k=1 j=k+1
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Theorem 5.6. There are

r r—1 r r—1 r
) Fe+a-D DD P o g - 1)+ ¢ p+q-1)
k=1 k=1 j=k+1 k=1 j=k+1
(p)"—p =g +1
(p—1g—1)

normal subgroups of F(r) of index pqg where p and q are prime, p < q and ptq — 1.

Proof. We will consider the regular pg-coverings of the wedge of r circles, since these are in
one-one correspondence with the normal subgroups of F(r) of index pq.

First we consider the case where some generator a; has order pq. a; alone connects the
space, and in order for the covering to be regular it is enough for each generator to be
pairwise regular with a; by Lemma 5.3.

(This section will be completed later.) O

6. CONCLUSION
APPENDIX A. C+-4 CODE THAT GENERATES NORMAL SUBGROUPS OF INDEX N

A.1l. Matrix.h.

// Matrix.h
// NormalSubgroup

// Created by Samantha Nieveen on 7/11/06.
// Oregon State University REU Program

#ifndef OSU_REU_2006_NORMAL_GUARD
#define OSU_REU_2006_NORMAL_GUARD

#include <iostream>
#include <fstream>

class Matrix { //A class for the matrix representations
of our n-coverings
private:
int **mtrx; //a pointer to the matrix
int dim; //a variable that holds the dimension of
the matrix,
//which is the index of the corresponding

subgroup

int lastColumn; //first non-distinguished
column

int lastCompRow; //last row that has both a 1

and a 2 in it
int letter; //a variable that stores which
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generator is
//next to be added to the matrix. 1 =
a, 2 =0D>.
public:

//Constructors

Matrix();

Matrix(int n); //Creates an n by n matrix with all
entries O

Matrix(const Matrix& param); //Copy
Constructor

//Destructor
“Matrix(); //leaves mtrx null

//overloading operators

Matrix operator= (const Matrix& param);
bool operator== (const Matrix& param);
bool operator!= (const Matrix& param);

//useful functions
int lastCol(); //returns the number of the first
all zero column
int lastRow(); //returns the number of the last
completed row
void increase(int row, int col); //places the
currently selected
//letter in the
matrix at row, col
void print() const; //displays the matrix
void flip(int x, int y); //switches row x with row
y, and col x with
//col y. This preserves the
subgroup that the
//matrix represents but does
not necessarily
//preserve our special format
void reformat(int fixed, int row, int let); //takes
a matrix and puts it
//into
our special format
bool collLacksLet(int col); //checks to make sure
that a column in the
//matrix does not
already contain the current letter

27
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bool allZeros(int m); //checks the block of the
matrix between rows 0
//and m-1 and cols m+1 and
dim and returns true
//if it contains only zeros
bool isConnected(); //returns true iff the matrix
//corresponds to a connected
covering
bool isNormal(); //returns true if and only if the
matrix
//corresponds to a normal subgroup

};
#endif

A.2. Matrix.cpp.

// Matrix.cpp
// NormalSubgroup
// Created by Samantha Nieveen on 7/11/06.

#include "Matrix.h"
#include <iostream>

Matrix::Matrix() {
mtrx = NULL;
dim = 0;
lastColumn = 1;
lastCompRow = -1;
letter = 1;

}

Matrix::Matrix(int n) {
mtrx = new int*[n];
dim = n;
lastColumn = 1;
lastCompRow = -1;
letter = 1;
for(int i=0; i<n; i++) {
mtrx[i] = new int[n];
for(int j=0; j<n; j++) {
mtrx[i] [j1 = 0; }7
}

Matrix::Matrix(const Matrix& param) {
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dim = param.dim;
lastColumn = param.lastColumn;
lastCompRow = param.lastCompRow;
letter = param.letter;
mtrx = new int*[dim];
for(int i=0; i<dim; i++) {

mtrx[i] = new int[dim];

for(int j=0; j<dim; j++) {

mtrx[i] [j] = param.mtrx[i] [j]; }}

Matrix::"Matrix() {
if(mtrx != NULL) {
for(int i=0; i<dim; i++) {
if (mtrx[i] !'= NULL) {
delete[] mtrx[i];
mtrx[i] = NULL; }}
delete[] mtrx;
mtrx = NULL; }
dim = 0;
lastColumn = O;

b

Matrix Matrix::operator= (const Matrix& param) {
dim = param.dim;
lastColumn = param.lastColumn;
lastCompRow = param.lastCompRow;
letter = param.letter;
for(int p=0; p<dim; p++) {
for(int g=0; q<dim; g++) {
mtrx[p] [q] = param.mtrx[p] [ql; }}
return *this;

bool Matrix::operator== (const Matrix& param) {
if(dim = param.dim) {
for(int i=0; i<dim; i++) {
for(int j=0; j<dim; j++) {
if (mtrx[i] [j] != param.mtrx[i] [j]) {
return false; }}}

29
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return true;
} else {
return false; }

}

bool Matrix::operator!= (const Matrix& param) {
return ! (*this==param);

b

int Matrix::lastCol() {
return std::min(lastColumn, dim-1);

3

int Matrix::lastRow() {
return lastCompRow;

}

void Matrix::increase(int row, int col) {
if ((row<dim) && (col<dim)) {
mtrx[row] [col] += letter;
} else {
std::cout << "error"; }
if(col >= lastColumn) {
lastColumn = col+1l; }
if (letter == 1) {

letter += 1;
} else {
letter —-= 1;

lastCompRow++; }
}

void Matrix::print() const {
for(int i=0; i<dim; i++) {
for(int j=0; j<dim; j++) {
std::cout << mtrx[i][j] << " "; }
std::cout << std::endl; }
std::cout << std::endl;

3

void Matrix::flip(int x, int y) {

int* temp = mtrx[y]; //this flips the yth row
with the xth row

mtrx [yl = mtrx[x];
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mtrx[x] = temp;
int j=0; //this flips
the yth column with the xth column
for(int i=0; i<dim; i++) {
j=mtrx[i] [y];
mtrx[i] [y] = mtrx[i] [x];
mtrx[i][x] = j; }
}

void Matrix::reformat(int fixed, int row, int let) {
bool done = false;
int i=fixed+1;
while((!done) && (i '= dim)) {
if ((mtrx[row] [i] == let) || (mtrx[row][i] == 3)) {
flip(fixed+1, 1i);
fixed++;
done = true; }
i++; }
let = (let % 2) +1;
if (let == 1) {
row++; 7}
if (fixed != dim-1) {
reformat(fixed, row, let); }

b

bool Matrix::colLacksLet(int col) {
for(int i=0; i<=lastCompRow; i++) {
if ((mtrx[i] [coll==letter) || (mtrx[i] [col]l==3)) {
return false; }}
return true;

}

bool Matrix::allZeros(int m) {
for(int i=m+1; i<dim; i++) {
for(int j=0; j<=m; j++) {
if (mtrx[j][i]!=0) {
return false; }}}
return true;

}

bool Matrix::isConnected() {
for(int i=0; i<dim-1; i++) {
if (allZeros(i)) {
return false; }}

31
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return true;

3

bool Matrix::isNormal() {
Matrix temp (dim);
for(int i=1; i<(dim/2)+1; i++) {
temp = *this;
temp.flip(0, 1i);
int letter=1;
if (temp.mtrx[0] [0] == 1) {
letter = 2; }
temp.reformat (0, 0, letter);
if (temp != *this) {
return false; }}
return true;

}

A.3. main.cpp.

#include <iostream>
#include <stack>
#include <fstream>
#include "Matrix.h"
using namespace std;

int main () {
cout << "Choose an index: ";
int n;
cin >> n;
cout << endl;

int count = O;

cout<<"The normal subgroups of index "<< n <<" are
represented by:"<<endl;

stack<Matrix> s;

Matrix zeros (n); //this is the initial,
empty matrix

s.push(zeros) ;

while(!s.empty()) {
Matrix current = s.top();
s.pop();
if (current.lastRow()==n-1) { //checks to see if
the matrix is complete
if (current.isConnected() && current.isNormal()) {
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//checks to make
current.print();
//sure the matrix is
connected
count++; //and
normal before counting it
+
} else { //if it is not complete, it creates it’s
daughter matrices
//and adds them to the stack
for(int i=0; i<current.lastCol()+1; i++) {
if (current.collacksLet(i)) {
Matrix next (n);
next = current;
next.increase(current.lastRow()+1, 1i);
s.push(next) ;
i 333
cout <<"There are "<< count <<" normal subgroups of
index" << n <<".";

return O;
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