
PERFECT ONE-ERROR-CORRECTING CODES ON
ITERATED COMPLETE GRAPHS:

ENCODING AND DECODING FOR THE SF LABELING

PAMELA RUSSELL

ADVISOR: PAUL CULL

OREGONSTATE UNIVERSITY

ABSTRACT. Birchall and Tedor proved that every iterated complete graph has a perfect one-error-correcting
code (P1ECC) and showed how to construct it [2]. Kleven created the SF labeling method, a method for
assigning strings to the vertices of iterated complete graphs which has several nice properties [5]. We use
these results to create a “working” P1ECC on these graphs. That is, we present a method for encoding and
decoding: an algorithm which gives a bijection between the set of messages which can be transmitted using
the P1ECC on an iterated complete graph, and the set of codewords in the SF labeling of that graph. In the
process, we introduce a technique which should be useful in creating encoding and decoding methods for
any reasonable labeling of iterated complete graphs.

1. INTRODUCTION

Many factors can cause errors in the transmission of messages. It is for this reason that error-correcting
codes have been developed. An error-correcting code is designed to recognize that the received message
contains an error, then find the error and correct it. A biological example of an error-correcting code
is written communication by humans. If an English speaker reads the word INFORMETION, he will
automatically correct it to INFORMATION.

This paper is concerned only with digital codes. In particular, we look at one-error-correcting codes
on graphs. In this context, words are represented by vertices in the graph, and each word that contains
an error is adjacent to the corresponding word containing noerrors. These codes come with algorithms
for recognizing whether a word contains an error and correcting the error if it does. So in our example
above, the vertex labeled INFORMETION would be adjacent to the vertex labeled INFORMATION,
and we would have an algorithm which would locate the error inINFORMETION and correct the E to
an A.

We look at codes on a particular family of graphs, iterated complete graphs. Much is known about
codes on these graphs. In particular, every iterated complete graph has exactly one perfect one-error-
correcting code up to isomorphism [2]. Kleven gave a method for assigning strings to the vertices of
any odd-dimension iterated complete graph, called the SF labeling method, and also gave finite-state
machines which recognize and correct errors in a given string [5].

Our contribution is to give an algorithm for encoding and decoding messages. That is, we give a
bijection between the set of distinct messages which can be sent using a given iterated complete graph,
and the set of codewords in the SF labeling of that graph.

Date: August 2004.
This work was done during the Summer 2004 REU program in Mathematics at Oregon State University.

162

Encoding and Decoding for the SF Labeling 163

2. BACKGROUND: ITERATED COMPLETE GRAPHS AND ERROR-CORRECTING CODES

2.1. Iterated Complete Graphs: Definitions.

Definition 2.1.1. A (simple) graphG = (V,E) consists of a finite set V (calledvertices) and a set E
(callededges). Elements of E are unordered pairs of elements of V . Two vertices v1 and v2 areadjacent
(have an edge between them) if(v1,v2) ∈ E. The adjective “simple” indicates that any two vertices have
at most one edge between them, and that no vertex is adjacent to itself.

Definition 2.1.2. Thedegreeof a vertex v is the number of vertices which are adjacent to v.

Definition 2.1.3. Thecomplete graphon d vertices, denoted Kd, is the graph such that all the vertices
are pairwise adjacent.

Figure 1 showsK3, K4, andK5.

FIGURE 1. K3, K4, andK5.

Definition 2.1.4. Thesecond-order iterated complete graph, denoted K2d , is constructed by making d
copies of Kd, then connecting each pair of copies by one edge such that no vertex ends up with degree
> d. Theordern iterated complete graph, denoted Knd , is constructed by making d copies of Kn−1

d , then
connecting each pair of copies by an edge between a corner vertex of one copy and a corner vertex of
the other copy, such that no vertex ends up with degree> d. (Note: acorner vertexof Kn

d is a degree
d−1 vertex.)

Figure 2 showsK1
5, K2

5 , andK3
5 .

164 Russell

FIGURE 2. K1
5, K2

5 , andK3
5 .

2.2. Labelings.

Definition 2.2.1. A labeling schemefor Kn
d is a method of assigning strings of length n over

{0, . . . ,d−1} to the vertices of Knd such that this method gives a bijection between vertices andstrings.

Most labeling schemes have advantages and disadvantages. This paper deals only with theSF labeling,
which has several desirable properties as we will see later [5]. Examples of other labeling schemes are
the C-R-E-L labeling [2], theα-Method [1], the Multiples ofd+1 code [1], and the C-S labeling method
[4].

2.3. Codes on Graphs; Perfect One-Error-Correcting Codes.

Definition 2.3.1. Let G be a graph and let V be the set of vertices of G. Then acodeon G is a subset
C ⊂ V. A codevertexis a vertex c∈C. A noncodevertexis a vertex v/∈C. If we have a labeling of G,
then acodewordis the label of a codevertex. Anoncodewordis the label of a noncodevertex.

Definition 2.3.2. A perfect one-error-correcting code(or P1ECC) on a graph G is a code such that:

(1) No two codevertices are adjacent.
(2) Every noncodevertex is adjacent to exactly one codevertex.

Most graphs have the property that no subset of their vertices is a P1ECC. In fact, Cull and Nelson
showed that the problem of determining whether a given graphhas a P1ECC isNP-complete [3]. How-
ever, Birchall and Tedor showed that every iterated complete graph has a P1ECC and that this P1ECC is
unique up to isomorphism [2]. In Section 2.4, we give Alspaugh et al.’s construction of the P1ECC on
Kn

d [1].
Figure 3 shows three examples of P1ECC’s on iterated complete graphs.

Definition 2.3.3. A codeword recognizerfor a P1ECC is an algorithm for determining whether a given
label is a codeword. Anerror correction machinesends a noncodeword to its corresponding codeword.

Encoding and Decoding for the SF Labeling 165

FIGURE 3. Perfect one-error-correcting codes onK2
2, K1

3, andK2
5 . Codevertices are rep-

resented by squares.

The adjective “perfect one-error-correcting” refers to the idea that the codewords are actual messages
that one might wish to transmit. An error may be made in transmission, due to human error, interfer-
ence, noise, etc. The set of vertices which are adjacent to a particular codevertex represents the set of
errors that may be made when sending that message. The code is“one-error-correcting” because every
noncodevertex is at a distance of one from a codevertex. If more errors are made, so that the actual
transmitted message is no longer adjacent to the desired codevertex, then the message will be corrected
to a different codeword.

Figure 4 shows an example where the two possible messages areLAND and SEA. An error-correction
machine for this graph would correct the strings LQND, LADN,and LLLD to the codeword LAND. No
other string would be corrected to LAND.

LAND SEA

LQND

LADN

LLLD

SEE

ESA

SEW

FIGURE 4. A P1ECC with two codewords (represented by rectangles).

Definition 2.3.4. Let G be a graph. A labeling of G with thegray code propertyis a labeling such that
any two adjacent vertices have labels which differ in exactly one position.

One desirable property of the SF labeling is that it is a gray code. The labeling in Figure 4 does not
have the gray code property. Figure 5 shows a labeling with the gray code property.

166 Russell

LAND SEA SEE

SEW

LEND

LANE SET

LARD

FIGURE 5. A labeling with the gray code property.

2.4. The G-U Construction of a P1ECC onKn
d .

In this section, we give an iterative method for constructing the P1ECC onKn
d. This method will be

a cornerstone of our encoding and decoding scheme developedin sections 5, 6, and 7. This “G-U
construction” is due to Birchall and Tedor [2]. However, we prefer the presentation given by Alspaugh
et al. and we use it here [1].

The G-U construction uses two types of codes onKn
d: G-codes and U-codes. The G-code is the desired

P1ECC (Theorem 2.4.1). LetGn
d denoteKn

d with the G-code and letUn
d denoteKn

d with the U-code.
Gn

d andUn
d are constructed recursively as follows:

• To constructG1
d, designate one vertex ofK1

d as thetop vertexand rotate it to the top position.
Make this vertex a codevertex. Make the otherd−1 vertices noncodevertices.

• To constructU1
d , designate one vertex ofK1

d as the top vertex and rotate it to the top position.
Make alld vertices noncodevertices.

Figure 6 showsG1
5 andU1

5 .

FIGURE 6. G1
5 andU1

5 .

We now show how to constructGn
d andUn

d for arbitraryn:

To constructGn
d whenn is even:

(1) Maked copies ofGn−1
d .

(2) Connect each pair of copies by a vertex such that the top vertex of every copy remains uncon-
nected.

(3) Designate the top vertex of someGn−1
d as the top vertex ofGn

d.

Encoding and Decoding for the SF Labeling 167

To constructGn
d whenn is odd:

(1) Create one copy ofGn−1
d andd−1 copies ofUn−1

d .
(2) Connect the top vertices of the copies ofUn−1

d to distinct nontop corner vertices ofGn−1
d .

(3) Connect each pair of copies ofUn−1
d by one edge such that

• This edge connects a nontop corner vertex in one copy to a nontop corner vertex in the other
copy.

• Exactly one nontop corner vertex of eachUn−1
d remains unconnected.

(4) Designate the top vertex ofGn−1
d as the top vertex ofGn

d.

To constructUn
d whenn is even:

(1) Make one copy ofUn−1
d andd−1 copies ofGn−1

d .
(2) Connect the top vertices of the copies ofGn−1

d to distinct nontop corner vertices ofUn−1
d .

(3) Connect each pair of copies ofGn−1
d by one edge such that

• This edge connects a nontop corner vertex in one copy to a nontop corner vertex in the other
copy.

• Exactly one nontop corner vertex of eachGn−1
d remains unconnected.

(4) Designate the top vertex ofUn−1
d as the top vertex ofUn

d .

To constructUn
d whenn is odd:

(1) Maked copies ofUn−1
d .

(2) Connect each pair of copies by a vertex such that the top vertex of every copy remains uncon-
nected.

(3) Designate the top vertex of someUn−1
d as the top vertex ofUn

d .

Figure 7 showsG2
5 andU2

5 . Figure 8 showsG3
5 andU3

5 .

FIGURE 7. G2
5 andU2

5 .

168 Russell

FIGURE 8. G3
5 andU3

5 .

Theorem 2.4.1.The G-code is the unique (up to isomorphism) P1ECC on Kn
d .

Proof The proof is given by Birchall and Tedor [2] and is omitted here. �

2.5. Encoding and Decoding.

Birchall and Tedor [2] showed that the number of codeverticescn in a P1ECC onKn
d is

cn =

{
dn+d
d+1 , n even
dn+1
d+1 , n odd.

One can therefore use this code to transmit as many ascn different messages. Label the possible messages
by the firstcn natural numbers, i.e. the set{0, . . . ,cn−1}.

Definition 2.5.1. An encoding and decoding schemefor a particular labeling of Kn
d is a bijection

between the set{0, . . . ,cn−1} and the set of codewords in the labeling.

A useful encoding and decoding scheme works for alld andn. This way, depending on the number of
messages one wishes to be able to encode, one can choose suitabled andn such thatcn is large enough.
It is not necessary to generate the whole labeling and assignmessages to codewords; one simply selects
the message one wants to send and the encoding scheme returnsthe corresponding codeword. After
the codeword is transmitted, the receiving party runs the codeword recognizer, the error corrector if
necessary, and finally the decoder.

Some labelings have simple encoding and decoding schemes. For example, the SF labeling has a
nearly trivial scheme whend = 3. However, this does not appear to be the case for the SF labeling
with d > 3. In Sections 5 and 6, we lay out a technique that should be useful in finding encoding and

Encoding and Decoding for the SF Labeling 169

decoding schemes for any reasonable labeling. In Section 7,we use this technique to give an encoding
and decoding scheme for the SF labeling with arbitraryd andn.

3. THE SF LABELING OF Kn
d

In this section, we describe the construction of the SF labeling. (In Section 4, we show that there is no
“similar” labeling of Kn

d whend is even.) We then give finite state machines for codeword recognition
and error correction.1

3.1. The SF Labeling.

The SF labeling is only defined whend is odd. Letd ≥ 3 be an odd number. The labeling ofKn
d is

constructed recursively from the labeling ofKn−1
d .

LabelK1
d as follows: the top vertex is labeled 0, then the remaining vertices are labeled

1,2, . . . ,(d−1), going counterclockwise. Figure 9 shows the SF labeling ofK1
5.

0

1

2 3

4

FIGURE 9. The SF labeling ofK1
5 .

The SF labeling ofKn
d is constructed according to the following algorithm: Applythe permutationα

to each digit in every label ofKn−1
d , whereα(z)= d+1

2 z (modd). Now maked copies ofα(Kn−1
d). Rotate

thekth copy 2πk
d radians counterclockwise, then appendk to each word in this copy. Finally, connect the

d copies to formKn
d . Figure 10 shows the SF labeling ofK2

7. Figure 11 shows the SF labeling ofK3
5.

1All results in Section 3 are due to Kleven [5].

170 Russell

00

10

20

3040

50

60

0111

21

31

41

51

61

02

12

22

32

4252

62

03

1323

33

43

53

63

04

14

24

34

44

5464

05

15

25
35

45

55

65

06

16

26

36

46

56

66

FIGURE 10. The SF labeling ofK2
7.

000

010

020030

040

100

110

120

130

140

200

210

220

230

240

300

310

320

330

340

400

410

420

430

440

001

011

021

031

041

101

111

121

131

141

201

211

221

231

241

301311

321

331

341

401

411

421

431

441

002

012

022

032

042

102

112

122

132142

202

212

222

232

242

302

312

322

332

342

402

412

422

432

442

003

013

023

033

043

103

113

123

133

143

203

213

223

233

243

303

313

323

333

343

403

413423

433

443

004

014

024

034

044

104

114

124

134

144

204

214

224

234

244

304

314

324

334

344

404

414

424

434

444

FIGURE 11. The SF labeling ofK3
5.

Encoding and Decoding for the SF Labeling 171

3.2. Description of the Codewords.

No explicit description of the codewords has been found. Kleven gives a recursive description. LetGn
denote the set of codewords in the SF labeling ofKn

d, and letUn denote the set of SF labels of vertices in
the U-code onKn

d . Then,

Whenn is even,

Gn = Gn−1◦0∪T(Gn−1)◦1∪T2(Gn−1)◦2∪· · ·∪Td−1(Gn−1)◦ (d−1)
Un =Un−1◦0∪Γ1(Gn−1)◦1∪Γ2(Gn−1)◦2∪· · ·∪Γd−1(Gn−1)◦ (d−1)

And whenn is odd,

Gn = Gn−1◦0∪Γ1(Un−1)◦1∪Γ2(Un−1)◦2∪· · ·∪Γd−1(Un−1)◦ (d−1)
Un =Un−1◦0∪T(Un−1)◦1∪T2(Un−1)◦2∪· · ·∪Td−1(Un−1)◦ (d−1)

whereGn−1 ◦ 0 means the setGn−1 with a zero appended to every string in the set,T replaces each
characterx by x+1 (modd), Tm meansT composed with itselfm times, andΓm replaces each character
x by α(Tm(x)).

3.3. Codeword Recognition for the SF Labeling.

Kleven gives a(2d+ 2)-state machine for codeword recognition. The states are{ E ∗S , E ∗ 0 , E ∗
1 , . . . , E ∗ (d−1) , O∗S , O∗0 , O∗1 , · · · , O∗ (d−1) }. The machine starts in stateE ∗Sand reads
strings from left to right. Strings of even length are accepted in theE ∗Sstate and strings of odd length
are accepted in theO∗0 state. The functionδ determines transitions among the states:

δ(x∗y,z) = (δ1(x,z)∗δ2(y,z))

whereδ1 andδ2 are given by:

δ1(E,z) = O
δ1(O,z) = E
δ2(x,z) = (2x−z) (modd)
δ2(x,x) = S
δ2(S,z) = z

Kleven proves that codeword recognition is performed correctly by this finite state machine.

172 Russell

3.4. Error Correction for the SF Labeling.

Kleven showed that the SF labeling is a gray code (see Definition 2.3.4). Therefore, error correction
involves changing exactly one digit. The error correction algorithm consists of two small algorithms.

The first algorithm is a finite-state machine; it is used only when the error is in the first digit. It starts
in theSstate ifn is even and theO state ifn is odd. TheSstate is the only non-final state. The function
δ determines transitions among the states:

δ(x,z) = (x+z
2) (modd)

δ(x,x) = S
δ(S,z) = z

The second algorithm is used when the error is not in the first digit. To correct the wordx1 · · ·xn:

IF x2 · · ·xn /∈Un−1

Correctx1 = q, whereq is the final state after runningxn · · ·x2 through the first machine

ELSE

FOR i = 2· · ·n

IF xi 6= x1

IF i 6= n

Correctxi = 2x1−xi (modd)

ELSE

Correctxn = 0

BREAK

END FOR

Kleven proves that error correction is performed correctlyby these algorithms.

4. GENERALIZED TOWERS OFHANOI LABELINGS

It is natural to ask whetherKn
d admits a labeling similar to the SF labeling whend is even. We will

specify what we mean by “similar to the SF labeling.” We will then show that in fact,Kn
d (d even) does

not admit any such labeling.

Encoding and Decoding for the SF Labeling 173

4.1. The Towers of Hanoi Labeling ofKn
3 .

The Towers of Hanoi is a popular puzzle. It consists of three pegs and several disks of different radii
which fit on the pegs. A solution to the puzzle is a configuration where all the disks are on one tower
(see Figure 12 for a picture). One is allowed to move one disk at a time, with the constraint that no larger
disk may be placed on top of a smaller disk.

FIGURE 12. A solution to the Towers of Hanoi puzzle with five disks.

We can describe a configuration of the Towers of Hanoi puzzle by a string of lengthn over{ 0 , 1 , 2 },
wheren is the number of disks. Theith digit represents the position of theith disk (first digit = smallest
disk,nth digit = largest disk). The position of a disk is 0 if the disk ison the leftmost tower, 1 if it is on
the middle tower, and 2 if it is on the rightmost tower. See Figure 13 for an example. The configuration
shown is 22201.

FIGURE 13. A configuration of Towers of Hanoi puzzle with five disks. The associated
string is 22201.

One can construct a graph where each vertex is labeled with a configuration of the Towers of Hanoi
puzzle and each edge represents a legal move in the puzzle. Itturns out that this graph is actuallyKn

3 ,
and the labeling is known as the Towers of Hanoi labeling ofKn

3 [3]. Furthermore, the resulting labeling
is the SF labeling ford = 3 [5].

174 Russell

The rest of Section 4 examines the extent to which the SF labeling of Kn
d , d > 3, can be viewed as a

generalization of the Towers of Hanoi labeling ofKn
3.

4.2. Definitions.

Definition 4.2.1. TheGeneralized Towers of Hanoipuzzle on d towers and n disks, denoted GTH(d,n),
is the puzzle with the following rules:

(1) Only one disk may be moved at a time.
(2) No larger disk may be placed on top of a smaller disk.

The towers are labeled0 . . . d−1. A configurationof GTH(d,n) is a string of length n over
{0, . . . ,d−1}, where the ith digit gives the position (tower) of the ith disk (first digit = smallest disk; nth

digit = largest disk).

Definition 4.2.2. Let G be any graph with at most dn vertices. AGTH(d,n) labelingof G is a one-to-one
map from the set of vertices of G to the set of configurations ofGTH(d,n), such that each edge represents
a legal move in GTH(d,n).

Note: The SF labeling ofKn
d, with d odd, is a GTH(d,n) labeling. We prove this in Section 4.4.

Definition 4.2.3. TheMaximal GTH(d,n) graph, denoted M(d,n), is the labeled graph on dn vertices
with edges corresponding to every legal move in GTH(d,n). Figure 14 shows M(4,2).

00

10

2030

01

11
21

31

02 12

22

32

03

13

23

33

FIGURE 14. M(4,2).

Encoding and Decoding for the SF Labeling 175

4.3. Nonexistence of a GTH Labeling ford Even.

We now show that there is no GTH(d,n) labeling ofKn
d whend is even.

Lemma 4.3.1. If there is no GTH(d,n−1) labeling of Kn−1
d , then there is no GTH(d,n) labeling of Kn

d.

Proof We prove the contrapositive.
Suppose we have a GTH(d,n) labeling ofKn

d. Recall thatKn
d consists ofd copies ofKn−1

d . Call them
C0, . . . ,Cd−1. Delete all the vertices inC1, . . . ,Cd−1 so that onlyC0 remains. Now delete thenth character
in each vertex label inC0 (this corresponds to removing the largest disk). The resultis a GTH(d,n−1)
labeling ofKn−1

d . �

Theorem 4.3.2.For d even, there is no GTH(d,n) labeling of Kn
d .

Note: We are assuming thatn> 1 since there is always a GTH(d,1) labeling ofK1
d. Also, we assume

thatd > 2 since a GTH puzzle on two towers is not interesting.

Proof We prove the theorem forn = 2 (two disks). The general result follows by induction, using
Lemma 4.3.1.

Let d > 2 be even. We first distinguish between two types of edges inM(d,2):

• Type S Edges: edges which correspond to moving the small disk
• Type L Edges: edges which correspond to moving the large disk

We try to construct a GTH(d,2) labeling ofK2
d. In other words, we must delete some of the edges in

M(d,2) so that the resulting graph isK2
d. We will see that this is impossible.

Note thatM(d,2) contains exactlyd copies ofK1
d, corresponding to thed possible positions of the

large disk, from which the small disk may be moved to any tower. Thesed copies ofK1
d will have to be

thed copies ofK1
d in K2

d. Call themC0 . . .Cd−1 and keep their labelings. (Note that all the edges within
Ci are Type S edges, and so far all the vertices inCi have degreed−1.)

Now all that is left is to connect eachCi andCj , i 6= j, by a Type L edge. This will require a total of
(d

2

)
Type L edges. If we look at only the Type L edges inM(d,2), we see that they take the form ofd

distinct complete graphs ond−1 vertices. (Figure 15 illustrates this forM(4,2).) This is because there
ared ways to fix the position of the small disk, and then the large disk may be moved freely among the
remainingd−1 towers. Call these complete graphsD0, . . . ,Dd−1.

Recall that we are trying to connect eachCi andCj by a Type L edge, so we need to use
(d

2

)
of the

Type L edges which are found in theDi ’s. This forces us to use at least
(d

2)
d = d−1

2 edges from some
Di . Sinced is even, this means that we must use at leastd

2 edges from someDi. But Di has onlyd−1
vertices, so some vertex must belong to two of thed

2 chosen edges. Thus, this vertex will have degree at
leastd+1 in our constructed graph, which is impossible inK2

d. �

Note: The reason we can find a GTH(d,n) labeling ofKn
d whend is odd, is that

(d
2)
2 = d−1

2 is an
integer which is equal to half the number of vertices inDi , so no vertex need be used twice.

176 Russell

00

10

2030

01

11 21

31

02 12

22

32

03

13

23

33

FIGURE 15. The type L edges inM(4,2) form four triangles.

4.4. The SF Labeling is a GTH Labeling.

In this section we prove that the SF labeling ofKn
d is a GTH(d,n) labeling. We will need two lemmas.

Lemma 4.4.1. For all i ∈ {0, . . . ,d−1}, we haved+1
2 i ≡ i − d+1

2 i (mod d).

Proof We derive this from a tautology:

1≡ 1 (modd)
=⇒ d+1≡ 1−d (modd)
=⇒ d+1

2 ≡ 1−d
2 (modd)

=⇒ d+1
2 ≡ 1− d+1

2 (modd)
=⇒ d+1

2 i ≡ i − d+1
2 i (modd). �

Lemma 4.4.2. The SF labeling assigns the strings00· · ·0
︸ ︷︷ ︸

n−times

, 11· · ·1, . . . , (d−1)(d−1) · · ·(d−1) to the

corner vertices of Knd in order, starting with the top vertex and going counterclockwise.

Proof We know by definition that the lemma is true forn= 1. We prove that it is also true forn= 2.
This is sufficient to obtain the lemma for alln by induction, since there is only one digit of information
contained in the wordii · · · i.

Notation: We say that a vertex is in “positioni” of K1
d if it is the ith vertex, starting with zero at the

top and counting counterclockwise. We say thatK2
d containsd copies ofK1

d. We call themC0, . . ., Cd−1,
starting withC0 at the top and counting counterclockwise. So thej th corner vertex ofK2

d is the vertex
which is in positionj of Cj .

We want to show that thej th corner vertex ofK2
d is labeledj j . We go through the construction ofK2

d
to show that this is in fact true. To do this, we begin with theith vertex ofK1

d and follow it through the
construction.

The ith vertex ofK1
d is labeledi. The first step in the construction of the SF labeling relabels this vertex

d+1
2 i (modd). In the next step, we created copies of the relabeledK1

d. In the third step, we rotate thekth

Encoding and Decoding for the SF Labeling 177

copy,Ck, by k positions clockwise. This means that whenk is equal tod+1
2 i (modd), the vertex labeled

k (or equivalently, the vertex labeledd+1
2 i (modd)) is in positioni −k. But by Lemma 4.4.1, we have

thatk ≡ i −k. So the vertex labeledk is in thekth position ofCk (this is thekth corner vertex ofK2
d.) In

the fourth step, we appendk to each vertex inCk, so thatkk is thekth corner vertex ofK2
d. �

We can now show that the SF labeling is a GTH labeling.

Theorem 4.4.3.The SF labeling of Knd is a GTH(d,n) labeling for all d≥ 3.

Proof We fix d and prove the theorem by induction onn.
The result is obvious forn= 1. Now assume that the SF labeling ofKn−1

d is a GTH(d,n−1) labeling.
We examine the construction ofKn

d.
Note that after the first step in the construction (permutingthe digits in the labeling ofKn−1

d), the
resulting labeling is still a GTH(d,n−1) labeling. This is because permuting the digits in a configuration
of the GTH puzzle is analogous to gluing all the disks to the towers they are currently on, then shuffling
the towers around, disks and all. Legal moves are sent to legal moves.

So we need only worry about the edges that will be introduced between distinct copies ofKn−1
d . Call

these copiesD0, . . ., Dd−1.
Now, the clockwise rotation scheme guarantees that the edgebetweenDi andD j (i 6= j) will connect

two vertices with identical labels. Furthermore, these twovertices are corner vertices ofDi and D j

respectively, but they are not corner vertices ofK2
d, so by Lemma 4.4.2, they are labeledaa· · ·a for some

a 6= i 6= j.
The final step in the construction appendsi to one vertex andj to the other, leaving an edge between

aa· · ·ai andaa· · ·a j. This represents a legal move sincea 6= i 6= j. �

5. AN INDEXING SYSTEM FOR THECODEVERTICES INKn
d

In this section we give a method for representing a codevertex in Kn
d by an(n−1)-tuple over

{0, . . . ,d−1}. The advantage of this technique is that the(n−1)-tuple contains explicit information, in
a simple form, about the position of the codevertex insideKn

d. This representation will later serve as an
intermediate step in our encoding and decoding scheme.

5.1. A Scheme for Representing Codevertices by Vectors.

Let Cn
d be a P1ECC onKn

d , let cn be the number of codevertices inCn
d, and pickv ∈ Cn

d. We give a
recursive algorithm for assigning an(n−1)-tuple(w1,w2, . . . ,wn−1) to v.

178 Russell

Algorithm . First of all,Kn
d containsd copies ofKn−1

d . Label them 0, . . . ,d−1 with 0 at the top. Ifv is
contained in copyi, then letw1 = i.

ThisKn−1
d containsd copies ofKn−2

d . Label them 0, . . . ,d−1 with 0 being the top copy, where “top”
is taken in the sense of the G-U construction. Ifv is contained in copyj, then letw2 = j.

In general, supposewk (k < n−2) is given, so thatv is contained in thewk
th copy ofKn−k

d inside a
copy ofKn−k+1

d . If v is contained in thel th copy ofKn−k−1
d inside thisKn−k

d (where the 0th copy is the
top copy, with “top” taken in the sense of the G-U construction), then letwk+1 = l .

Supposewn−2 is given. There is a small change at this step. Ifv is contained in thepth copy ofG1
d

inside a copy ofK2
d , then letwn−1 = p. Note that if this copy ofK2

d is aU2
d , then thepth copy ofG1

d is
the(p+1)st K1

d subgraph.

Note: No two distinct codevertices have the same corresponding(n−1)-tuple since a copy ofK1
d con-

tains at most one codevertex.

Definition 5.1.1. We say that an(n−1)-tuple η over{0, . . . ,d−1} representsa codevertex in Cnd if
there is some v∈Cn

d whose corresponding(n−1)-tuple is η.

5.2. A Map Between Natural Numbers and Codevertices.

Let Γ denote the set of(n−1)-tuples over{0, . . . ,d−1}. We define a function

Φ : {0,1, . . . ,dn−1−1} −→ Γ.
by

m 7−→ (m in based, but written backwards).

We give an explicit algorithm forΦ below. (Φ will later be pared down to a bijection between the set
{0, . . . ,cn−1} and the set of(n−1)-tuples which represent codewords inKn

d . This bijection will provide
a big piece of our encoding and decoding scheme.)

Let m∈ {0,1, . . . ,dn−1−1}. The(n−1)-tuple

Φ(m) = (v1,v2, . . . ,vn−1)

is produced according to the following algorithm:

ALGORITHM

t0 = m
v1 = t0 (modd)
k= 1

WHILE k< n−1

tk =
tk−1−vk

d

vk+1 = tk (modd)

k= k+1

END WHILE

Encoding and Decoding for the SF Labeling 179

Notation. Let M denote the set{0,1, . . . ,cn − 1}. Let C ⊂ Γ denote the set of(n− 1)-tuples over
{0, . . . ,d−1} which represent codevertices inKn

d.
Now thatΦ is defined, we will proceed by the following steps:

(1) We first show thatΦ is a bijection (Proposition 5.3.3).
(2) Next we show that ifm∈ M, thenΦ(m) ∈C (Lemma 5.3.6).
(3) These results give the theorem thatΦ|M is a bijection betweenM andC (Theorem 5.3.7).
(4) Finally, we give an explicit expression for the inverse mapΦ−1 : C−→ M (Proposition 5.3.8).

5.3. Properties of Φ.

Our first goal here is to show thatΦ is a bijection. This requires two lemmas.

Lemma 5.3.1.Let0≤ m1 ≤ m2 ≤ dn−1−1. ThenΦ(m2−m1) = Φ(m2)−Φ(m1) (where subtraction is
componentwise).

Proof First of all,(m2−m1) (modd) = m2 (modd) −m1 (modd).
=⇒ v1(m2−m1) = v1(m2)−v1(m1).

Furthermore,

t1(m2−m1) =
m2−m1−v1(m2−m1)

d

=
m2−m1−v1(m2)+v1(m1)

d (by the above)

= m2−v1(m2)
d − m1−v1(m1)

d

= t1(m2)− t1(m1).

The rest of the algorithm is completely determined byv1 andt1, so the lemma is proved.�

Lemma 5.3.2. Let m∈ {0, . . . ,dn−1− 1} and Φ(m) = (v1,v2, . . . ,vn−1), and suppose that v1 = v2 =
. . .= vk = 0 for some k≤ n−1. Then m≡ 0 (mod dk).

Proof We first show that for all 0≤ j ≤ k−1, we havet j =
m
d j . This is clearly true forj = 0 since

t0 = m. Now supposetl =
m
dl for all 0 ≤ l ≤ j. Thentl+1 =

tl−vl+1
d . But vl+1 = 0 since j ≤ k−1, so

tl+1 =
tl
d = m

dl+1 .
We can now prove the lemma. Suppose thatv1 = . . .= vk = 0. Then by the above, we havetk−1 =

m
dk−1 .

We also havevk = 0, i.e.,tk ≡ 0 (modd). So m
dk−1 ≡ 0 (modd). Thereforem is divisible bydk. �

Proposition 5.3.3.Φ is a bijection between{0,1, . . . ,dn−1−1} andΓ.

180 Russell

Proof The preimage set and the target set have the same cardinality, so it is sufficient to show thatΦ is
one-to-one.

Suppose we havem1 ≤ m2 such thatΦ(m1) = Φ(m2).
⇐⇒ Φ(m2)−Φ(m1) = (0,0, . . . ,0)
=⇒ Φ(m2−m1) = (0,0, . . . ,0) by Lemma 5.3.1.
=⇒ m2−m1 is divisible bydn−1, by Lemma 5.3.2.
=⇒ m2−m1 must be zero sincem2−m1 is nonnegative and the next multiple ofdn−1 is not in

{0, . . . ,dn−1−1}.
=⇒ m1 = m2. �

We now use Proposition 5.3.3 to show that by restricting the domain ofΦ to M, we obtain a bijection
betweenM andC. This uses three lemmas.

Lemma 5.3.4.

Φ(cn−1) =







(0 , d−1 , 0 , d−1 , . . . , 0 , d−1
︸ ︷︷ ︸

n−1

), n odd

(d−1 , 0 , d−1 , . . . , 0 , d−1
︸ ︷︷ ︸

n−1

), n even.

Proof First note that

cn−1 =

{
dn−1
d+1 = dn−1−dn−2+dn−3− . . .+d−1, n even

dn−d
d+1 = dn−1−dn−2+dn−3− . . .+d2−d, n odd.

When we writecn−1 in this form, the result is clear by inspection.�

Lemma 5.3.5.The(n−1)-tuple in C which maximizesΦ−1 is
{

(0 , d−1 , 0 , d−1 , . . . , 0 , d−1), n odd

(d−1 , 0 , d−1 , . . . , 0 , d−1), n even.

Proof We prove the result by induction.
Whenn= 2, we havec2 = d. SoM = {0, . . . ,d−1} andΦ(m) = (m). Therefore,(d−1) ∈C is the

codevertex which maximizesΦ−1. This(n−1)-tuple is of the desired form.

Now suppose the lemma is true inKq
d.

Case 1: q is odd.
Then we are given that the codevertex inKq

d which maximizesΦ−1 is (0 , d−1 , . . . , 0 , d−1
︸ ︷︷ ︸

q−1

).

Sinceq is even,kq+1
d consists ofd copies ofGq

d, so there ared codevertieces inKq+1
d which are of the

form (i , 0 , d−1 , . . . , 0 , d−1
︸ ︷︷ ︸

q

), i = 0. . .d−1. So the codevertex inKq+1
d which maximizesΦ−1 is

(d−1 , 0 , d−1 , . . . , 0 , d−1).

Encoding and Decoding for the SF Labeling 181

Case 2: q is even.
Then we are given that the codevertex inKq

d which maximizesΦ−1 is (d−1 , 0 , d−1 , . . . , 0 , d−1
︸ ︷︷ ︸

q−1

).

Now, Kq+1
d consists of one copy ofGq

d andd−1 copies ofUq
d . We look fori such that

(i,d−1 , 0 , d−1 , . . . , 0 , d−1
︸ ︷︷ ︸

q

) maximizesΦ−1 over the codevertices inKq+1
d . But by Lemma 5.3.4,

Φ−1((d−1 , 0 , d−1 , . . . , 0 , d−1
︸ ︷︷ ︸

q−1

)) = cq−1. So(i , d−1 , 0 , d−1 , . . . , 0 , d−1) cannot be

in a Kq
d subgraph with fewer thancq codevertices. SinceUq

d has fewer thancq codevertices,(i , d−

1 , 0 , d−1 , . . . , 0 , d−1) must be in the copy ofGq
d, which is the top subgraph ofKq+1

d , so we are

forced to picki = 0, and the codevertex inKq+1
d which maximizesΦ−1 is of the desired form.�

Lemma 5.3.6. If m∈ M, thenΦ(m) ∈C.

Proof SinceΦ is a bijection, we prove the equivalent statement: if(w1,w2, . . . ,wn−1) ∈C, then
Φ−1((w1,w2, . . . ,wn−1)) ∈ M. Fix (w1,w2, . . . ,wn−1) ∈C.

Case 1: wn−1 6= d−1.
Thenw1 · · ·wn−2 can be anything and this still represents a codevertex, so the result holds automati-

cally.

Case 2: wn−1 = d−1.
Lemmas 5.3.4 and 5.3.5 tell us that the(n−1)-tuple which maximizesΦ−1 is exactlyΦ(cn−1). So

there is noc∈C with Φ−1(c) /∈ M. �

Theorem 5.3.7.The restricted mapΦ : M −→C is a bijection.

Proof Lemma 5.3.6 tells us thatΦ(M) ⊂ C. Furthermore, by Proposition 5.3.3,Φ must be a bijection
betweenM andΦ(M). Therefore, sinceM andC have the same cardinality,Φ(M) =C andΦ : M −→C
is a bijection. �

Finally, we give an explicit expression forΦ−1.

Proposition 5.3.8.Let (w1,w2, . . . ,wn−1) ∈C. Then

Φ−1((w1,w2, . . . ,wn−1)) = d (d (. . .
︸︷︷︸

n−7 times

(d (d (d ·wn−1+wn−2)+wn−3)+wn−4)+ . . .
︸︷︷︸

n−7

)+w2)+w1.

(Call this number t0.)

Proof By Proposition 5.3.3,Φ−1((w1,w2, . . . ,wn−1)) exists. So it is sufficient to computeΦ(t0) =
(v1,v2, . . . ,vn−1) and see thatvi = wi for all 1≤ i ≤ n−1. First note thatt0 ≡ w1 (modd), sov1 = w1.
So we have

t1 =
t0−w1

d
= d (d (. . .

︸︷︷︸

n−8 times

(d (d (d ·wn−1+wn−2)+wn−3)+wn−4)+ . . .
︸︷︷︸

n−8

)+w3)+w2

Now let 1< k< n−2 and suppose

tk−1 = d (d (. . .
︸︷︷︸

n−k−6 times

(d (d (d ·wn−1+wn−2)+wn−3)+wn−4)+ . . .
︸︷︷︸

n−k−6

)+wk+1)+wk

182 Russell

Then

tk =
tk−1−wk

d
= d (d (. . .

︸︷︷︸

n−k−7 times

(d (d (d ·wn−1+wn−2)+wn−3)+wn−4)+ . . .
︸︷︷︸

n−k−7

)+wk+2)+wk+1

andvk+1 = tk (modd) = wk+1. �

6. USING Φ TO DESCRIBE THEPOSITION OF THEmth CODEVERTEX IN Kn
d

In this section we give an algorithm which usesΦ(m) to describe explicitely the position of the corre-
sponding codevertex inKn

d . We will arrive at a bijection between{0, . . . ,cn−1} and the set of positions
of codevertices. This is an extremely useful technique. In particular, it provides the basis for our en-
coding and decoding scheme for the SF labeling. Perhaps moreimportantly, though, it could be used to
create an encoding and decoding scheme for any “reasonable”labeling ofKn

d.

6.1. Describing the Position of any Vertex inKn
d: “Right-Side-Up” Coordinates.

Since there aredn vertices inKn
d, we can describe the position of each vertex by ann-tuple(u1,u2, . . . ,un)

over{0, . . . ,d−1}. Obviously, there are numerous ways to do this. We introducea system calledRight-
Side-Up(RSU) coordinates.

In RSU coordinates, everyKm
d subgraph ofKn

d is viewed as being oriented the same way asKn
d. If

our vertex is contained in theith Km
d subgraph of aKm+1

d subgraph (where 0 points the same way as the
top vertex ofKn

d and we count counterclockwise), then we simply letun−m = i. (Note: the vertex itself
is aK0

d subgraph.)
As an example, Figure 16 shows the RSU coordinates of each vertex inK2

5.

(0,0)

(0,1)

(0,2) (0,3)

(0,4)

(1,0)

(1,1)

(1,2)
(1,3)

(1,4)

(4,0)

(4,1)

(4,2)
(4,3)

(4,4)

(2,0)

(2,1)

(2,2) (2,3)

(2,4)

(3,0)

(3,1)

(3,2) (3,3)

(3,4)

FIGURE 16. RSU coordinates onK2
5.

Encoding and Decoding for the SF Labeling 183

In Section 6.2 we give the forward algorithm which takes inΦ(m) and returns the RSU coordinates
of themth codeword. Section 6.3 contains a proof of the algorithm. In Section 6.4, we give the inverse
algorithm, and in Section 6.5 we prove it. These steps give usthe complete bijection between
{0, . . . ,cn−1} and the RSU coordinates of codevertices.

6.2. Forward Algorithm.

We break the forward algorithm into two parts. The first part usesΦ(m) to produce the vectorS=
(s1, . . . ,sn), whoseith component is either(G, n− i +1) or (U, n− i +1), depending on whether the
codevertex described byΦ(m) is contained in aGn−i+1

d or aUn−i+1
d . In the process, we also trans-

late Φ(m) into what we refer to as theRelative coordinates (defined later in Definition 6.3.2) of the
codevertex. The second part of the algorithm translates Relative coordinates into RSU coordinates.

FORWARD ALGORITHM: PART 1 (Produces the vectorS. Figure 17 is a visual representation of
this part of the algorithm.)

(v1,v2, . . . ,vn−1) = Φ(m)
k= 1
s1 = (G,n)

WHILE k< n

IF sk = (G, n−k+1)

IF n−k+1 is even

sk+1 = (G, n−k)

ELSE

IF vk = 0

sk+1 = (G, n−k)

ELSE

sk+1 = (U, n−k)

ELSE (i.e. ifsk = (U, n−k+1))

IF n−k+1 is even

vk = vk+1

IF vk = 0

sk+1 = (U, n−k)

ELSE

sk+1 = (G, n−k)

ELSE

sk+1 = (U, n−k)

184 Russell

k= k+1

END WHILE

RETURNS= (s1, . . . ,sn)

SK = (U , n - k + 1)SK = (G , n - k + 1)

S K + 1 = (G , n - k)

S K + 1 = (U , n - k)S K + 1 = (G , n - k)

S K + 1 = (G , n - k)S K + 1 = (U , n - k) S K + 1 = (U , n - k)

k = k + 1

k = k + 1 k = k + 1

k = k + 1

k = k + 1k = k + 1

n - k + 1 even n - k + 1 even

n - k + 1 odd

n - k + 1 odd

Vk = 0
Vk = 1

Vk = d - 1

Vk = 0
Vk = 1

Vk = d - 1
. .

 .

Vk = Vk + 1

. .
 .

FIGURE 17. A visual representation of Part 1 of the forward algorithm.

FORWARD ALGORITHM: PART 2 (Translates the new(v1,v2, . . . ,vn−1), which is in Relative coor-
dinates, into RSU coordinates)

R1 = (r1
1 , . . . , r1

n) = (v1 , . . . , vn−1 , 0) 2

k= 1

WHILE k< n

IF sk = (G, n−k+1) wheren−k+1 is even

Rk+1 = Rk+(0 , . . . , 0
︸ ︷︷ ︸

k times

, r1
k , r1

k , . . . , r1
k

︸ ︷︷ ︸

(n−k) times

)

IF sk = (U, n−k+1) wheren−k+1 is odd

2Note: the superscript onr i is an index, not a power.

Encoding and Decoding for the SF Labeling 185

Rk+1 = Rk+(0 , . . . , 0
︸ ︷︷ ︸

k times

, r1
k , r1

k , . . . , r1
k

︸ ︷︷ ︸

(n−k) times

)

ELSE

Rk+1 = Rk

k= k+1

END WHILE

RETURNRn

6.3. A Proof of the Forward Algorithm.

We make a few concepts precise before beginning the proof of the algorithm. The proof will consist of
three lemmas which together imply that the algorithm returns a codevertex in RSU coordinates.

Definition 6.3.1. Thetop Km−1
d subgraphin a copy of Gm

d or Um
d is the copy of Km−1

d containing the
top vertex of Gmd or Um

d , where “top vertex” is taken in the sense of the G-U construction of the SF
labeling.

We will need to consider four types of subgraphs inKn
d:

• Gm
d , wherem is odd.

The topKm−1
d subgraph (labeled 0) isGm−1

d . Subgraphs 1 throughd−1 are copies ofUm−1
d

which are all oriented the same way asGm
d .

• Gm
d , wherem is even.

Subgraphs 0 throughd−1 are copies ofGm−1
d . Copy i is rotated2πi

d radians counterclockwise
with respect to the orientation ofGm

d .

• Um
d , wherem is odd.

Subgraphs 0 throughd−1 are copies ofUm−1
d . Copy i is rotated2πi

d radians counterclockwise
with respect to the orientation ofUm

d .

• Um
d , wherem is even.

The topKm−1
d subgraph (subgraph 0) isUm−1

d . Subgraphs 1 throughd−1 are copies ofGm−1
d

which are all oriented the same way asUm
d .

Definition 6.3.2. The Relative coordinatesof a vertex in Kn
d are obtained as follows. Suppose the

vertex is contained in a certain Gmd or Um
d subgraph of Knd. Label the Km−1

d subgraphs of this Gmd
or Um

d with the numbers0 through d−1, where0 is the top copy (see Definition 6.3.1) and we count
counterclockwise. If our vertex is contained in copy i, thenthe(n−m+1)st Relative coordinate is i.

186 Russell

Remark 6.3.3.The difference between RSU coordinates and Relative coordinates is that Relative coordi-
nates implicitely contain the subgraph rotations inherentin the G-U construction, while RSU coordinates
are not aware of the G-U construction.

Lemma 6.3.4.If we apply Part 1 of the forward algorithm to every element inthe image set{Φ(m) | 0≤
m≤ cn − 1}, then we obtain the correct number of codevertices in each type of subgraph. For ex-
ample, if we let d= 5 and n= 3, then we will obtain((G,3) , (G,2) , (G,1)) five times and
((G,3) , (U,2) , (G,1)) sixteen times.

Proof
Part 1 is simply a concrete representation of the four cases listed after Definition 6.3.1, except for a

small adjustment whensk = (U,n−k+1) wheren−k+1 is even.
We have to make this adjustment because the number of codevertices inUn−k+1

d (n−k+1 even) is
congruent to−1 (modd), so fori ∈ {0, . . . ,d−2}, Φ returnsvk = i once more than it returnsvk = d−1.
But subgraphs 1 throughd−1 of Un−k+1

d (all copies ofGn−k
d) each contain one more codevertex than

subgraph 0 (a copy ofUn−k
d).

The adjustment (adding 1 tovk) compensates for this before the algorithm is allowed to move on, so
that we end up with the correct number of vertices in all the copies ofGn−k

d andUn−k
d .

There is no such problem withGn−k+1
d (n−k+1 odd) since in this case, thetop Kn−k

d subgraph is
the one with one more codevertex than the others.

There is no such problem withGn−k+1
d (n−k+1 even) andUn−k+1

d (n−k+1 odd) because allKn−k
d

subgraphs have the same number of codevertices.�

Lemma 6.3.5.The vector R1 at the beginning of Part 2 gives the Relative coordinates of acodevertex.

Proof By Lemma 6.3.4 and the definition of Relative coordinates, the vector(v1,v2, . . . ,vn−1) returned
by Part 1 gives the firstn− 1 components of the Relative coordinates of a codevertex. Since each
codevertex is the top vertex of its respective copy ofG1

d, we let thenth coordinate equal zero, so that
Rn = (v1, . . . ,vn−1,0) gives the Relative coordinates of a codevertex.�

Lemma 6.3.6.Part 2 of the forward algorithm takes in the Relative coordinates of a vertex and rotates
each Km

d subgraph the correct number of times so as to return the RSU coordinates of the same vertex.

Proof (See Remark 6.3.3 for an explanation of why rotations are theissue here.)
Suppose we have aKm

d graph in RSU coordinates. Then when the graph is rotated counterclockwise
by 2π

d radians, a vertex whose coordinates were(u1, . . . ,um) now has coordinates(u1+1, . . . ,um+1).
Now, aKm

d subgraph inKn
d has been rotated counterclockwise by2π

d radians a total of

γ = ∑
i∈B

r1
i

times, whereB is the set
{i ≤ n−m | si ∈ {(G , even) , (U , odd)} }.

Relative coordinates do not show this rotation. So in order to “undo” the rotation of this subgraph, we
need to adjust the Relative coordinates of each vertex in ourKm

d subgraph (i.e., adjustwm+1 throughwn)
by addingγ to eachwm+1 . . .wn. Part 2 performs this adjustment one rotation at a time.�

Encoding and Decoding for the SF Labeling 187

Theorem 6.3.7.The forward algorithm takes inΦ(m) and returns the corresponding codevertex in RSU
coordinates.

Proof The theorem is a direct consequence of Lemmas 6.3.4, 6.3.5, and 6.3.6. �

6.4. Inverse Algorithm.

In this section we provide an inverse to the algorithm described in Section 6.2. The inverse algorithm
takes in the RSU coordinates of a codevertex and returnsΦ(m). Like the forward algorithm, we break
the inverse algorithm into two parts.

Part 1 of the inverse algorithm inverts Part 2 of the forward algorithm (this is Lemma 6.5.1).

INVERSE ALGORITHM: PART 1 (Changes from RSU coordinates to Relative coordinates. Figure
18 is a visual representation of this part of the algorithm.)

Y1 = (y1
1, . . . ,y

1
n) = the given RSU coordinates.3

k= 1
g1 = (G,n)

WHILE k< n

IF gk = (G, n−k+1)

IF n−k+1 is even

gk+1 = (G, n−k)
Yk+1 =Yk− (0 , . . . , 0

︸ ︷︷ ︸

k times

, yk
k , . . . , yk

k
︸ ︷︷ ︸

(n−k) times

)

ELSE

IF yk
k = 0

gk+1 = (G, n−k)
Yk+1 =Yk

ELSE

gk+1 = (U, n−k)
Yk+1 =Yk

ELSE (gk = (U, n−k+1))

IF n−k+1 is even

IF yk
k = 0

gk+1 = (U, n−k)
Yk+1 =Yk

ELSE
3Note: the superscript onyi is an index, not a power.

188 Russell

gk+1 = (G, n−k)
Yk+1 =Yk

ELSE

gk+1 = (U, n−k)
Yk+1 =Yk− (0 , . . . , 0

︸ ︷︷ ︸

k times

, yk
k , . . . , yk

k
︸ ︷︷ ︸

(n−k) times

)

k= k+1

END WHILE

RETURNYn = (yn
1, . . . ,y

n
n)

n - k + 1 even

n - k + 1 evenn - k + 1 odd

n - k + 1 odd

. .
 . . .

 .

gk = (G , n - k + 1) gk = (U, n - k + 1)

Yk+1 = Yk Yk+1 = YkYk+1 = YkYk+1 = Yk

{

y k
k y k

k{

...

n - k

Yk+1 = Yk - 0 0 ,...

k

()

{

y k
k y k

k{
...

n - k

Yk+1 = Yk - 0 0 ,...

k

()

k = k+1

k = k+1

k = k+1k = k+1

k = k+1

k = k+1

yk
k

= 0

yk
k

= 1

yk
k
= d - 1

yk
k

= 0

yk
k

= 1

yk
k
= d - 1

gk+1 = (U, n - k)gk+1 = (G, n - k)

gk+1 = (U, n - k) gk+1 = (U, n - k)gk+1 = (G, n - k) gk+1 = (G, n - k)

FIGURE 18. A visual representation of Part 1 of the inverse algorithm.

Part 2 of the inverse algorithm takes inYn, which is in relative coordinates, and returns the correspond-
ing vector of the formΦ(m). Therefore this part inverts Part 1 of the forward algorithm(this is Lemma
6.5.2). In fact, it is essentially the same as Part 1 of the forward algorithm, with the exception that when
sk = (U,n−k+1), with n−k+1 even, we subtract 1 fromvk instead of adding 1; also, this algorithm
returns(v1,v2, . . . ,vn−1) instead ofS.

Encoding and Decoding for the SF Labeling 189

INVERSE ALGORITHM: PART 2 (Changes from Relative coordinates to a vector of the formΦ(m))

(v1,v2, . . . ,vn−1) = (yn
1, . . . ,y

n
n−1)

k= 1
s1 = (G,n)

WHILE k< n

IF sk = (G, n−k+1)

IF n−k+1 is even

sk+1 = (G, n−k)

ELSE

IF vk = 0

sk+1 = (G, n−k)

ELSE

sk+1 = (U, n−k)

ELSE (i.e.sk = (U, n−k+1))

IF n−k+1 is even

vk = vk−1

IF vk = 0

sk+1 = (U, n−k)

ELSE

sk+1 = (G, n−k)

ELSE

sk+1 = (U, n−k)

k= k+1

END WHILE

RETURN(v1,v2, . . . ,vn−1)

Φ(m) = (v1,v2, . . . ,vn−1)

190 Russell

6.5. A Proof of the Inverse Algorithm.

Lemma 6.5.1.Part 1 of the inverse algorithm inverts Part 2 of the forward algorigthm.

Proof Let 1≤ p1 ≤ . . . ≤ pu ≤ n be all the numbers such thatspi ∈ {(G, even),(U, odd)}. Then,
according to Part 2 of the forward algorithm,

Rn = R1+
u

∑
j=1

(0 , 0 , . . . , 0
︸ ︷︷ ︸

p j

, r
p j
p j , r

p j
p j , . . . , r

p j
p j

︸ ︷︷ ︸

n−p j

)

We want to show thatYn = R1, i.e., that

Yn = Rn−
u

∑
j=1

(0 , 0 , . . . , 0
︸ ︷︷ ︸

p j

, r
p j
p j , r

p j
p j , . . . , r

p j
p j

︸ ︷︷ ︸

n−p j

).

Note thatR1 = . . . = Rp1 andY1 = . . . = Yp1. Furthermore,r p1
i = r1

i = yp1
i , since we have thatY1 = Rn

andr p1
i = rn

i for i = 1. . .p1. Sosi = gi for all i = 1. . . p1+1.
Thus, the first vector that gets subtracted fromY1 in Part 2 of the inverse algorithm is

(0 , 0 , . . . , 0
︸ ︷︷ ︸

p1

, y1
p1

, y1
p1

, . . . , y1
p1

︸ ︷︷ ︸

n−p1

) = (0 , 0 , . . . , 0
︸ ︷︷ ︸

p1

, r1
p1
, r1

p1
, . . . , r1

p1
︸ ︷︷ ︸

n−p1

)

Now Yp1+1 andR1 have the firstp2 entries identical, andSandG have the firstp2+1 entries identical,
so the next vector which gets subtracted fromYp1+1 is

(0 , 0 , . . . , 0
︸ ︷︷ ︸

p2

, r1
p2
, r1

p2
, . . . , r1

p2
︸ ︷︷ ︸

n−p2

)

and so on. �

Lemma 6.5.2.Part 2 of the inverse algorithm inverts Part 1 of the forward algorithm.

Proof This is clear, since the two algorithms are identical exceptthat one contains “vk = vk+1” while
the other contains “vk = vk−1” �

Theorem 6.5.3.The inverse algorithm inverts the forward algorithm.

Proof Direct consequence of Lemmas 6.5.1 and 6.5.2.�

Encoding and Decoding for the SF Labeling 191

7. ENCODING AND DECODING FOR THESF LABELING

In this section, we present an encoding and decoding scheme for the SF labeling.

Definition 7.0.4. An encoding and decoding schemefor a particular labeling of Kn
d is a bijection

between the set of natural numbers{ 0 , . . . , cn − 1 }, where cn is the number of codevertices in a
P1ECC on Kn

d, and the set of codewords in the labeling.

Note that, unlike the results from Sections 5 and 6, an encoding and decoding scheme is designed for
one particular labeling method.

7.1. Toward an Encoding Scheme.

Cull and Nelson present an easy encoding and decoding schemefor the case whend = 3. Their scheme
uses the fact that in thed = 3 case, every distance 1 neighborhood of a codeword containsexactly one
word which is a multiple of 4 (when viewed as a number in base 3). They denote byGn the set of
codewords in the SF labeling ofKn

3 . To encode the numberm< |Gn|, one simply runs the number 4m
through the finite state machine for error correction. [3]

We asked if Cull and Nelson’s technique could be easily generalized ford > 3 (using multiples of
d+1 instead of multiples of 4). Unfortunately, the answer is no. This is because in the general case,
some codewords are not adjacent to any multiple ofd+1, while others are adjacent to two multiples of
d+1. An easy example isK3

5, where the codeword 414 is adjacent to 314 and 424, both of which are
multiples of 6.

After trying some similar ideas and failing, we decided to design an encoding and decoding scheme
which would use few (if any) theoretical properties of the SFlabeling. In particular, we wrote two
algorithms, discussed in detail in Sections 5 and 6, which together give a bijection between
{ 0 , . . . , cn−1 } and the set of RSU coordinates of codevertices. Now all that is left is to find a simple
bijection between RSU coordinates of codevertices and the codewords of the SF labeling. Fortunately,
this turns out to be fairly straightforward.

Note: The advantage of this approach is that our bijection betweennatural numbers and RSU coordinates
has nothing to do with any labeling ofKn

d. Furthermore, any reasonable labeling has an easy map between
the position of a vertex and its label. Therefore, our technique could be imitated to create encoding and
decoding schemes for most labelings.

192 Russell

7.2. The SF Labeling as a Tree.

In this section we give an intuitive motivation for our encoding and decoding scheme. We show how one
can view the construction of the SF labeling as ad-ary tree, where each “layer” of the tree represents
the SF labeling ofKm

d for a particularm (this makes sense because the SF labeling is constructed
recursively). Each node in themth layer represents a vertex inKm

d and is labeled with the SF label of
that vertex as well as its RSU coordinates. The encoding and decoding scheme passes between these
two pieces of information by traveling up the tree through one type of information, turning around at the
root, and travelling back down to the same vertex through theother type of information.

Suppose we have the SF labeling ofKm
d . Then the SF labeling ofKm+1

d is constructed by applying
α to the labels inKm

d , creatingd copies of the graph, rotating each an appropriate number of times, and
appending the appropriate digit to all the labels in each (see Section 3.1). So ifb1 . . .bm is the label of
a vertex inKm

d , thenb1 . . .bm gives rise tod “daughter” labels inKm+1
d . These labels areα(b1 . . .bm) ◦ i

wherei ∈ {0, . . . ,d−1}. So we can think of the construction of the SF labeling as ad-ary tree where
each vertex inKm

d is the root of a subtree of the form in Figure 19.

b b...
1 k

App
en

d
0

Append (d -1)
...

b b...
1 k

() 0 b b...
1 k

() (d -1)...
FIGURE 19. A vertex label inKm

d and itsd “daughter” labels.

As we said above, the SF labeling makesd copies ofα(Km
d) and rotates theith copy 2πi

d radians clock-
wise before connecting all the copies by edges. So theith daugter of the vertex whose RSU coordinates
in Km

d were(a1 , . . . , am), is the vertex inKm+1
d with RSU coordinates(i , a1− i , . . . , am). Figure

20 is the same as Figure 19, with the addition that each node isalso labeled with the RSU coordinates of
the corresponding vertex.

Our encoding and decoding scheme is the composition of the algorithm from Sections 5 and 6, and
the algorithm we give in Section 7.3, which is a bijection between SF labels of codevertices and RSU
coordinates of codevertices. Note that these last two typesof data are shown in Figure 20. The technique
will be to specify one type of data for a node in the tree, then follow a path up to the root by computing
this same data for all the nodes along the path. One then specifies the other type of data for the last node
in the path, then follows the reverse path back down by computing the new data for each node, finally
arriving at the new data for the original node.

Encoding and Decoding for the SF Labeling 193

a 1 a k, ... ,()

a 1 a k, ... ,()00 0, - - a 1 a k, ... ,(), - -d -1 (d -1) (d -1)

b b...
1 k

Label {

App
en

d
0

Append (d -1)
...

b b...
1 k

() 0 b b...
1 k

() (d -1)...Label {

RSU {

RSU {

FIGURE 20. Figure 19 with RSU coordinates added.

7.3. Encoding and Decoding Algorithms.

Recall that the forward algorithm (Section 6) actually gives a bijection between the set of vectors of the
form Φ(m) and the set of RSU coordinates of codevertices. Call this mapF. So the mapΛ = F ◦Φ is
a bijection between the firstcn natural numbers and the RSU coordinates of codevertices. Our encod-
ing scheme is the mapENCODE from RSU coordinates of codevertices to codewords. The decoding
scheme,DECODE, is the inverse ofENCODE.

ALGORITHM: ENCODE: PART 14

Q1 = (q1
1 , . . . , q1

n) = Λ(m)

k= 1

WHILE k< n

Qk+1 = (qk+1
1 , . . . , qk+1

n)

= (qk
2 , . . . , qk

n−k+1)+(qk
1 , . . . , qk

n
︸ ︷︷ ︸

n−k

)

k= k+1

END WHILE

ENCODE: PART 2

y1 = qn
1

k= 1

4Note: In bothENCODEandDECODE, the superscript onqi is an index, not a power. Also, inENCODE: PART 1, the
Qi ’s are vectors of different lengths; in particular,Qi has one more component thanQi+1.

194 Russell

WHILE k< n

yk+1 = α(yk)◦qn−k
1

k= k+1

END WHILE

RETURNyn

ENCODE(Λ(m)) = yn

(whereα(yk) means apply the permutationα to the digits of the stringyk in order, producing a new
string, andstring1◦string2 means appendstring2 to string1.

ALGORITHM: DECODE: PART 1

Given codewordc1 · · ·cn

q1
1 = cn

k= 1

WHILE k< n

qk+1
1 = α−k(cn−k)

k= k+1

END WHILE

DECODE: PART 2

FOR i = 2. . .n

q1
i = qi

1−∑i−1
j=1 q j

1

END FOR

RETURNQ1

Encoding and Decoding for the SF Labeling 195

7.4. Proofs ofENCODEand DECODE.

To aid in the proof of our encoding and decoding algorithm, Figure 21 gives a more global view of the
SF labeling tree. This diagram uses the same notation asENCODEandDECODE.

......

App
en

d
0

Append d-1

A
p
p
e
n
d
 k

... ... App
en

d
0

Append d-1
A

p
p
e
n
d
 k

... ... App
en

d
0

Append d-1

A
p
p
e
n
d
 k

... ...

Append 0 Append d-1

A
p
p
e
n
d
 k... ...

0 k d -1

(0) (k) (d -1)

(0) 0 (0) k (0) (d -1)

(0,0-0) (k,0-k) (d -1,0-(d -1))

(k) 0

(0,k-0)

(k) k

(k,k-k)

(k) (d -1)

(d -1,k-(d -1))

(d -1) 0

(0,(d -1)-0)

(d -1) k

(k,(d -1)-k)

(d -1) (d -1)

(d -1,(d -1)-(d -1))

..
. ..
.... ..
. ..
.... ..
. ..
.... ..
. ..
.... ..
. ..
.... ..
. ..
.... ..
. ..
.... ..
. ..
.... ..
. ..
....

..
.

2

1
q

n

1
q n-1

1
q((()))... ...

1
q3 2

1
q

2

1
q

2

1
q n

1
q n-1

1
q()...... ,,, - - - -

n n-1

11
qq

2

1
q()... ..., ,, ----0 0 0

n n-1

11
qq

2

1
q()... ..., ,, ---- kk k ()

n n-1

1
qq

2

1
q()... ..., ,, ----d -1 d -1 ()d -1

2

1
q

n

1
q n-1q(((()))))... ... 0 2

1
q

n

1
q n-1q(((()))))... ... k

2

1
q

n

1
q n-1q(((()))))... ... (d -1)

FIGURE 21. Tree representation of the SF labeling, using notation from ENCODEand
DECODE. At each node, the top label gives the SF label and the bottom label gives the
RSU coordinates.

196 Russell

Proposition 7.4.1.ENCODE takes in the RSU coordinates of a vertex in Kn
d and returns the SF label

of the same vertex.

Proof
Suppose we have the RSU coordinates of a vertexv in Kn

d. Part 1 ofENCODEcomputes the RSU
coordinates of its “parent” vertex inKn−1

d , then computes the RSU coorinates of the parent vertex ofthat
vertex, and so on, up to its ancestor inK1

d . By inspection of the general subtree in Figure 21,ENCODE
performs the necessary operation correctly at each step.

Part 2 ofENCODE follows the reverse path back down the tree to the original node. Note that any
path through the tree is completely determined by which digits are appended to successive labels. The
algorithm follows the path which is determined by information gathered in Part 1. It computesα and
then appends the appropriate digit. By inspection of the general subtree in Figure 21, this is performed
correctly at each step. Part 2, therefore, finishes by returning the label of the original vertex.�

Proposition 7.4.2.DECODE takes in the SF label of a vertex in Kn
d and returns the RSU coordinates

of the same vertex.

Proof
The proposition can be proved in a similar fashion to Proposition 7.4.1. �

8. CONCLUSION

We have presented an encoding and decoding method for the SF labeling of odd-dimension iterated
complete graphs. The method uses general properties of P1ECC’s on iterated complete graphs; only in
the last step does it use any information which is particularto the SF labeling.

Further work could include testing this technique on other labeling schemes to determine if it will
be useful as predicted. Work could also be done to simplify the algorithms themselves as well as the
proofs.

REFERENCES

[1] Shawn Alspaugh, Nathan Knight, and Kathleen Meloney. Perfect One Error Correcting Codes on Iterated Complete
Graphs. Proceedings of the REU Program in Mathematics. NSF and Oregon State University. Corvallis, Oregon. 2001.

[2] Be Birchall and Jason Tedor. Perfect One Error Correcting Codes on Iterated Complete Graphs. Proceedings of the REU
Program in Mathematics. NSF and Oregon State University. Corvallis, Oregon. 1999.

[3] Paul Cull and Ingrid Nelson. Perfect Codes,NP-Completeness, and Towers of Hanoi Graphs.Bulletin of the ICA26:13-
38, 1999.

[4] Christopher Frayer and Shalini Reddy. Perfect One ErrorCorrecting Codes and Iterated Complete Graphs. Proceedings
of the REU Program in Mathematics. NSF and Oregon State University. Corvallis, Oregon. 2002.

[5] Stephanie Kleven. Perfect Codes on Odd Dimension Serpinski Graphs. Proceedings of the REU Program in Mathematics.
NSF and Oregon State University. Corvallis, Oregon. 2003.

UNIVERSITY OF PENNSYLVANIA

E-mail address: prussell@math.upenn.edu

