PERFECT ONE-ERROR-CORRECTING CODES ON
ITERATED COMPLETE GRAPHS:
ENCODING AND DECODING FOR THE SF LABELING

PAMELA RUSSELL

ADVISOR: PauL CuLL
OREGONSTATE UNIVERSITY

ABSTRACT. Birchall and Tedor proved that every iterated completplytzas a perfect one-error-correcting
code (P1ECC) and showed how to construct it [2]. Kleven ecb#te SF labeling method, a method for
assigning strings to the vertices of iterated completeligaghich has several nice properties [5]. We use
these results to create a “working” PLECC on these graples.i3hwe present a method for encoding and
decoding: an algorithm which gives a bijection between gt@tmessages which can be transmitted using
the PLECC on an iterated complete graph, and the set of codsivothe SF labeling of that graph. In the
process, we introduce a technique which should be usefukitiog encoding and decoding methods for
any reasonable labeling of iterated complete graphs.

1. INTRODUCTION

Many factors can cause errors in the transmission of mességs for this reason that error-correcting
codes have been developed. An error-correcting code igrias$io recognize that the received message
contains an error, then find the error and correct it. A bimalgexample of an error-correcting code
is written communication by humans. If an English speakadsethe word INFORMETION, he will
automatically correct it to INFORMATION.

This paper is concerned only with digital codes. In paraculve look at one-error-correcting codes
on graphs. In this context, words are represented by veriicthe graph, and each word that contains
an error is adjacent to the corresponding word containingrmrs. These codes come with algorithms
for recognizing whether a word contains an error and cangdhe error if it does. So in our example
above, the vertex labeled INFORMETION would be adjacenthtwertex labeled INFORMATION,
and we would have an algorithm which would locate the errdNIRORMETION and correct the E to
anA.

We look at codes on a particular family of graphs, iteratechglete graphs. Much is known about
codes on these graphs. In particular, every iterated caeglaph has exactly one perfect one-error-
correcting code up to isomorphism [2]. Kleven gave a metlwwdagsigning strings to the vertices of
any odd-dimension iterated complete graph, called the B&liflg method, and also gave finite-state
machines which recognize and correct errors in a givengsfih

Our contribution is to give an algorithm for encoding and @ing messages. That is, we give a
bijection between the set of distinct messages which camieusing a given iterated complete graph,
and the set of codewords in the SF labeling of that graph.

Date August 2004.
This work was done during the Summer 2004 REU program in Maéties at Oregon State University.
162



Encoding and Decoding for the SF Labeling 163

2. BACKGROUND: ITERATED COMPLETE GRAPHS AND ERROR-CORRECTING CODES

2.1. Iterated Complete Graphs: Definitions.

Definition 2.1.1. A (simple) graphG = (V,E) consists of a finite set V (callecerticeg and a set E
(callededge$. Elements of E are unordered pairs of elements of V. Twacesrty and \» are adjacent
(have an edge between themMf, v2) € E. The adjective “simple” indicates that any two verticewba
at most one edge between them, and that no vertex is adjaceseif.

Definition 2.1.2. Thedegreeof a vertex v is the number of vertices which are adjacent to v.

Definition 2.1.3. Thecomplete graplon d vertices, denotedyKis the graph such that all the vertices
are pairwise adjacent.

Figure 1 shows, K4, andKs.

NN

FIGURE 1. K3, K4, andKs.

Definition 2.1.4. Thesecond-order iterated complete graptienoted rg is constructed by making d
copies of K, then connecting each pair of copies by one edge such tha¢mexvends up with degree
> d. Theordern iterated complete graptdenoted K, is constructed by making d copies cgﬂ%, then
connecting each pair of copies by an edge between a cornaxvef one copy and a corner vertex of
the other copy, such that no vertex ends up with degreke (Note: acorner vertexof Kl is a degree

d — 1 vertex.)

Figure 2 show?, K2, andK3.



164 Russell

FIGURE 2. K&, K2, andKg.

2.2. Labelings.

Definition 2.2.1. A labeling schemdor K| is a method of assigning strings of length n over
{0,...,d -1} to the vertices of K such that this method gives a bijection between verticesaimls.

Most labeling schemes have advantages and disadvantdgegaper deals only with theF labeling,
which has several desirable properties as we will see |aielexamples of other labeling schemes are
the C-R-E-L labeling [2], thei-Method [1], the Multiples ofl + 1 code [1], and the C-S labeling method
[4].

2.3. Codes on Graphs; Perfect One-Error-Correcting Codes.

Definition 2.3.1. Let G be a graph and let V be the set of vertices of G. Thead®eon G is a subset
C C V. Acodevertexs a vertex = C. Anoncodevertexs a vertex v C. If we have a labeling of G,
then acodewords the label of a codevertex. #oncodewords the label of a noncodevertex.

Definition 2.3.2. A perfect one-error-correcting codér PLECQ on a graph G is a code such that:

(1) No two codevertices are adjacent.
(2) Every noncodevertex is adjacent to exactly one codevertex.

Most graphs have the property that no subset of their varica PLECC. In fact, Cull and Nelson
showed that the problem of determining whether a given ghegsha PLECC iblP-complete [3]. How-
ever, Birchall and Tedor showed that every iterated coreedph has a PLECC and that this PLECC is
unique up to isomorphism [2]. In Section 2.4, we give Alsgaegal.’s construction of the PLECC on
Kg [1].

Figure 3 shows three examples of PLECC's on iterated comgtaphs.

Definition 2.3.3. A codeword recognizeior a P1IECC is an algorithm for determining whether a given
label is a codeword. Aerror correction machinesends a noncodeword to its corresponding codeword.



Encoding and Decoding for the SF Labeling 165

FIGURE 3. Perfect one-error-correcting codestoh K1, andK2. Codevertices are rep-
resented by squares.

The adjective “perfect one-error-correcting” refers te itiea that the codewords are actual messages
that one might wish to transmit. An error may be made in trassion, due to human error, interfer-
ence, noise, etc. The set of vertices which are adjacent &oteylar codevertex represents the set of
errors that may be made when sending that message. The camesisrror-correcting” because every
noncodevertex is at a distance of one from a codevertex. tereaors are made, so that the actual
transmitted message is no longer adjacent to the desirexveddx, then the message will be corrected
to a different codeword.

Figure 4 shows an example where the two possible messagealdizand SEA. An error-correction
machine for this graph would correct the strings LQND, LARNd LLLD to the codeword LAND. No
other string would be corrected to LAND.

LQND SEW

LADN | LAND] [SEAl—— SEE

LLLD ESA/

FIGURE 4. A P1ECC with two codewords (represented by rectangles).

Definition 2.3.4. Let G be a graph. A labeling of G with tlggay code propertys a labeling such that
any two adjacent vertices have labels which differ in eyaatie position.

One desirable property of the SF labeling is that it is a g@ec The labeling in Figure 4 does not
have the gray code property. Figure 5 shows a labeling wélgthy code property.



166 Russell

LARD SEW

LEND —— LAND SEA SEE

LANE SET /

FIGURE 5. A labeling with the gray code property.

2.4. The G-U Construction of a PLECC onK].

In this section, we give an iterative method for construgtine PLECC orKjj. This method will be

a cornerstone of our encoding and decoding scheme deveiopssttions 5, 6, and 7. This “G-U
construction” is due to Birchall and Tedor [2]. However, wefper the presentation given by Alspaugh
et al. and we use it here [1].

The G-U construction uses two types of codeK§nG-codes and U-codes. The G-code is the desired
P1ECC (Theorem 2.4.1). L&] denoteK| with the G-code and ldij] denoteK] with the U-code.
Gy andUj are constructed recursively as follows:

e To construciG}, designate one vertex N& as thetop vertexand rotate it to the top position.
Make this vertex a codevertex. Make the ottler 1 vertices noncodevertices.

e TO construcUO}, designate one vertex d&f& as the top vertex and rotate it to the top position.
Make alld vertices noncodevertices.

Figure 6 showsst anduZ.

AN

FIGURE 6. G andUg.

We now show how to constru@]} andU/ for arbitraryn:

To construcGj whennis even:

(1) Maked copies ofG] .

(2) Connect each pair of copies by a vertex such that the tdpwef every copy remains uncon-
nected.

(3) Designate the top vertex of sor@@f1 as the top vertex oB}j.



Encoding and Decoding for the SF Labeling 167

To construcGi whennis odd:

(1) Create one copy @8} * andd — 1 copies o] ..
(2) Connect the top vertices of the copiesuéfl to distinct nontop corner vertices Glg‘l.

(3) Connect each pair of copiesldg‘*1 by one edge such that
e This edge connects a nontop corner vertex in one copy to @apaotrner vertex in the other

copy.
e Exactly one nontop corner vertex of edd@fl remains unconnected.

(4) Designate the top vertex Gf(]‘l as the top vertex dBj.

To constructg whennis even:

(1) Make one copy o)~ andd — 1 copies oG} .
(2) Connect the top vertices of the copieﬁﬁfl to distinct nontop corner vertices Ug“l.

(3) Connect each pair of copies@ﬂ’l by one edge such that
e This edge connects a nontop corner vertex in one copy to @apaorner vertex in the other

copy.
e Exactly one nontop corner vertex of ee@@’l remains unconnected.

(4) Designate the top vertex Ufj“l as the top vertex df |

To construct§ whennis odd:

(1) Maked copies ofu] .

(2) Connect each pair of copies by a vertex such that the tdpwef every copy remains uncon-
nected.

(3) Designate the top vertex of sor’d@‘l as the top vertex df |

Figure 7 showss2 andUZ. Figure 8 shows? andU2.

FIGURE 7. GZ andUZ2.



168 Russell

FIGURE 8. G2 andU_.

Theorem 2.4.1.The G-code is the unique (up to isomorphism) PIECC pn K
Proof The proof is given by Birchall and Tedor [2] and is omittedénerll

2.5. Encoding and Decoding.

Birchall and Tedor [2] showed that the number of codevestigén a PLECC orK{ is
o { ‘%}T*f', neven
d=%, nodd.
One can therefore use this code to transmit as maaydifferent messages. Label the possible messages
by the firstc, natural numbers, i.e. the s|,...,c,—1}.

Definition 2.5.1. An encoding and decoding schenfer a particular labeling of K is a bijection
between the sdD,...,c, — 1} and the set of codewords in the labeling.

A useful encoding and decoding scheme works fodahdn. This way, depending on the number of
messages one wishes to be able to encode, one can choob&esl#adn such that, is large enough.
It is not necessary to generate the whole labeling and assggsages to codewords; one simply selects
the message one wants to send and the encoding scheme tericwresponding codeword. After
the codeword is transmitted, the receiving party runs thdeword recognizer, the error corrector if
necessary, and finally the decoder.

Some labelings have simple encoding and decoding schenwsex&mple, the SF labeling has a
nearly trivial scheme whed = 3. However, this does not appear to be the case for the SHrigbel
with d > 3. In Sections 5 and 6, we lay out a technique that should bellusdinding encoding and



Encoding and Decoding for the SF Labeling 169

decoding schemes for any reasonable labeling. In Sectiom Tise this technique to give an encoding
and decoding scheme for the SF labeling with arbitchandn.

3. THE SF LABELING OF Kj

In this section, we describe the construction of the SF lagelIn Section 4, we show that there is no
“similar” labeling of K§ whend is even.) We then give finite state machines for codewordgmition

and error correctiof.

3.1. The SF Labeling.

The SF labeling is only defined whehis odd. Letd > 3 be an odd number. The labeling I§f is
constructed recursively from the labelingkof .

LabeIK(} as follows: the top vertex is labeled 0, then the remainingces are labeled
1,2,...,(d—1), going counterclockwise. Figure 9 shows the SF Iabelinlgéof

2 3

FIGURE 9. The SF labeling oK2.

The SF labeling oK} is constructed according to the following algorithm: Apfgie permutatiom
to each digit in every label &€}, wherea (z) = 951z (modd). Now maked copies ofor (K] ). Rotate
thek®h copy%‘k radians counterclockwise, then appdstd each word in this copy. Finally, connect the
d copies to fornK]. Figure 10 shows the SF labelingiéf. Figure 11 shows the SF labeling I§.

LAl results in Section 3 are due to Kleven [5].



170 Russell

0

49 30
N\ T
41 )"‘A’.‘A 36
1 1 / \ L7\ 0 ' ee
Y T V}A‘\;V

1

Q NG

WEZiN 1 NN

LT W]

R DI
)

<X XA
N Y

44

. Y

15

FIGURE 10. The SF labeling ok2.

VM( B

2122 102 002 003 403 433 333

FIGURE 11. The SF labeling ok3.



Encoding and Decoding for the SF Labeling 171

3.2. Description of the Codewords.

No explicit description of the codewords has been foundvé&egives a recursive description. LG}
denote the set of codewords in the SF labeling fand letU, denote the set of SF labels of vertices in
the U-code orK||. Then,

Whenn is even,

Gn=Gn_100UT(Gn_1)01UT3(Gp_1)02U---UTI Gy 1) 0 (d—1)
Un=Un_100Ul1(Gp 1) 01Ul 2(Gn 1) 02U---UTM4_1(Gn_1) o0 (d—1)

And whenn is odd,

Gn = anloOU rl(Unfl) O 1U r2(Un71) O 2U ..U rd_l(Unfl) (] (d — 1)
Un=Un_100UT(Up_1)01UT3(Up 1) 02U---UT9 (U 1) 0o (d—1)

whereG,,_1 0o 0 means the sd&b,_; with a zero appended to every string in the Setieplaces each

charactex by x+ 1 (modd), T™ meansl composed with itselfntimes, and™ ., replaces each character
x by a(T™(x)).

3.3. Codeword Recognition for the SF Labeling.

Kleven gives a2d + 2)-state machine for codeword recognition. The states{deS, Ex0, E
1,...,Ex(d=1), O0xS, O0x0, O0x1,---, Ox(d—1) }. The machine starts in staex Sand reads
strings from left to right. Strings of even length are acedph theE x S state and strings of odd length
are accepted in th® x 0 state. The functiod determines transitions among the states:

O(xxY,z) = (81(%,2) * 82(Y; 2))

whered; andd, are given by:

51(E,Z) =0

61(0,2) =E

02(X,2) = (2x—z) (modd)
(X, X) =S

»(Sz) =z

Kleven proves that codeword recognition is performed ailydy this finite state machine.



172 Russell

3.4. Error Correction for the SF Labeling.

Kleven showed that the SF labeling is a gray code (see Deini3.4). Therefore, error correction
involves changing exactly one digit. The error correctitgoathm consists of two small algorithms.

The first algorithm is a finite-state machine; it is used onhewthe error is in the first digit. It starts
in the Sstate ifn is even and th@® state ifn is odd. TheSstate is the only non-final state. The function
0 determines transitions among the states:

5(x,2) = (%52) (modd)
O(X,X) =S
0(Sz)=z

The second algorithm is used when the error is not in the figit. do correct the word; - - - X,:

IF Xo--Xn & Un—1
Correctx; = g, whereq is the final state after running,- - - xo through the first machine
ELSE
FORi=2---n
IF X # Xq
IFi#n
Correctx; = 2x1 — X; (modd)
ELSE
Correctx, =0
BREAK
END FOR

Kleven proves that error correction is performed correloyiyhese algorithms.

4. GENERALIZED TOWERS OFHANOI LABELINGS

It is natural to ask whethe] admits a labeling similar to the SF labeling wheis even. We will
specify what we mean by “similar to the SF labeling.” We wileth show that in facK] (d even) does
not admit any such labeling.



Encoding and Decoding for the SF Labeling 173

4.1. The Towers of Hanoi Labeling ofKj.

The Towers of Hanoi is a popular puzzle. It consists of thregspand several disks of different radii
which fit on the pegs. A solution to the puzzle is a configuratihere all the disks are on one tower
(see Figure 12 for a picture). One is allowed to move one diakiane, with the constraint that no larger
disk may be placed on top of a smaller disk.

FIGURE 12. A solution to the Towers of Hanoi puzzle with five disks.

We can describe a configuration of the Towers of Hanoi puzzkediring of lengtmover{ 0, 1, 2 },
wheren is the number of disks. Th& digit represents the position of tif8 disk (first digit = smallest
disk, nth digit = largest disk). The position of a disk is 0 if the diskois the leftmost tower, 1 if it is on
the middle tower, and 2 if it is on the rightmost tower. Seeufégl3 for an example. The configuration
shown is 22201.

FIGURE 13. A configuration of Towers of Hanoi puzzle with five disksheTassociated
string is 22201.

One can construct a graph where each vertex is labeled witinfegaration of the Towers of Hanoi
puzzle and each edge represents a legal move in the puzzenstout that this graph is actual§f,
and the labeling is known as the Towers of Hanoi labeling$f3]. Furthermore, the resulting labeling
is the SF labeling fod = 3 [5].



174 Russell

The rest of Section 4 examines the extent to which the SFitapef Kj, d > 3, can be viewed as a
generalization of the Towers of Hanoi labelingkd}.

4 .2. Definitions.

Definition 4.2.1. TheGeneralized Towers of Hanguzzle on d towers and n disks, denoted GTH(d,n),
is the puzzle with the following rules:

(1) Only one disk may be moved at a time.
(2) No larger disk may be placed on top of a smaller disk.
The towers are labeled. ..d— 1. Aconfigurationof GTH(d,n) is a string of length n over
{0,...,d -1}, where the'l" digit gives the position (tower) of th¥ idisk (first digit = smallest disk;
digit = largest disk).

Definition 4.2.2. Let G be any graph with at mosf dertices. AGTH(d,n) labelingof G is a one-to-one
map from the set of vertices of G to the set of configuratio®Idd(d,n), such that each edge represents
a legal move in GTH(d,n).

Note: The SF labeling oK{, with d odd, is a GTH@,n) labeling. We prove this in Section 4.4.

Definition 4.2.3. TheMaximal GTH(d,n) graph, denoted Md, n), is the labeled graph on"dvertices
with edges corresponding to every legal move in GTH(d,rguifé 14 shows 4, 2).

FIGURE 14. M(4,2).



Encoding and Decoding for the SF Labeling 175

4.3. Nonexistence of a GTH Labeling ford Even.

We now show that there is no GTé() labeling ofK{ whend is even.

Lemma 4.3.1.1f there is no GTH(d,r- 1) labeling of Kg‘*l, then there is no GTH(d,n) labeling of{K

Proof We prove the contrapositive.
Suppose we have a GT#{()) labeling ofK||. Recall thatK] consists ofl copies oﬂ(é‘*l. Call them

Co, ...,Cq_1. Delete all the vertices iy, . . . Cg_1 SO that onlyCq remains. Now delete thd" character
in each vertex label iy (this corresponds to removing the largest disk). The resa@tGTH@d,n— 1)
labeling ofK]~*. W

Theorem 4.3.2.For d even, there is no GTH(d,n) labeling of K

Note: We are assuming that> 1 since there is always a GT#i() labeling ofK(}. Also, we assume
thatd > 2 since a GTH puzzle on two towers is not interesting.

Proof We prove the theorem famn = 2 (two disks). The general result follows by induction, gsin
Lemma4.3.1.
Letd > 2 be even. We first distinguish between two types of edgé4(th 2):

e Type S Edges edges which correspond to moving the small disk
e Type L Edges edges which correspond to moving the large disk

We try to construct a GTHi,2) labeling ong. In other words, we must delete some of the edges in
M(d, 2) so that the resulting graph I@? We will see that this is impossible.

Note thatM(d,2) contains exactlyl copies ofK(}, corresponding to thd possible positions of the
large disk, from which the small disk may be moved to any towbesed copies oﬂ<§ will have to be
thed copies oﬂ<§ in Kg. Call themCy ...Cq_1 and keep their labelings. (Note that all the edges within
Ci are Type S edges, and so far all the verticeS;inave degred — 1.)

Now all that is left is to connect each andC;j, i # j, by a Type L edge. This will require a total of

(‘2‘) Type L edges. If we look at only the Type L edgedaMitd, 2), we see that they take the form of
distinct complete graphs ah— 1 vertices. (Figure 15 illustrates this fivt(4,2).) This is because there
ared ways to fix the position of the small disk, and then the largk dnay be moved freely among the
remainingd — 1 towers. Call these complete grafghg ... Dg_1.

Recall that we are trying to connect ea@handC; by a Type L edge, so we need to L@E) of the
d

Type L edges which are found in ti®’s. This forces us to use at Iea%) = d—gl edges from some
D;. Sinced is even, this means that we must use at Igasdges from somB;. But D; has onlyd — 1
vertices, so some vertex must belong to two ofgrrdwosen edges. Thus, this vertex will have degree at
leastd + 1 in our constructed graph, which is impossiblé<i§1 |

d
Note: The reason we can find a GTdH() labeling ofK§ whend is odd, is that(—§> =41is an
integer which is equal to half the number of vertice®jnso no vertex need be used twice.



176 Russell

00

30, 20
31 10 23
1" 21 03 33
01 32 13
02 12

22

FIGURE 15. The type L edges iNl(4,2) form four triangles.

4.4. The SF Labeling is a GTH Labeling.

In this section we prove that the SF labeling<jf is a GTH@,n) labeling. We will need two lemmas.

Lemma 4.4.1. For alli € {0,...,d — 1}, we have® i =i — :1i (mod d).
Proof We derive this from a tautology:
1=1 (modd)

:d+1 1 d(modd)

Lemma 4.4.2. The SF labeling assigns the string8---0, 11.--1, ..., (d—1)(d—1)---(d —1) to the
n—times
corner vertices of K in order, starting with the top vertex and going counteréiwise.

Proof We know by definition that the lemma is true floe= 1. We prove that it is also true for= 2.
This is sufficient to obtain the lemma for alby induction, since there is only one digit of information
contained in the word - - -i

Notation: We say that a vertex is in “positiai of K& if it is the i vertex, starting with zero at the
top and counting counterclockwise. We say ﬂhétcontainsd copies ofK(}. We call thentCy, ..., Cq_1,
starting withCy at the top and counting counterclockwise. So jRecorner vertex OK§ is the vertex
which is in positionj of C;.

We want to show that th@¢" corner vertex ng is labeledjj. We go through the construction Kﬁ

to show that this is in fact true. To do this, we begin with tHeertex ofK& and follow it through the
construction.

Theit" vertex och} is labeled. The first step in the construction of the SF labeling relaligk vertex
%i (modd). In the next step, we creatkcopies of the relabeleld(}. In the third step, we rotate thé&



Encoding and Decoding for the SF Labeling 177

copy,C, by k positions clockwise. This means that wHeis equal to%i (modd), the vertex labeled
k (or equivalently, the vertex Iabeléie?li (modd)) is in positioni — k. But by Lemma 4.4.1, we have
thatk =i — k. So the vertex labeleklis in thek!" position ofCy (this is thek™ corner vertex OK§.) In
the fourth step, we appetdo each vertex il€y, so thatkk is thek™ corner vertex ng. [ |

We can now show that the SF labeling is a GTH labeling.

Theorem 4.4.3.The SF labeling of K is a GTH(d,n) labeling for all d> 3.

Proof We fix d and prove the theorem by induction on
The result is obvious fan = 1. Now assume that the SF Iabelingl»tgf*l isa GTH(@,n—1) labeling.
We examine the construction Kf;.

Note that after the first step in the construction (permuthmg digits in the labeling oKQ‘l), the
resulting labeling is still a GTH{,;n— 1) labeling. This is because permuting the digits in a comdition
of the GTH puzzle is analogous to gluing all the disks to tivesis they are currently on, then shuffling
the towers around, disks and all. Legal moves are sent tbrienzes.

So we need only worry about the edges that will be introduetaiden distinct copies dftg‘l. Call
these copie®y, ..., Dg_1.

Now, the clockwise rotation scheme guarantees that the leglgeserD; andD; (i # j) will connect
two vertices with identical labels. Furthermore, these tedices are corner vertices & andDj
respectively, but they are not corner verticeK@f so by Lemma 4.4.2, they are labeksal - - a for some
azi#j.

The final step in the construction appemnds one vertex and to the other, leaving an edge between
aa---aiandaa---aj. This represents a legal move sircg i # j. R

5. AN INDEXING SYSTEM FOR THECODEVERTICES INKj

In this section we give a method for representing a codevartj by an(n— 1)-tuple over
{0,...,d—1}. The advantage of this technique is that the- 1)-tuple contains explicit information, in
a simple form, about the position of the codevertex in$ife This representation will later serve as an
intermediate step in our encoding and decoding scheme.

5.1. A Scheme for Representing Codevertices by Vectors.

Let Cf be a P1IECC orKj, let ¢, be the number of codevertices @}, and pickv € Cf}. We give a
recursive algorithm for assigning @n— 1)-tuple (w1, wo,...,Wh_1) to V.



178 Russell

Algorithm . First of all,K]] containsd copies ofK]*. Label them 0...,d — 1 with 0 at the top. Ifvis
contained in copy, then letw; = 1.

This Kgfl containsd copies oﬂ<g’2. Label them 0...,d — 1 with 0 being the top copy, where “top”
is taken in the sense of the G-U construction i$ contained in copy, then letw, = j.

In general, suppose (k < n—2) is given, so that is contained in thev " copy of Kg‘k inside a
copy ofKJ 1. If vis contained in thé! copy ofK[%~1 inside thisk[] ¥ (where the & copy is the
top copy, with “top” taken in the sense of the G-U construc}jdhen letwy 1 = 1.

Supposen,_» is given. There is a small change at this stepv i§ contained in the copy ofGé
inside a copy 0K3, then letw,_1 = p. Note that if this copy oK2 is aU2, then thep™ copy of G} is

the (p+1)% K} subgraph.
Note: No two distinct codevertices have the same correspongirgl)-tuple since a copy d{(} con-
tains at most one codevertex.

Definition 5.1.1. We say that arin — 1)-tuple n over{0,...,d — 1} representsa codevertex in Lif
there is some & C}j whose correspondingn — 1)-tuple is .

5.2. A Map Between Natural Numbers and Codevertices.
Let I denote the set ain— 1)-tuples oveKO,...,d — 1}. We define a function

®:{0,1,....d" -1} —T.

by
m+— (min based, but written backwards

We give an explicit algorithm fo® below. @ will later be pared down to a bijection between the set
{0,...,cn— 1} and the set ofn— 1)-tuples which represent codewordsdf. This bijection will provide
a big piece of our encoding and decoding scheme.)

Letme {0,1,...,d""1—1}. The(n—1)-tuple

®d(m) = (Vq,V2,...,Vn_1)
is produced according to the following algorithm:
ALGORITHM

to=m
v1 = to (modd)
k=1

WHILE k<n—-1
i = tel
Vier1 =t (modd)
k=k+1

END WHILE



Encoding and Decoding for the SF Labeling 179

Notation. Let M denote the sef0,1,...,c,—1}. LetC C I' denote the set ofn — 1)-tuples over
{0,...,d—1} which represent codeverticesK.
Now that® is defined, we will proceed by the following steps:

(1) We first show that is a bijection (Proposition 5.3.3).

(2) Next we show that ifn€ M, then®(m) € C (Lemma 5.3.6).

(3) These results give the theorem thay, is a bijection betweeM andC (Theorem 5.3.7).

(4) Finally, we give an explicit expression for the inversep®~! : C — M (Proposition 5.3.8).

5.3. Properties of ®.

Our first goal here is to show thatis a bijection. This requires two lemmas.

Lemma5.3.1.Let0 < my < mp <d"1—1. Then®(mp —my) = ®(mp) — d(my) (Where subtraction is
componentwise).

Proof First of all, (mp —my) (modd) = mp (modd) —my (modd).
= Vvi(Mp —my) = vi (M) —va(my).

Furthermore,

ty(Mmp —my) = mz—ml—\él(mz—ml)

= Mmoo ti(m) -y the above)

_ Mmp—vy(mp)  mg—vy(my)
- d d

=t1(mp) —t1(my).

The rest of the algorithm is completely determinedvpyndty, so the lemma is proved Bl

Lemma 5.3.2.Let me {0,...,d"* — 1} and ®(m) = (vq,Vo,...,Vn_1), and suppose thatjv= v, =
...= Vg = 0for some k< n— 1. Then m= 0 (mod d).

Proof We first show that for all 6< j < k-1, we havej = d—”}. This is clearly true forj = 0 since
to = m. Now supposéy = g} forall0<I| <j. Thent; = t"% Butv,.1 =0sincej <k-1, so

tg=0=-m
I+1 =49 — g+1-

We can now prove the lemma. Suppose that ... = Vv, = 0. Then by the above, we halge 1 = dk—”ll
We also havey = 0, i.e.,t = 0 (modd). So gy =0 (modd). Thereforemis divisible byd. m

Proposition 5.3.3.® is a bijection betweef0, 1,...,d"! -1} andr.



180 Russell

Proof The preimage set and the target set have the same cardisalitys sufficient to show thab is
one-to-one.

Suppose we havey < m, such thatb(m;) = d(mp).

<— ®(mp) — P(m) = (0,0,...,0)

= ®(mp—my) = (0,0,...,0) by Lemma 5.3.1.

= mp —my is divisible byd"~1, by Lemma 5.3.2.

= mp — My must be zero sincey, — My is nonnegative and the next multipled 1 is not in
{o,...,d"1—-1}.

= m=m. Nl

We now use Proposition 5.3.3 to show that by restricting thraain of® to M, we obtain a bijection
betweerM andC. This uses three lemmas.

Lemma 5.3.4.
(9, d-1,0,d-1,...,0, d—%), n odd

d(ch—1) =

n—1
(¥d—1, 0,d-1,...,0,d-1), neven.

Proof First note that
{ %*11 =d™1_g"24d"3—-. . . +d—1, neven
Ch-1=

d;jf' —=d" 1 —d"24+d"3—. . +d?’—d, nodd.

When we writec, — 1 in this form, the result is clear by inspectiorill

Lemma 5.3.5. The(n— 1)-tuple in C which maximize® ! is
(0,d—1,0,d—1,...,0,d—1), nodd
(d-1,0,d-1,...,0,d-1), neven.

Proof We prove the result by induction.
Whenn = 2, we havec; =d. SoM = {0,...,d—1} and®(m) = (m). Therefore(d —1) € Cis the
codevertex which maximizeg—1. This (n— 1)-tuple is of the desired form.

Now suppose the lemma is truel'ﬂj.

Case 1: gqis odd.
Then we are given that the codevertexNgﬁ which maximizesd—1 is ( 0, d-1,...,0,d-1).

J/

a1
Sinceq is even,kg+l consists ofd copies ofGJ, so there arel codevertieces ilh(élHl which are of the
foom(i,0,d—-1,...,0,d—1),i=0...d—1. So the codevertex iI<i(‘j1I+1 which maximizesp—1is

q
(d-1,0,d-1,...,0,d—1).




Encoding and Decoding for the SF Labeling 181

Case 2: qis even.
Then we are given that the codeverteKﬁH which maximizesp~tis(d—1,0,d—-1,...,0,d-1).

a1
Now, K™ consists of one copy @] andd — 1 copies olJJ. We look fori such that
(i,d—1,0,d—1,..., 0, d—1) maximizesb~! over the codevertices mg“. But by Lemma 5.3.4,

g
®1((d-1,0,d-1,...,0, d—%)) =cq—1. So(i,d-1,0,d-1,...,0,d—-1)cannot be
q-1
in aK{ subgraph with fewer thag, codevertices. Sinde] has fewer tharg codevertices( i , d —
1,0,d—1,..., 0, d—1) must be in the copy oBJ, which is the top subgraph dﬂé‘“, SO we are
forced to picki = 0, and the codevertex mg“ which maximizesp~1 is of the desired form.

Lemma 5.3.6.1f m e M, then®d(m) € C.

Proof Since® is a bijection, we prove the equivalent statementwif,ws, ..., w,_1) € C, then
D L((Wg,Wa,...,Wn_1)) € M. Fix (W,Wo,...,Wn_1) €C.

Casel:w, 1#d-—1.
Thenw; - --w,_2 can be anything and this still represents a codevertex,esoeult holds automati-
cally.

Case 2: Wh_1 =d—1.
Lemmas 5.3.4 and 5.3.5 tell us that tfme— 1)-tuple which maximizesb~! is exactly®(c, — 1). So
there isncce Cwith @ 1(c)¢ M. W

Theorem 5.3.7.The restricted ma@® : M — C is a bijection.

Proof Lemma 5.3.6 tells us thab(M) c C. Furthermore, by Proposition 5.3.® must be a bijection
betweerM and®(M). Therefore, sincé andC have the same cardinali$(M) =Cand® : M —C
is a bijection. H

Finally, we give an explicit expression far 1.
Proposition 5.3.8.Let (wy, Wy, ...,Wy_1) € C. Then

D L((wy, W, ..., wh 1)) =d (d( o (d(d(d-Wn_1+Wn_2) +an3)+an4)+\~-,~_/) + W) +Wwy.
n—7 times n-7

(Call this numberg.)

Proof By Proposition 5.3.3®71((wy,Ws,...,Wq_1)) exists. So it is sufficient to compute(ty) =

(V1,V2,...,Vh—1) and see that; = w; for all 1 <i < n—1. First note thatp = w; (modd), sov; = wj.

So we have
to—wWp

1= g =d(d(

<o (d(d(d-Wh1+Wn 2)+Wn-3)+Wna)+_..)+Ws)+W
n—8 times n—8
Now let 1< k < n— 2 and suppose
t1=d(d( o (d(d(d-Wn_1+Wn-2)+Wn-3)+Wn-a)+ ... )+Wkr1)+ Wk
n—k—6 times n—k—6



182 Russell

Then

o= (d(

d ( d ( d ( d ‘Wn_1+Wn_2) +Wn_3> +Wn_4) + ... >+Wk+2> +Wk+1

n—k—7 times n—k—7

andvyq =tx (modd) =wg, 1. W

6. USING ® TO DESCRIBE THEPOSITION OF THEM™ CODEVERTEX IN K]

In this section we give an algorithm which uségém) to describe explicitely the position of the corre-
sponding codevertex iKj]. We will arrive at a bijection betwee{0, ..., c, — 1} and the set of positions

of codevertices. This is an extremely useful technique. drtigular, it provides the basis for our en-
coding and decoding scheme for the SF labeling. Perhapsimpmatantly, though, it could be used to
create an encoding and decoding scheme for any “reasoriabkding ofKj.

6.1. Describing the Position of any Vertex inKj: “Right-Side-Up” Coordinates.

Since there ard" vertices inKj, we can describe the position of each vertex by-ample (ug, up, . .., Un)
over{0,...,d—1}. Obviously, there are numerous ways to do this. We introdusyestem calle®ight-
Side-Up (RSU) coordinates.

In RSU coordinates, everg’ subgraph oK} is viewed as being oriented the same waygs If
our vertex is contained in th& K§' subgraph of eh(g”“ subgraph (where 0 points the same way as the
top vertex ofK|| and we count counterclockwise), then we simplyuety, = i. (Note: the vertex itself
is aK? subgraph.)

As an example, Figure 16 shows the RSU coordinates of eatdwerKg.

(2,2) (2,3) (3,2) (3,3)

FIGURE 16. RSU coordinates d2.



Encoding and Decoding for the SF Labeling 183

In Section 6.2 we give the forward algorithm which takesbitm) and returns the RSU coordinates
of them™ codeword. Section 6.3 contains a proof of the algorithm. dnt®n 6.4, we give the inverse
algorithm, and in Section 6.5 we prove it. These steps gitbeisomplete bijection between
{0,...,cn— 1} and the RSU coordinates of codevertices.

6.2. Forward Algorithm.

We break the forward algorithm into two parts. The first pa¢sd(m) to produce the vectos =
(s1,...,S), whosei" component is eithefG, n—i +1) or (U, n—i+1), depending on whether the
codevertex described bp(m) is contained in &G 't or aUJ 1. In the process, we also trans-
late ®(m) into what we refer to as thRelative coordinates (defined later in Definition 6.3.2) of the
codevertex. The second part of the algorithm translatestiRelcoordinates into RSU coordinates.

FORWARD ALGORITHM: PART 1 (Produces the vect@®. Figure 17 is a visual representation of
this part of the algorithm.)

(V1,V2,...,Vh—1) = ®P(M)

k=1
S = (G7n)
WHILE k< n

IF sx= (G, n—k+1)
IFn—k+1iseven
S+1= (G, n—k)
ELSE
IFw=0
Scr1= (G, n—K)
ELSE
S+1= (U, n—K)
ELSE (i.e. ifsc= (U, n—k+1))
IFn—k+1iseven
Vk=W+1
IFw=0

St+1 = (U7 n-— k)
ELSE

Skt+1 = (Gv n— k)
ELSE
St1 = (U7 n-— k)



184 Russell
k=k+1
END WHILE

RETURNS= (sy,...,S)

Sk=(G,n-k+1) Sk=(U,n-k+1)
n-k+1 even n-k+1 odd n-k+1 even
n-k+1 odd
Sk+1=(G,n-k) Sk+1=(U,n-k) Vie= Vi + 1
k=k+1 k=k+1
Vk=0
Vk=1
Sk+1=(G,n-k) [| Sk+1=(U,n-k) Sk+1=(U,n-k) Sk+1=(G,n-k)
k=k+ 1 k=k+1 k=k+1 k=k+1

FIGURE 17. A visual representation of Part 1 of the forward algaonith

FORWARD ALGORITHM: PART 2 (Translates the news, Vs, ...,vn—1), Which is in Relative coor-

dinates, into RSU coordinates)
Ri=(ri,....rt)=(vi,..., h1,0)2
k=1

WHILE k< n

IF sc = (G, n—k+1) wheren—k+1is even
=R+(0,...,0, rg,rg,....rk
Rei1 =R+ ( ko Tk k)

g

k times (n—k) times

IF sc= (U, n—k+1) wheren—k+1 is odd

2Note: the superscript on is an index, not a power.




Encoding and Decoding for the SF Labeling 185

Rk+1:RI(+( 07"'707 rl% rlj(-7"'7rl1-)

7
——

)
k times (n—k) times

ELSE
Ret1 =Rk
k=k+1
END WHILE
RETURNR,

6.3. A Proof of the Forward Algorithm.

We make a few concepts precise before beginning the prodiecdigorithm. The proof will consist of
three lemmas which together imply that the algorithm retwricodevertex in RSU coordinates.

Definition 6.3.1. Thetop K&”’l subgraphin a copy of &' or UJ" is the copy of Ig"l containing the
top vertex of @ or UJ", where “top vertex” is taken in the sense of the G-U consiarcof the SF
labeling.

We will need to consider four types of subgraph&jh
e G, wheremis odd.

The topK]™ ! subgraph (labeled 0) i8] *. Subgraphs 1 througth— 1 are copies ob™*
which are all oriented the same way@g.

e G, wheremis even.

Subgraphs 0 througth— 1 are copies oG(T‘l. Copyi is rotated%"i radians counterclockwise
with respect to the orientation &

e UJ", wheremis odd.

Subgraphs 0 througth— 1 are copies oUg‘*l. Copyi is rotated%"i radians counterclockwise
with respect to the orientation off".

e UM wheremis even.

The topK]"* subgraph (subgraph 0) 4] *. Subgraphs 1 througt— 1 are copies oG] *
which are all oriented the same way3$.

Definition 6.3.2. The Relative coordinateof a vertex in K are obtained as follows. Suppose the

vertex is contained in a certain'[5 or UJ" subgraph of K. Label the ! subgraphs of this {3
or US" with the number$ through d— 1, whereO is the top copy (see Definition 6.3.1) and we count

counterclockwise. If our vertex is contained in copy i, thea(n — m+ 1) Relative coordinate is i.



186 Russell

Remark 6.3.3. The difference between RSU coordinates and Relative cadedi is that Relative coordi-
nates implicitely contain the subgraph rotations inhetierthe G-U construction, while RSU coordinates
are not aware of the G-U construction.

Lemma 6.3.4.1f we apply Part 1 of the forward algorithm to every elementiaimage sef®(m) | 0 <
m < ¢, — 1}, then we obtain the correct number of codevertices in eaph tf subgraph. For ex-
ample, if we let d&=5 and n= 3, then we will obtain( (G,3) , (G,2) , (G,1) ) five times and
((G,3), (U,2), (G,1) ) sixteen times.

Proof

Part 1 is simply a concrete representation of the four casiesllafter Definition 6.3.1, except for a
small adjustment whesx = (U,n—k+1) wheren—k+1 is even.

We have to make this adjustment because the number of cd)i«texseinué‘*"+l (n—k-+1even)is
congruent to-1 (modd), so fori € {0,...,d—2}, ® returnsvi = i once more than it returng =d — 1.
But subgraphs 1 through— 1 ofU(;‘*"+l (all copies ofGQ*k) each contain one more codevertex than
subgraph 0 (a copy & ).

The adjustment (adding 1 1) compensates for this before the algorithm is allowed toemmv, so
that we end up with the correct number of vertices in all theie® ofG] * andu .

There is no such problem wil@.Q*k*l (n—k+1 odd) since in this case, thep K;‘*" subgraph is
the one with one more codevertex than the others.

There is no such problem witB} %" (n—k+ 1 even) andJ] ! (n—k+ 1 odd) because al]
subgraphs have the same number of codevertidiis.

Lemma 6.3.5. The vector R at the beginning of Part 2 gives the Relative coordinatesaidevertex.

Proof By Lemma 6.3.4 and the definition of Relative coordinates M#ctor(vy, Vo, ..., vy_1) returned
by Part 1 gives the firsh — 1 components of the Relative coordinates of a codeverterceSeach
codevertex is the top vertex of its respective copﬁéf we let then™ coordinate equal zero, so that
Ry = (v1,...,Vn-1,0) gives the Relative coordinates of a codevertdll.

Lemma 6.3.6. Part 2 of the forward algorithm takes in the Relative coosdas of a vertex and rotates
each K" subgraph the correct number of times so as to return the R®tblzwates of the same vertex.

Proof (See Remark 6.3.3 for an explanation of why rotations arésthee here.)
Suppose we havel' graph in RSU coordinates. Then when the graph is rotatedteatiockwise

by %” radians, a vertex whose coordinates werg. .. ,uyn) how has coordinate@ +1,...,un+1).
Now, aK[" subgraph irk| has been rotated counterclockwise$yradians a total of

{i<n—-m|se{(G, even, (U, odd)} }.
Relative coordinates do not show this rotation. So in ordéundo” the rotation of this subgraph, we
need to adjust the Relative coordinates of each vertex ilKgusubgraph (i.e., adjusty,1 throughwy)
by addingy to eachwiy, ;1 ...wy. Part 2 performs this adjustment one rotation at a tinii.

times, whereB is the set



Encoding and Decoding for the SF Labeling 187

Theorem 6.3.7.The forward algorithm takes i®(m) and returns the corresponding codevertex in RSU
coordinates.

Proof The theorem is a direct consequence of Lemmas 6.3.4, 6181%.3.6. W

6.4. Inverse Algorithm.

In this section we provide an inverse to the algorithm dégctiin Section 6.2. The inverse algorithm
takes in the RSU coordinates of a codevertex and ret@(ng). Like the forward algorithm, we break
the inverse algorithm into two parts.

Part 1 of the inverse algorithm inverts Part 2 of the forwdgbathm (this is Lemma 6.5.1).

INVERSE ALGORITHM: PART 1 (Changes from RSU coordinates to Relative coordinatesur€ig
18 is a visual representation of this part of the algorithm.)

Y1 = (¥,...,Y}) = the given RSU coordinates.

k=1
g1 = (G,n)
WHILE k< n

IF gk= (G, n—k+1)

IFn—k-+1iseven

gk+1:(G7 n_k>
Yer1=Y%—(0,...,0, yk,...,yt )
k times (n—k) times
ELSE
IFyk=0
gk+1:(G7 n_k)
Yir1 = Yk
ELSE
gk+1:(U7 n_k>
Yierr =Yk

ELSE @k = (U, n—k+1))

IFn—k-+1iseven

IFyk=0
Ok+1 = (U7 n_k>
Y1 = Yk

ELSE

SNote: the superscript op is an index, not a power.



Russell

188
Ok+1= (G7 n_k)
Yer1 = Yk
ELSE
Ok+1 = (U7 n_k>
Yer1=Y%—(0,...,0, yk,..., y{ﬁ)
ktimes  (n—k) times
k=k+1
END WHILE

RETURNY, = (¥7,...,y%)

lgc= (G, n-k+1)]

n-k+1 even

g1 = (G n-k)
Yie1 =Yk- (0., 0,yk...y¥)
-
k n-k
k = k+1
yi=0
gkt = (G, n-k)
Yk+1 = Yk
k = k+1

n-k+1 odd

lgk= (U, n-k+1)

gk+1=(U,n-k)
Yk+1 = Yk
k = k+1

n-k+1 odd
g+t = (U, n-k) n-k+1 even
Yie1 = Yk- (0. 0,yK...yk)
e S
k n-k
k = k+1
y=0
g+t =(U,n-k)| [ g+1=(G n-k)
Yk+1 = Yk Yk+1 = Yk
k = k+1 k = k+1

FIGURE 18. A visual representation of Part 1 of the inverse algaorith

Part 2 of the inverse algorithm takesvy which is in relative coordinates, and returns the corredpo
ing vector of the form®(m). Therefore this part inverts Part 1 of the forward algorittthis is Lemma
6.5.2). In fact, it is essentially the same as Part 1 of thediod algorithm, with the exception that when
s = (U,n—k+1), withn—k+1 even, we subtract 1 frow instead of adding 1; also, this algorithm
returns(vy, Vo, ..., Vn—1) instead ofS,



Encoding and Decoding for the SF Labeling 189

INVERSE ALGORITHM: PART 2 (Changes from Relative coordinates to a vector of the fdiim))
(V1,V2,...,Vn—1) = (Y1,---.¥n 1)

k=1
S = (G7n)

WHILE k<n
IF sx= (G, n—k+1)

IFn—k+1iseven
S+1= (G, n—k)
ELSE
IFvw=0
S+1=(G, n—k)
ELSE
S+1= (U, n—k)

ELSE (i.e.sc= (U, n—k+1))

IFn—k+1iseven
Vk=W—1
IFvw =0
S+1= (U, n—k)
ELSE
Scr1= (G, n—Kk)

ELSE
Skt1 = (U7 n— k)

k=k+1
END WHILE
RETURN (v1,V2,...,Vh-1)

(D(m> = (V17V27 e 7Vn71)



190 Russell

6.5. A Proof of the Inverse Algorithm.

Lemma 6.5.1.Part 1 of the inverse algorithm inverts Part 2 of the forwatdaigthm.

Proof Let 1< p; <... < py < nbe all the numbers such thag € {(G, even, (U, odd)}. Then,
according to Part 2 of the forward algorithm,
u
=R+ 5(0,0,....0 ,rp . rB .l
Rn 1 le( pj p]v Pj )

Pi n—p;
We want to show that, = Ry, i.e., that

u

_ P P pj
Yn—Rn—j;(O, O,.‘.., 0,rp, rpjv,..., o )-
Pj n—pj
Note thatR; = ... = Ry, andYs = ... = Yp,. Furthermorer = r! = y™, since we have thag = R,

andr™ =rM"fori=1...p;. Sos =g foralli=1...p;+1.
Thus, the first vector that gets subtracted frégnmn Part 2 of the inverse algorithm is

11 1 1 1 1
(0,0,...,0,¥5 s ¥Yp s+ Yp, )=(0,0,...,0, 15, g, -5 Iy )
%/_/ v %/_/ ~

P1 n—py P1 n—py

Now Yp, +1 andR; have the firsip, entries identical, an® andG have the firsip, + 1 entries identical,
so the next vector which gets subtracted frggn, 1 is

1 1 1
(0,0,...,0,rp,, My see5 My )
P2 n-ps

andsoon. &

Lemma 6.5.2. Part 2 of the inverse algorithm inverts Part 1 of the forwafdaithm.

Proof This is clear, since the two algorithms are identical extegt one containsvi = vk + 1” while
the other containsvi=vw—1" R

Theorem 6.5.3.The inverse algorithm inverts the forward algorithm.

Proof Direct consequence of Lemmas 6.5.1 and 6.5IR.



Encoding and Decoding for the SF Labeling 191

7. ENCODING AND DECODING FOR THESF LABELING

In this section, we present an encoding and decoding schamtleef SF labeling.

Definition 7.0.4. An encoding and decoding schenfer a particular labeling of K is a bijection
between the set of natural number® ,..., ¢, —1 }, where g is the number of codevertices in a
P1ECC on K, and the set of codewords in the labeling.

Note that, unlike the results from Sections 5 and 6, an engoaind decoding scheme is designed for
one patrticular labeling method.

7.1. Toward an Encoding Scheme.

Cull and Nelson present an easy encoding and decoding sdbethe case whed = 3. Their scheme
uses the fact that in th¢ = 3 case, every distance 1 neighborhood of a codeword cordgaawtly one
word which is a multiple of 4 (when viewed as a number in baseT)ey denote byG, the set of
codewords in the SF labeling &f. To encode the numben < |Gp|, one simply runs the numben#
through the finite state machine for error correction. [3]

We asked if Cull and Nelson’s technique could be easily gdizexd ford > 3 (using multiples of
d+ 1 instead of multiples of 4). Unfortunately, the answer is fibis is because in the general case,
some codewords are not adjacent to any multiplé -6fl, while others are adjacent to two multiples of
d+ 1. An easy example iKg, where the codeword 414 is adjacent to 314 and 424, both afhwdre
multiples of 6.

After trying some similar ideas and failing, we decided tgiga an encoding and decoding scheme
which would use few (if any) theoretical properties of the I8Beling. In particular, we wrote two
algorithms, discussed in detail in Sections 5 and 6, whigettoer give a bijection between
{0,..., cn—1} and the set of RSU coordinates of codevertices. Now all thigffi is to find a simple
bijection between RSU coordinates of codevertices anddldewords of the SF labeling. Fortunately,
this turns out to be fairly straightforward.

Note: The advantage of this approach is that our bijection betwa&ral numbers and RSU coordinates
has nothing to do with any labeling Kf;. Furthermore, any reasonable labeling has an easy mapdietwe
the position of a vertex and its label. Therefore, our teghaicould be imitated to create encoding and
decoding schemes for most labelings.



192 Russell

7.2. The SF Labeling as a Tree.

In this section we give an intuitive motivation for our enagmgland decoding scheme. We show how one
can view the construction of the SF labeling ad-ary tree, where each “layer” of the tree represents
the SF labeling oK{' for a particularm (this makes sense because the SF labeling is constructed
recursively). Each node in the" layer represents a vertex i} and is labeled with the SF label of
that vertex as well as its RSU coordinates. The encoding andding scheme passes between these
two pieces of information by traveling up the tree througke type of information, turning around at the
root, and travelling back down to the same vertex througlother type of information.

Suppose we have the SF labelingkdf. Then the SF labeling d{é'“+1 is constructed by applying
a to the labels irk[", creatingd copies of the graph, rotating each an appropriate numbémest and
appending the appropriate digit to all the labels in each &ection 3.1). So ib;...by, is the label of
a vertex inKY', thenby ... bm gives rise tad “daughter” labels irKé”*l. These labels are(b;...by)oi
wherei € {0,...,d — 1}. So we can think of the construction of the SF labeling asaay tree where
each vertex irK[" is the root of a subtree of the form in Figure 19.

©<(b1bk)00 maun O<(b1bk)o(d_1)

FIGURE 19. A vertex label irKy' and itsd “daughter” labels.

As we said above, the SF labeling makiesopies ofa (K[") and rotates thih copy%”j radians clock-
wise before connecting all the copies by edges. Sa'tdaugter of the vertex whose RSU coordinates
inK{" were(ay,..., an), is the vertex irK(’j“Jrl with RSU coordinate$i , a; —i,..., am ). Figure
20 is the same as Figure 19, with the addition that each nasadabeled with the RSU coordinates of
the corresponding vertex.

Our encoding and decoding scheme is the composition of g@itim from Sections 5 and 6, and
the algorithm we give in Section 7.3, which is a bijectionvben SF labels of codevertices and RSU
coordinates of codevertices. Note that these last two tgpeata are shown in Figure 20. The technique
will be to specify one type of data for a node in the tree, ttalodv a path up to the root by computing
this same data for all the nodes along the path. One therfiggedtie other type of data for the last node
in the path, then follows the reverse path back down by comguhe new data for each node, finally
arriving at the new data for the original node.



Encoding and Decoding for the SF Labeling

Label { b,---by
RSU { (a,, ...,ay)
«?
@ng 00@’)
R e
v 7
Label { X(b,---by)o0 X(b, -+~ by )o(d -1)
RSU{ |(0,a;-0,...,a,-0) (d-1,a,-(d-1), ...,a,-(d-1))

FIGURE 20. Figure 19 with RSU coordinates added.

7.3. Encoding and Decoding Algorithms.

193

Recall that the forward algorithm (Section 6) actually gizebijection between the set of vectors of the
form @(m) and the set of RSU coordinates of codevertices. Call thisapo the map\ =Fo® is

a bijection between the firgt, natural numbers and the RSU coordinates of codevertices.e@und-
ing scheme is the mapNCODE from RSU coordinates of codevertices to codewords. Thedirgo

schemePDECODE, is the inverse oENCODE

ALGORITHM: ENCODE PART 14

Qu=(q,..., G ) =A(m)

k=1
WHILE k< n
Quer= (gt ... gkt
= (s O g ) (L, )
n—k
k=k+1
END WHILE

ENCODE PART 2

y1 =071
k=1

4Note: In bothENCODEandDECODE, the superscript og; is an index, not a power. Also, BNCODE PART 1, the

Qi’s are vectors of different lengths; in particul&®;, has one more component th@n, 1.



194 Russell

WHILE k< n
Vi1 = (k) o o
k=k+1
END WHILE
RETURNY,
ENCODEA(M)) = yn
(wherea(yx) means apply the permutati@nto the digits of the stringy in order, producing a new
string, andstringl o string2 means appenstring2 to stringl.
ALGORITHM: DECODE PART 1
Given codeword; - - - C
Gi = Cn
k=1
WHILE k< n
gt = a(chy)
k=k+1
END WHILE
DECODE PART 2
FORiIi=2...n
Gl =y~ 3% o
END FOR

RETURNQ;



Encoding and Decoding for the SF Labeling

7.4. Proofs of ENCODEand DECODE

195

To aid in the proof of our encoding and decoding algorithnguFé 21 gives a more global view of the
SF labeling tree. This diagram uses the same notati@fNEODEandDECODE

(0)00 | [x(0)° k|| =(0)o(d-1)
(0,0-0) | | (k,0-k) ||(d -1,0~(d -1))

(d-1)
d-1
bQ > 7"0
B 5 %,
QQ 3 oo
e 3 - X,
~

x(d -1)00 |[x(d -1)ok |[(d -T)o(d -1)
(0,(d -1)-0)[|(k,(d -1)-k)||(d -1,(d -1)-(d -1))

(K)o(d -1)
(d -1,k-(d -1))

) puaddy

LA 3 4 ne 4 ne
4 m * m * =
s ® o 5 o 5
4,%@
/70'0/
~7
- -

x(x(++(x(q])oq™")++))eq? )0
(0.97-0,...,97-q""- -+ -0)

(- (X(q])oq™) )0 q?)ok
(k.q%-k....,q

x(ex(-++(x(q])eq™") 7)) eq?)o (d -1)

(d-1.97-(d-1),...,d7-q™"- -+ -(d -1))

FIGURE 21. Tree representation of the SF labeling, using notatiom £ENCODE and
DECODE At each node, the top label gives the SF label and the botibed bives the

RSU coordinates.




196 Russell

Proposition 7.4.1. ENCODE takes in the RSU coordinates of a vertex jnahd returns the SF label
of the same vertex.

Proof

Suppose we have the RSU coordinates of a vertexK|. Part 1 ofENCODE computes the RSU
coordinates of its “parent” vertex mg—l, then computes the RSU coorinates of the parent vertthabf
vertex, and so on, up to its ancestoNg}l. By inspection of the general subtree in Figure ENCODE
performs the necessary operation correctly at each step.

Part 2 of ENCODE follows the reverse path back down the tree to the origindend\ote that any
path through the tree is completely determined by whichtsligie appended to successive labels. The
algorithm follows the path which is determined by infornoatigathered in Part 1. It computasand
then appends the appropriate digit. By inspection of theeg®drsubtree in Figure 21, this is performed
correctly at each step. Part 2, therefore, finishes by retgithe label of the original vertex.ll

Proposition 7.4.2. DECODE takes in the SF label of a vertex ifj Kand returns the RSU coordinates
of the same vertex.

Proof
The proposition can be proved in a similar fashion to Prapmsi’.4.1. W

8. CONCLUSION

We have presented an encoding and decoding method for thab®knlg of odd-dimension iterated
complete graphs. The method uses general properties of @468 iterated complete graphs; only in
the last step does it use any information which is particidahe SF labeling.

Further work could include testing this technique on otladéreling schemes to determine if it will
be useful as predicted. Work could also be done to simpliégyalgorithms themselves as well as the
proofs.

REFERENCES
[1] Shawn Alspaugh, Nathan Knight, and Kathleen Meloneyfd&t One Error Correcting Codes on Iterated Complete
Graphs. Proceedings of the REU Program in Mathematics. M8/aegon State University. Corvallis, Oregon. 2001.

[2] Be Birchall and Jason Tedor. Perfect One Error Corrgofindes on Iterated Complete Graphs. Proceedings of the REU
Program in Mathematics. NSF and Oregon State Universitywalias, Oregon. 1999.

[3] Paul Cull and Ingrid Nelson. Perfect Codé&-Completeness, and Towers of Hanoi Graghdletin of the ICA26:13-
38, 1999.

[4] Christopher Frayer and Shalini Reddy. Perfect One Ebmnrecting Codes and Iterated Complete Graphs. Procezding
of the REU Program in Mathematics. NSF and Oregon State BifyeCorvallis, Oregon. 2002.

[5] Stephanie Kleven. Perfect Codes on Odd Dimension Sgkpraphs. Proceedings of the REU Program in Mathematics.
NSF and Oregon State University. Corvallis, Oregon. 2003.

UNIVERSITY OF PENNSYLVANIA
E-mail addresspr ussel | @mat h. upenn. edu



