
A NEW PUZZLE BASED ON THE SF LABELLING OF ITERATED COMPLETE
GRAPHS

KATHLEEN KING

ADVISOR: PAUL CULL

OREGON STATE UNIVERSITY

ABSTRACT. The Towers of Hanoi puzzle inspired the creation of a perfect one error correcting code
on an iterated complete graph of dimension three. This code in turn became was generalized into the
SF code, which is a perfect one error correcting code on iterated complete graphs of odd dimension.
In this paper, we use the SF code to create a puzzle similar to the Towers of Hanoi. We then proceed
to give efficient algorithms to determine the minimum numberof moves in which the puzzle can be
solved.

1. INTRODUCTION

The Towers of Hanoi puzzle is supposedly based on of a legend.The story goes that Buddhist
monks were required to move a stack of 64 sacred disks from onelocation in their temple to
another. There was only one spot in the temple, other than theinitial and final places, that was holy
enough to hold the disks. The disks were incredibly fragile,so no larger disk could be set on top of
a smaller one, and only one could be carried at a time. According to the legend, when the monks
finished moving the entire stack to the new location, the world would end [LHS].

The legend inspired Edouard Lucas to create the Towers of Hanoi puzzle, which he published
in 1883. Happily, those who took up the problem of the Towers of Hanoi determined that it would
require 264−1 moves to shift the entire tower. Thus, even if the monks wereextremely efficient
and moved one disk each minute, it would take over 3.5 x 1013 years to move the entire stack.

Of course, mathematicians being what they are, nobody was willing to let the problem rest,
feeling secure in the knowledge that the world will not be ending any time in the near future.
Nor were they satisfied with turning the problem into a children’s game, in which disks of varying
diameter can be placed on three pegs (“towers”), with the same rules as those that bound the monks.
No, various aspects of the Towers of Hanoi puzzle have provided ample material to entertain
mathematicians.

One problem of interest is the Towers of Hanoi puzzle with more than three towers. Although a
Frame and Stewart independently found a solution in 1941, noone has been able to prove that this
solution is true [JF],[BS]. Others have found new applications for the traditional three-peg puzzle.
Of particular interest to this paper is the work done by Cull and Nelson, who in 1999 created a
perfect one error correcting code based on a graph of the Towers of Hanoi [CN].

The graph used in the Towers of Hanoi graph is an iterated complete graph of degree three.
Because of the excellent properties provided by the Towers of Hanoi code it inspired others to

Date: August 13, 2004.
This work was done during the Summer 2004 REU program in Mathematics at Oregon State University.

142

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 143

search for similar codes on iterated complete graphs of degree greater than three. Of the various
attempts to create such a code, the most successful has been the SF code for odd degree iterated
complete graphs [SK].

This paper uses the SF code to create a new puzzle, one that is similar to the Towers of Hanoi,
but has several additional rules and can be played with any odd number of towers. The new puzzle
also considers beginning or ending the game at disk configurations other than simple stacks on the
various towers. We explain how to solve the puzzle and present an algorithm to find the minimum
number of moves necessary to do so.

2. DEFINITIONS

Before we proceed, we must present several definitions that will be used throughout this paper.

Definition 2.1. A graph, G, consists of a nonempty finite set V(G) of elements calledvertices and
a finite set E(G) of distinct unordered pairs of distinct elements of V(G) callededges. Two vertices,
vi ,v j ∈ V(G) are adjacent if the edge{vi ,v j} ∈ E(G). A subgraph S of G consists of a V(S)⊂
V(G) together with the edges connecting any adjacent vertices, vi ,v j ∈V(S).

FIGURE 1. A simple graph

Example 2.2. In Figure 1, we see a graph G with the vertex set V(G) ={a,b,c,d,e} and the edge
set E(G) ={(a,b),(a,c),(b,c),(c,d)}. Any combination of vertices and their associated edges
could be a subgraph. One subgraph S has the vertex set V(S) ={c,d,e} and the edge set E(G) =
{(c,d)}.

Definition 2.3. Two disjoint subgraphs S1 and S2 of a graph G areadjacent if there exist adjacent
vertices in G v1 and v2 such that v1 ∈V(S1) and v2 ∈V(S2).

Definition 2.4. If a vertex v is adjacent to j other vertices, then v hasdegree j.

Definition 2.5. A complete graph on d vertices, denoted Kd, is a graph which has d vertices and
vi ,v j ∈ E(Kd) for all vi ,v j ∈V(Kd) with i 6= j.

Example 2.6.Figure 2 shows the complete graphs on 3, 5, and 13 vertices.

Definition 2.7. An iterated complete graph on d vertices with n iterations, denoted Kn
d , can be

defined recursively. K1d is the complete graph on d vertices. Kn
d is composed of d copies of Kn−1

d ,
and edges such that exactly one edge connects each Kn−1

d subgraph to every other Kn−1
d subgraph

so that exactly one vertex in each Kn−1
d subgraph has degree d− 1 and all other vertices have

degree d.

144 Kathleen King

FIGURE 2. The complete graphsK3, K5, K13

Example 2.8.Figure 3 shows the iterated complete graphs K4
3 , which has four iterations on three

vertices, and K27, which has two iterations on seven vertices. Note that to construct the next itera-
tion, d copies are made of the current iteration, and these copies are then essentially placed at the
vertices of a Kd graph.

FIGURE 3. The iterated complete graphsK4
3 , andK2

7

Definition 2.9. The jth subgraph of a Kn
d graph, with1≤ j < n is a Kj

d graph that is a part of the

Kn
d graph. The Kj

d subgraph hasorder j.

Definition 2.10. A corner of a K j
d subgraph of a Knd graph is a vertex that is adjacent to only d−1

vertices within the Kjd subgraph. Anexternal corner of a K j
d subgraph is a corner that is adjacent

to only d−1 vertices within the Kj+1
d subgraph that contains it. Acomplete corner is a corner of

the Kn
d graph itself.

Example 2.11.In Figure 4, the three types of corners are indicated by circles and labelled.

Definition 2.12. A code on a graph G is any subset of vertices C(G)⊂ V(G). A vertex c∈C(G)
is calledcodevertex. A vertex v∈V(G)−C(G) is called anon-codevertex.

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 145

FIGURE 4. The iterated complete graphK3
5 with corner types shown

Definition 2.13. A perfect one error correcting code is a code that satisfies the following proper-
ties:

(1) No two codevertices are adjacent.
(2) Every non-codevertex is adjacent to exactly one codevertex.

3. THE TOWERS OFHANOI CODE

In their paperPerfect Codes, NP-Completeness, and Towers of Hanoi Graphs, Cull and Nelson
present a family of graphs, such that each graph has a perfectone error correcting code. The graph
was inspired by the Towers of Hanoi puzzle; each vertex labelrepresents a configuration of the
Towers of Hanoi game, and edges indicate possible moves. Because of this, the vertex labels of
each graph naturally correspond to location of the vertex [CN]. Figure 3 shows a Towers of Hanoi
graph with vertex strings of length three. Notice that it is the iterated complete graphK3

3. All
Towers of Hanoi graphs are iterated complete graphs of the form Kn

3. The family of graphs is
infinite since a graph can be constructed for any valuen≥ 0.

3.1. Labelling a Towers of Hanoi Graph. We will take a moment to examine how the vertex
labels correspond to the Towers of Hanoi puzzle. The labels are strings of ternary digits,{0,1,2}.
In a vertex label of lengthn, a1a2...an, each digit,ai corresponds to a disk in the Towers of Hanoi
puzzle. The disks increase in size from the first (leftmost) digit to the last digit. The value of the
digit indicates the tower on which the disk is located. So, for example, the label 00120 corresponds
to the configuration in which the first, second, and fifth disksare on tower 0, the third disk is on
tower 1, and the fourth disk is on tower 2, as shown in Figure 6.

By considering the rules of the Towers of Hanoi puzzle, we know that from position 00120 we
can move the first (blue) disk to either of the other towers, orwe can move the third (yellow) disk

146 Kathleen King

FIGURE 5. The Towers of Hanoi graph for label strings of length 3

FIGURE 6. The Towers of Hanoi configuration corresponding to label 00120

from tower 1 to tower 2. Thus, the vertex labelled 00120 on theiterated complete graph labelled
for the Towers of Hanoi code is adjacent to vertices labelled10120, 20120, and 00220. These
configurations are shown in Figure 7. The graph shown in Figure 8.

For Cull and Nelson, this labelling system is the basis for their code, which they show to have
exceedingly desirable characteristics. In particular, they show that a finite state machine for error
connection exists, and its size is independent of the lengthof the label string. They also present
a simple method of encoding and decoding. These features make the code an ideal one, but this
paper shall not focus on the Towers of Hanoi as a code. We only pause to note its excellent traits
because these explain why others have worked to generalize the code.

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 147

FIGURE 7. The Towers of Hanoi configurations corresponding to labels 10120,
20120, and 00220, respectively

FIGURE 8. Part of the Towers of Hanoi code onK5
3

4. THE SF CODE

In 2003, Stephanie Kleven created the SF code in an attempt togeneralize the Towers of Hanoi
code for all odd dimension iterated complete graphs. The work done by Danielle Arett in 1999
indicated that to create a complete Towers of Hanoi code for higher dimensions (i.e., more towers)

148 Kathleen King

than three was impractical [DA]. Kleven’s code, however, shares several of the desirable properties
of the Towers of Hanoi code, including simple finite state machines for codeword detection and
error correction and a natural correspondence between vertex labels and locations. For dimension
3, the SF code is the Towers of Hanoi code [SK]. In 2004 Pamela Russell “proved” that the SF
code is a subset of the true Towers of Hanoi code for odd numbers of towers; it includes all of the
vertices that would appear in a true Towers of Hanoi graph, but only some of the edges. Moreover,
Russell showed that it is not possible to create such a code for even dimension iterated complete
graphs [PR]. Thus, it appears that the SF code is an excellentgeneralization of the Towers of Hanoi
code, which made it likely that a simple puzzle corresponding to the code could be created.

4.1. Construction of the SF labelling. To construct the SF code we begin by labellingK1
d. The

top vertex is 0, and the numbers increase by 1 counterclockwise around the polygon, up tod−1.
To labelKn

d, each digit,x, of each label inKn−1
d must be permuted byα, whereα(x) = a

(d+1
2

)

modd. Then, we maked copies of the permutedKn−1
d graph.Kn

d is constructed by rotating thekth

copy ofKn−1
d by 2πk

d radians and adding the digitk to the end of each label.

Example 4.1.An example of the SF labelling construction is shown in Figures 9, 10, and 11.

FIGURE 9. SF labelling onK1
5

FIGURE 10. SF labelling onK2
5

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 149

FIGURE 11. SF labelling onK3
5

4.2. Observations on SF-Labelled Graphs.We now proceed to prove some special features of
SF-Labelled iterated complete graphs. These will be usefulto us in constructing the SF Puzzle.
Before we begin, please note that when the “first” digit of a label is mentioned, we mean the
leftmost character of the label. Similarly, “last” refers to the rightmost digit. Also, it will be
very important to recall from the construction of iterated complete graphs that eachKn

d graph is
composed ofd Kn−1

d graphs, each of which is connected to every otherKn−1
d exactly once.

Lemma 4.2.Within a Kj
d subgraph of a Knd graph, all vertices must share the same last n− j digits.

Proof. We shall prove this lemma using induction. Consider the order n subgraph,Kn
d, that is the

graph itself. In constructing it,d copies ofKn−1
d were made, with a different digit appended to the

end of the label of each vertex, depending on theKn−1
d subgraph to which it belonged. Therefore,

all of the labels of the vertices ofKn
d share no ending digits in common.

Now, let us assume that the lastn− j digits are the same in anyK j
d subgraph ofKn

d. Consider,

then, aK j−1
d subgraph. The lastn− j digits of its vertices’ labels must be identical, since it is

part of aK j
d subgraph. However, in constructing theK j

d, a digit is appended to the labels of each

K j−1
d subgraph, indicating its position. Since the digit is not the same for alld subgraphs, it is not

150 Kathleen King

counted as part of then− j identical digits shared by all vertex labels in theK j
d graph. Therefore,

the labels of the vertices in aK j−1
d subgraph share the samen− j +1= n− (j −1) last digits.

Thus, since the lemma is true forKn
d , and its being true forK j

d implies its truth forK j−1
d , it is

true for all cases that the lastn− j digits of aK j
d subgraph ofKn

d must be identical. �

Lemma 4.3. The labels of the complete corner vertices of a Kn
d graph consist of strings of n

identical digits, where the digit indicates the position ofthe corner.

Proof. We will use induction to show that this is true. ForK1
d, each label is only one digit long, and

the SF Labelling states that one labels the corners of the graph with the numbers from 0 tod−1
starting at the top and travelling counterclockwise aroundthe graph. Thus, the lemma is true for
n= 1.

Now, we will assume that it remains true forn= j, and show that this assumption implies that
it must be true forn= j +1. To create theK j+1

d graph, we first maked copies of theK j+1
d graph.

Each digit of each label is then multiplied byd+1
2 . Then, eachkth subgraph is rotated by

(360
d

)

k,
which is equivalent to addingd+1

2 to each digit of each label in the subgraph. Finally, the digit k
is appended to each of label of thekth subgraph. In order for the lemma to be true, thekth corner
of thekth subgraph must bekk...k (j +1 times). Since thekth corner of theK j

d graph was labelled
kk...k (j times). Then, we can trace the manipulation of this label. Each digit,k, was operated on as
follows: k

(d+1
2

)

+k
(d+1

2

)

= 2k
(d+1

2

)

= k(d+1) = kd+k≡ k (modd). This leaves thekth corner

of eachK j
d subgraph with the labelkk...k (j times). Then, the digitk is appended to each label in

thekth K j
d subgraph. Thus, thekth corner in theK j+1

d graph has the labelkk...k (j +1 times), so the
lemma is true forn= j +1.

Therefore, since the lemma is true forn= 1 and since its being true forn= j implies its being
true forn= j +1, the lemma is true by induction. �

Lemma 4.4. The first j digits in the label of a corner of a Kjd subgraph of a Knd graph must be
identical.

Proof. From Lemma 4.2, all of the vertices in aK j
d subgraph of aKn

d graph must share the same
lastn− j digits. If we consider the construction of theKn

d graph chronologically, we notice that

the first of these identical digits was appended when theK j
d graph first became a subgraph. Before

that,K j
d was itself simply an SF-labelled iterated complete graph, so it had complete corner vertices

whose labels were strings ofj identical digits. Then, whenK j
d was incorporated into larger iterated

complete graphs, these corner labels were permuted byα, but sinceα(k) = α(k), for all digitsk,
the labels of the corners ofK j

d kept their opening strings ofj identical digits. Thus, the firstj digits

in the label of a corner of aK j
d subgraph must be identical. �

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 151

Theorem 4.5. Each vertex in the SF labelling on a Kn
d graph is adjacent to d−1 vertices whose

labels have the same last n−1 digits as itself but whose first digits are all distinct. Internal vertices
are also adjacent to an additional vertex, as defined below:

Given the label with digits a1a2...an, let a1 = a2 = ... = a j , where1≤ j < n. The vertex asso-
ciated with this label is adjacent to another vertex, whose label is identical except for digit aj+1,
which has a value of2a1−a j+1 (mod d).

Proof. From Lemma 4.2, we know that vertices in the sameK1
d subgraph share the same lastn−1

digits. Since theK1
d subgraph is simply the complete graph ond vertices, any vertex within it is

adjacent to each of thed−1 other vertices, all of which differen only in their first digits. Since we
see by the construction of aKn

d graph that all vertices are part of someK1
d subgraph, the first part

of this theorem must be true.
Now, we consider the second part of the theorem. In iterated complete graphs, only the corners

of a K j
d subgraphs connect to vertices outside thatK j

d subgraph. Lemma 4.4 tells that a vertex’s

label indicates that it is a corner of aK j
d subgraph if the firstj digits of its label are identical. The

vertex that is adjacent must share these firstj digits, since the SF Labelling is a Gray code, so
adjacent vertices’ labels may only differ by one digit. Also, in order to be connected in an iterated
complete graph, two vertices that are corners ofK j

d subgraphs must lie within the sameK j+1
d , so,

from Lemma 4.2, the lastn− j +1 digits of the vertices must be the same. This leaves only the
j +1th digit to differ between the adjacent vertices.

Now, since these adjacent vertices must have the same lastn− j −1 digits, we will ignore these
and consider only labels of the formaa...ab, where the firstj −1 digits are the same,a and the last
digit, b, is different. Recall that in the SF labelling, the last digit of a label indicates the position
of its subgraph, and the position of a subgraph tells the number of rotations that it has undergone.
“Rotating” a subgraph by360

d is equivalent to addingd+1
2 to each digit of each label in the subgraph.

Therefore, the transformation of a digitz on theKn−1
d graph into a digit on theith subgraph of the

Kn
d graph is

(

d+1
2

)

z+
(

d+1
2

)

i.
Recall also that in the SF labelling of theKn

d graph labels in thejth subgraph are only connected
to labels in thejth position of the othern−1 subgraphs. So, given a label of the formaa...ab, there
must be an adjacent label of the formaa...ac, whereb 6= c, such thatc

(

d+1
2

)

+b
(

d+1
2

)

≡ a (mod

d). We can solve to find thatc≡ a
(

d+1
2

)−1
−b (modd). We know that

(

d+1
2

)

(2) = d+1≡ 1 (mod

d), so
(

d+1
2

)−1
≡ 2 andc≡ 2a−b (modd).

Thus, we see that a vertex with a label ofa1a2...an, with a1 = a2 = ...= a j , with 1≤ j < n, must
be adjacent to another vertex whose label isa1a2...a j [2a1−a j+1(mod d)]a j+2...an. �

Example 4.6. In K4
5, the vertex 3341 will be adjacent to 0341, 1341, 2341, and 4341, since those

vary only in the first digit. Also, since the digits of 3341 arenot all the same, it cannot be a corner
vertex, and so it will also be adjacent to 33[3 ·2−4(mod5)]1 = 3321.

In K3
7 , the vertex 625 will be adjacent to 620, 621, 622, 623, 624, 626, and 6[6 ·2−2(mod7)]5

= 635.

152 Kathleen King

5. THE SF PUZZLE

Now we are prepared describe the SF Puzzle. It has similar rules to the traditional Towers of
Hanoi. One may play with any number of disks and no larger diskmay ever be placed on top of a
larger one. However, the SF Puzzle is rather more complicated. First, only odd numbers of towers
may be used in play. Also, no disk may be moved at all unless allof the disks smaller than it
are stacked together, even if other towers are open. Then, even when all of the smaller disks are
stacked together, the location of the stack and the current location of the larger disk itself determine
where the larger disk may be moved to. In particular, if we letthed towers be numbered 0 through
d−1 with the stack of smaller disks on towera and the larger disk on towerb, then the larger disk
may only move to tower number 2a−b (modd). This may sound rather familiar; it is simply the
adjacency rule for labels, Theorem 4.5, transferred back todisks and towers. As with the Towers
of Hanoi puzzle, the location of a digit indicates tower number, and the value of a digit indicates
disk number.

Example 5.1.The label 4400 on a K65 graph corresponds to the configuration shown in Figure 12
below. Tower number 3 is colored yellow because the the yellow disk may be placed there next,
since2(4)−0= 8≡ 3 (mod 5). Of course, the smallest disk may always move to any tower, since
there are no smaller disks to stack and regulate its movement. Note that this ability to move the
smallest disk anywhere corresponds to the adjacency of a label to all of the labels with different
first digits, as described in Theorem 4.5.

FIGURE 12. The SF Puzzle configuration for the label 4400

One interesting feature of the SF puzzle is that it is sometimes more challenging to play when
the starting and ending configurations are not simply stacksof all of the disks. Given any two
configurations, one can attempt to move from one to the other using the minimum number of
moves.

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 153

6. SOLVING THE SF PUZZLE

Because the moves and configurations of the SF puzzle map to the edges and vertices of an
SF-labelled iterated complete graph, we know that it must always be possible to solve the puzzle,
no matter what starting and ending positions are given. To solve the puzzle requires recursive
thinking. One must begin by considering to what tower the largest disk must be move. In order to
get the largest disk to its end location, where do all of the other disks need to be stacked? And in
order to get the second largest disk to this point, where mustthe othern−2 disks be placed? One
follows this reasoning until the placement of the top disk isdetermined, and then one can begin
moving all of the others.

A natural question to ask is how many moves it will take to solve the puzzle. We can prove that
the minimum number of moves necessary to shift the entire stack of n disks ond towers is 2n−1,
which we do in subsection 6.1. However, it is also interesting to consider the case in which the
puzzle is played with different starting and ending positions. In order to solve this problem, we
create an algorithm, which is given in subsection 6.2.

6.1. The Minimum Number of Moves to Solve the Traditional SF-Puzzle. We first consider
solving the SF-Puzzle in the traditional Towers of Hanoi style. That is, we move a stack ofn disks
from one ofd towers to another. This problem is equivalent to finding the distance between two
vertices on an SF-labelled graph, where the vertices correspond to different single stack configura-
tions of the puzzle. Now, from Lemma 4.3, we know that labels on the corners ofKn

d graphs consist
of strings ofn identical digits. Recall from Section 3 that when all of then disks of a puzzle are on
tower numberj, the corresponding label is a string ofn j’s. Thus, we may convert the problem of
finding the minimum number of moves between stacks to finding the distance between two corner
vertices on theKn

d graph. We will now solve this problem.

Theorem 6.1. 2n− 1 is the shortest length for a path that connects any two distinct complete
corner vertices on the Knd graph. Moreover, this path is unique.

Proof. We will prove this using mathematical induction.
For n= 1, there is clearly a unique shortest path of length 21−1= 1 between any two corner

vertices onK1
d sinceK1

d is simply the complete graph ond vertices, so one edge connects each
vertex to every other vertex and a path of length 1 is the shortest possible between two distinct
vertices.

Now, let us assume that there exists a unique shortest path oflength 2n−1−1 for Kn−1
d . Note that

in order to get from one complete corner to another we must first travel from the complete corners
to external corners of the sameKn−1

d subgraphs because complete corners are not adjacent to ver-
tices outside their own subgraphs. Thus, the the shortest path must start from one of the complete
corner vertex in oneKn−1

d subgraph, pass through an external corner in the same subgraph, and
then somehow move to an external corner of the destinationKn−1

d subgraph before finally getting
to the final corner vertex. From the inductive hypothesis, weknow that the lengths of the paths
between the complete and external corners of theKn−1

d subgraphs must each be 2n−1−1 and, for
two given corners, these paths are unique.

Now, we must consider how to travel between the two subgraphs. The shortest distance between
any two distinct vertices in a graph is 1. Since iterated complete graphs allow exactly one edge

154 Kathleen King

between every pair of subgraphs, we know that a unique path oflength 1 must exist to connect the
two subgraphs. Also, this edge determines a second corner ineach of the two subgraphs that must
be hit by the path. Thus, we know two corners in eachKn−1

d subgraph, so from our assumption, a
unique shortest path can be found in each subgraph, and, whenthese pieces are put together, the
complete shortest path between the corner vertices is unique.

The length of this shortest path is simply the lengths of the paths through the two subgraphs
added to one, for the connecting edge. From the inductive hypothesis, the length of shortest path
through the subgraph is 2n−1−1. So, we can now find that the length of the shortest path through
theKn

d graph is 2(2n−1−1)+1= 2n−2+1= 2n−1.
So, by mathematical induction, we find that 2n−1 is the shortest length for a path that connects

any two distinct corner vertices on theKn
d graph and this path is unique. �

6.2. The Minimum Number of Moves to Solve the General SF Puzzle.In the previous subsec-
tion we showed that it is possible to solve the SF puzzle in 2n−1 moves, if one is moving all of the
disks from one tower to another. However, we mentioned earlier that a more interesting approach
to the SF puzzle is to consider starting and ending positionsother than simple stacks. Since each
position of the SF puzzle corresponds to a vertex on an SF-labelled graph, we can approach this
problem by considering the distance between any two vertices on an SF-Labelled iterated complete
graph. In this subsection we discuss an efficient algorithm that solves the problem. This algorithm
uses Theorems 4.5 and 6.1 to calculate distance. Pseudocodefor the algorithm is shown below.
There are two parts. The first is all of the code necessary to find the total distance between two
vertices whose labels arelabelAandlabelB. The second finds the distance from a givenlabel to
theath corner of itsKN

d subgraph. We now present this algorithm.

Method FindDistance(labelA, labelB)
bestDistance= 2n-1
start = n-1
aLast = labelA(start)
bLast = labelB(start)
while(aLast == bLast)
start = start - 1
aLast = labelA(start)
bLast = labelB(start)

count = 0
while(count < d)
if(count 6= aLast)
distance = ToCorner(0, labelA, count, start)
if(count == (aLast+bLast)/2 mod d)
distance = distance + 1 + ToCorner(0, labelB, count, start)

else
Roundabout = (2(count)+bLast-aLast)/2 mod d
distance = distance + 2n-1+ 1 + ToCorner(0, labelB, Roundabout, start)

if(distance < bestDistance)
bestDistance = distance

count = count + 1

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 155

Method ToCorner(previousDistance, label, a, N)
if(N > 0)
if(a != label(N-1)
a = (a + (label(N-1))/2 mod d
previousDistance = previousDistance + 2N-1

ToCorner(previousDistance, label, a, N-1)

We must make several comments about the format of the code. “x/2” here meansx ·2−1 (mod
d). So, ford = 5, 2−1 = 3, andx/2 = 3x. Also, please assume thatToCorner returns the final
distance that it finds. In practice, these methods were written in Java, and a private distance variable
was made available to both theToCorner andFindDistance methods.

Now, we are free to show that the find distance algorithm does,in fact, find the distance correctly.

Theorem 6.2.TheToCorner algorithm given above correctly finds the shortest distancebetween
a vertex and the a corner of the graph of order N in which it is located.

Proof. We shall prove the theorem using induction. LetP(i) be the proposition that theToCorner
algorithm gives the correct distance from a corner of theK i

d subgraph to any vertex within it.
We must show thatP(1) is true (i.e., the algorithm work correctly forK1

d). Recall that aK1
d

subgraph is simply the complete graph ond vertices. Thus, the distance from any vertex of the
graph to any corner is either 0 (if the vertex and the corner are coincident) or 1 (since all vertices on
the complete graph are connected). We can show that theToCorner algorithm finds the distance
correctly in either case.
ToCorner is given several initial variables. First ispreviousDistance, which tells the distance

already travelled on the path from the original corner to thevertex. Then,label simply tells the
name of the vertex,a declares the corner to which we are calculating distance, and N tells the
degree of the current subgraph, which is 1 in this instance.

WhenToCorner runs withN = 1, we see that ifa = label(0) (the 0th, or first, digit of label is
the same asa), then nothing is done but callingToCorner again, this time withN = 0, which ends
the program on the run through. Since we know that the corner indicated bya and the vertex to
which thelabel belongs are in the sameK1

d subgraph, if they have the same first digit, they are
coincident. Therefore, the distance between them is 0, and the total distance should remain the
previousDistance, as entered into the method. The algorithm does this correctly.

Now, if a is not the first digit in the label, the vertex must have a distance of one from the corner.
The algorithm sees that the two are not equal, and so it adds 21−1 = 20 = 1 to thepreviousDistance
before calling itself again withN = 0 to end the program. This also is correct. (Note that although
a is also affected when the corner and vertex were not coincident, this change has no effect on the
running of the program since it ends immediately thereafter.)

Thus, we have found thatP(1) is true. We now assume thatP(j −1) is true and use this to show
thatP(j) must also be true.
ToCorner will first check to see thatj > 0. Once assured of this, it comparesa andlabel(j −1).

If, a = label(j −1) then the vertex to which thelabel belongs is in the sameK j−1
d subgraph as

the corner. Thus, it requires no additional moves to reach the corner of thelabel’s K j−1
d subgraph,

so no distance is added. The algorithm simply calls itself, this time with j −1 rather thanj, and

156 Kathleen King

by the inductive assumption we know that the algorithm must find the correct distance, soP(j) is
true.

It is also possible, though, thata 6= label(j−1). Then the destination vertex is not in the corner’s
K j−1

d subgraph (because we know from Lemma 4.2 that vertices in thesameK j−1
d subgraph share

the same lastn− (j −1) vertices). So, to find the path from the corner to the vertex, we must first
move to the vertex’sK j−1

d subgraph. To do this, we travel to a different corner of the beginning

corner’sK j−1
d subgraph, since our original corner must be an external corner because it is also the

a corner of aK j
d subgraph. From theorem 6.1, we know that the distance between two corners of a

K j−1
d graph must be 2n−1−1. Since we want the shortest complete path, we choose a corner that

is adjacent to theKn−1
d subgraph containing the destination vertex, so that the total distance from

the initial corner to a corner of the destination vertex’sKn−1
d subgraph is(2n−1−1)+1 = 2n−1.

This is the amount of distance added on by theToCorner algorithm.
However, we must know how to choose the corner adjacent to thedestination subgraph because

only one of thed−1 non-external corners is adjacent to the destination vertex’s subgraph. Fortu-
nately, Lemma 4.2 tells that corners ofK j−1

d subgraphs share the same lastn− j −1 digits. This
means that digits 0, 1, ... ,j −2 may be different, but digitj −1 of every vertex in the subgraph
will be identical. Also, from Theorem 4.5 we know the form of the label for adjacent vertices that
do not lie within the sameK1

d subgraph. Now we wish to travel from our initial corner, whose
label we shall callaa...abc... (where there arej a’s followed by a string ofn− j other digits) to
the corner in the destination vertex’s subgraph with the label whosejth digit is label(j −1) (since
we start counting digits at zero).

We first travel from our starting corneraa...abc... to another corner in the same subgraph, which
from Lemma 4.4 must have the formxx...xabc... (where there arej −1 x’s). The corner labelled
xx...xabc... is adjacent to the corner in the subgraph of our destination vertex, which we already
said is labelledxx...x[label(n−1)].... From Theorem 4.5, we know that thejth digit of these two
labels must have a special relationship, so we can write the equation 2x−a= label(j−1) and solve
to find thatx= (label(j −1)+a)/2 modd. The corner of the destination vertex’sK j−1

d subgraph
with the label satisfying these requirements becomes the next corner to be input to theToCorner
algorithm, so the algorithm sets itsa variable to this new value. Having accomplished this, the
ToCorner algorithm calls itself with its adjustedpreviousDistance, a, and j −1. Then, we know
from our inductive assumption that theToCorner algorithm works correctly for theK j−1

d subgraph.

Since we have shown that forK j
d ToCorner does, in fact, increment the distance correctly and set

the value of the next corner appropriately, we know that the algorithm is prepared to work forK j−1
d .

So,P(j) is true.
Thus, sinceP(1) is true, and sinceP(j −1) true implies thatP(j) is true, we can declare that

theToCorner algorithm given above correctly finds the shortest distancebetween a vertex and the
a corner of theKN

d subgraph in which it is located. �

Example 6.3.Let us look at how theToCorner algorithm works when it is called asToCorner(0,
0231, 4, 3) inside a K45 graph. This means that we are trying to find the distance from the
vertex labelled 0231 to the 4 corner of its K3

5 subgraph. The 4 corner of the K3
5 subgraph

containing 0131 is 4441. Now, we shall trace through the algorithm. Since N= 3 > 0 and

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 157

previousDistance label(N−1) a N
0 3 4 3
4 2 1 2
6 0 4 1
7 - 2 0

TABLE 1. The values of variables in theToCorner algorithm

label(3− 1) = label(2) = 3 6= 4 = a, we adjust the values of a and previousDistance. Thus,
a= (label(2)+a)2−1 = (3+4)(3) = 21≡ 1 (mod d) and previousDistance= 0+23−1 = 4.

NowToCorner is called again, but this time with a new set of variables:ToCorner(4, 0231,
1, 2). Thus, we are now finding the distance from the vertex labelled 0231 to the 1 corner of its K25
subgraph, which is labelled 1131. Again, we see that2> 0 and label(1) = 2 6= 1, so we find new
values for a and previousDistance, as shown in Table 1. The algorithm is then called again with the
new values for previousDistance, a, and N, and since since N= 1> 0 and label(0) = 0 6= a= 4,
a and previousDistance are adjusted once again, to the values in Table 1. The program then calls
ToCorner(7, 0231, 2, 0), but since N= 0, N≯ 0 and the program ends with a final distance is 7.
We can confirm this by looking at a graph of K4

5, which is shown in Figure 13.

FIGURE 13. Part of the SF LabelledK4
5 graph, showing the path from 4441 to 0231

measured by theToCorner algorithm

158 Kathleen King

Theorem 6.4. TheFindDistance algorithm given above correctly finds the shortest distance
between two vertices on an SF-labelled Kn

d graph.

Proof. To travel from one vertex to another on aKn
d graph, we must first determine whether the

two vertices lie within any of the same subgraphs. This is indicated by the label, since Lemma 4.2
states that labels with the same lastj digits lie within the the sameKn− j

d subgraph. Thus, to find
the distance between two points, we determine whether they share any common digits. Thesej
digits are then ignored, and the problem is considered within theKn− j

d graph. TheFindDistance
algorithm performs this task of looking for common subgraphs in the first while statement, which
determines how many digits are shared by the two labels. It sets thestart value accordingly to
n− j −1, which is the highest order of subgraph which does not contain both vertices. It also sets
the values ofaLastandbLast to be the last non-shared digits of the two labels.

Now, we have two vertices, let us call themA andB, each lying in differentKstart
d subgraphs

of the sameKn− j
d subgraph, so that the label ofA is that which containsaLast and similarlyB.

To travel fromA to B, we must move from oneKstart
d subgraph to the other. Since subgraphs are

only connected to other subgraphs by their corners, we must travel fromA to an corner of itsKstart
d

subgraph, then somehow cross to an corner ofB, and finally proceed from that corner toB itself.
Of course, we have many choices here; how do we choose the corners, and how do we connect
them?

TheFindDistance algorithm calculates the distance fromA andB to each corner in their sub-
graphs, except for the subgraphs’ external corners, which by definition are not adjacent to any
otherKstart

d subgraph within the sameKn− j
d graph. The distance fromA to each of its corners is

calculated first, using theToCorner algorithm, since we know from Theorem 6.2 thatToCorner
correctly finds the distance from a vertex to an external corner of its theKstart

d subgraph. We then
find the closest cornerB’s subgraph, and calculate the sum of all of the distances (from A to its
corner, between the two corners of the subgraphs, and fromB to its external corner).

Of course, we have not yet explained how the external cornersof A andB are matched, or how
the distance between these corners is calculated. Since we know from the construction of iterated
complete graphs that there is one corner of subgraphA that is adjacent to a corner of subgraphB,
we will consider this easy case first. Since these two cornersare adjacent, the distance between
them is 1. Then, using Theorem 4.5, we can find which corners these are within their respective
Kstart

d subgraphs. Because these adjacent vertices are corners ofKstart
d subgraphs, their firststart

digits must identical. Since the SF Labelling is a Grey code,only one digit can vary in the labels
of adjacent vertices, so the strings ofstart identical digits at the beginning of each corner’s label
must be the same as one another. (Because if one digit in the string varied, all of the digits would
vary, and unless this is the trivial case, that would make more than one digit different between
adjacent labels.) Recall also that since theA andB subgraphs are part of the sameKn− j

d graph,
Lemma 4.2 states that the lastj digits must be the same for vertexA, vertexB and all of the other
vertices in the subgraph. This leaves only the numberstart digit of the adjacent external corners to
be differ between the two labels. So, the external corner of subgraphA that has a label of the form
xx...x[aLast]... is adjacent to the corner of subgraph B withxx...x[bLast]..., wherex is some digit
andaLastandbLastare the numberstart digits in each label. From Theorem 4.5, we know that
2x−aLast= bLast. Thus, the distance between the A and B subgraphs is 1 if we areconnecting
thex= (aLast+bLast)/2 modd corners of each subgraph.

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 159

To travel from any other corner ofA to any other corner ofB, we must “cut across” other
subgraphs. To keep these paths as short as possible, we pair corners of subgraphsA andB that
are adjacent to the sameKn− j−1

d subgraph. Thus, from Theorem 6.1, the distance between the two
corners is only 1+(2start−1)+1= 2start+1, since it is a distance of 1 between the external corner
of subgraphA and its adjacent corner, a distance 2start − 1 between corners of the sameKstart

d
subgraph, and another distance of 1 between the external corner of subgraphB and its adjacent
corner.

Thus, we know the distance between nonadjacent external corners of subgraphsA andB, but
we must still determine how to pair these corners. In theFindDistance algorithm, we find the
distance toA to one of the external corners of itsKstart

d subgraph, and then pair it to the appropriate
corner in subgraphB. If the external corner ofA’s subgraph is not directly adjacent to any corner
of B, we know that we must cut across another subgraph. So, we mustfind the external corner of
subgraphB that is adjacent to the same subgraph as thecountcorner of subgraphA. For ease of
writing, we will let k= count. Now, as described earlier, adjacent corners ofKstart

d subgraphs have
the differ only in thestart digits of their labels. Thus, from Theorem 4.5, thecount, or k, corner
of subgraphA is adjacent to a corner in another subgraph with a label of theform kk...k[2k−
aLast]..., where 2k−aLast (mod d) is the value of thestart digit. Similarly, there exists some
corner of subgraphB that is adjacent to a corner in the same subgraph with the a label of the form
xx...x[2x−bLast]..., where 2x−bLast(modd) is the value of thestart digit. However, since both
the corner labelledkk...k[2k−aLast]... and the corner labelledxx...x[2x−bLast]... are in the same
Kstart

d subgraph, we know from Lemma 4.2 that 2x−bLast= 2k−aLast. We solve to find that
x= (2k−aLast+bLast)/2 modd. This means that thex corner of subgraphB is adjacent to the
same subgraph as thecountcorner of subgraphA, and we have already determined that the distance
between these corners of subgraphsA andB is 2start+1.

Within its second while loop, theFindDistance algorithm calculates the distance fromA to
its subgraph’s corners usingToCorner, matches these corners with the appropriate corners of
subgraphB, and finds the distance fromB to the correct corners. It adds up the totaldistanceof
each path, and compares each of these values to thebestDistance, replacing thebestDistancewith
distanceif thedistanceis shorter. Thus, in the end, thebestDistanceis indeed the shortest distance,
so we see that theFindDistance algorithm does correctly calculates the distance between two
given vertices on an SF-labelledKn

d graph. �

Example 6.5. We will look at the workings of theFindDistance algorithm on the K35 graph,
which is shown in Figure 11. We will let labelA= 424and labelB= 331. The code initially sets
bestDistance= 23−1= 8−1= 7 and start= n−1= 3−1= 2, so aLast= labelA(2) = 4 and
bLast= labelB(2) = 1. Since4 6= 1, we do not change the values of aLast, bLast, or start. Now
we set count to 0 and enter the second while loop.

Since count= 0 6= 4= aLast, we set distance toToCorner(0,424,0,2), which returns 2, which
we can confirm by looking at the graph K3

5 shown in Figure 11 and checking the distance between
vertex 424 and vertex 004. Then, we check to see whether countis (aLast+ bLast)

(d+1
2

)

. In
this case,(4+1)

(

5+1
2

)

= 15≡ 0 (mod d), which is equal to count. This means that the corner
004 is adjacent to a corner of labelB’s subgraph, namely 001.The vertex labelled with labelB
is a distance ofToCorner(0,331,0,2) = 3 away from 001, so the total distance of this path is

160 Kathleen King

3+ 1+ 3 = 7. Since bestDistance was already set to 7, the calculated path is no shorter, and
bestDistance is not changed. The count variable is then incremented and the process repeated.

This time, count= 1, which is still not equal to 4, so we find that the distance from424 to
114 is 2, and we set distance accordingly. Since 114 is not directly adjacent to the subgraph
containing labelB, we must find out which corner of labelB’s subgraph is adjacent to the same
subgraph which is adjacent to 114. We find that Roundabout= (2(count)+blast−aLast)

(

d+1
2

)

=

(2(1)+1−4)
(5+1

2

)

= −3 ≡ 2 (mod d). So, we now must find the distance between the vertices
labelled 221 and331 using theToCorner algorithm, which we can see by inspection must be
22−1= 3, since 221 and 331 are corners of an order 2 subgraph (Theorem6.1). This gives a total
distance of2+(22+1)+3= 10, which is more than the current bestDistance of 7. We continue
this process, until we have considered the paths through of the 4 corners of labelA’s subgraph
which are connected to other subgraphs. As it turns out, the path through 224 is the shortest, with
a length of 6.

We now know that theFindDistance andToCorner algorithms correctly determine the mini-
mum number of moves necessary to solve the SF puzzle. However, many algorithms exist to solve
every (solvable) problem. We wish to find an algorithm that not only works, but is also efficient.
Thus, we must also consider the run time of each algorithm. Wedesire that the time needed to run
the algorithm grows linearly with respect ton and with respect tod.

Lemma 6.6. TheToCorner algorithm given above has a run time ofΘ(N).

Proof. The ToCorner algorithm performs a constant number of calculations each time it calls
itself, and it calls itselfN times. Therefore,ToCorner has a run time ofΘ(N). �

Theorem 6.7.TheFindDistance algorithm given above has a run time ofΘ(dn).

Proof. The FindDistance algorithm begins with several lines that are run only once, each of
which take constant running time. Now, in the worst case for running time, the vertices are in
differentKn−1

d subgraphs of theKn
d graph. In this case, the last digits of the two vertex labels are

different, so the while loop conditional is also checked only once.
We now enter a for loop that runs d times. Within in this loop are several steps that use only

constant time for each pass through of the loop. However,ToCorner method is called twice during
each pass. Lemma 6.6 states that theToCorner method itself has a run time ofΘ(N). Since in this
case, the initial value forN is start, and, for the worst case, we allowstart= n−1. So, the run
time ofToCorner is Θ(n−1) = Θ(n).

So, theFindDistance algorithm has a number of constant calculations, a number ofd times
constant calculations, and 2dΘ(n) = Θ(2dn) = Θ(dn) calculations. Since we only look at the
leading term to determine run time, we can see that theFindDistance algorithm has a run time of
Θ(dn). �

7. DISCUSSION

We have presented a study of the SF labelling, used this studyto create a new puzzle, found
the minimum number of moves needed to solve the standard puzzle, and presented an algorithm
to find the minimum moves for the puzzle with any starting and ending configurations. We also

A New Puzzle Based On the SF Labelling of Iterated Complete Graphs 161

showed that the algorithms used to calculate the minimum number of moves has an efficient run
time.

We did not give an algorithm to find the sequence of moves that solves the SF puzzle. However,
this could be done easily by using Theorem 4.5 and building off of the current algorithms, which
already determine the corners of the subgraphs through which the path travels. To solve the puzzle
one would only need to write a simple program to determine thepaths between the various corners.

We also do not address the amount of computer memory used by each algorithm, although we
believe that the algorithms presented use an acceptable amount of space. However, since we have
not given any proof of the minimum possible run time or space we cannot say with certainty that
the distance finding algorithm has maximal efficiency.

REFERENCES

[DA] Arett, Danielle.Coding Theory on the Generalized Towers of Hanoi.Proceedings of the REU Program in Math-
ematics. NSF and Oregon State University. Corvallis, Oregon. August, 1999.

[CN] Cull, Paul and Ingrid Nelson.Perfect Codes, NP-Completeness, and Towers of Hanoi Graphs. Bulletin of the
Institute of Combinatorics and its Applications, Volume 26, 13-38. 1999.

[JF] J. S. Frame.Solution to advanced problem 3918.American Mathematics Monthly, 48 (1941), pp. 216217.
[SK] Kleven, Stephanie.Perfect Codes on Odd Dimension Serpinski Graphs.Proceedings of the REU Program in

Mathematics. NSF and Oregon State University. Corvallis, Oregon. August, 2003.
[LHS] Lawrence Hall of Science.Towers of Hanoi. University of California, Berkeley. Website url

http://www.lhs.berkeley.edu/Java/Tower/towerhistory.html. July 29, 2004.
[PR] Russell, Pamela.Perfect One Error Correcting Codes on Iterated Complete Graphs: Encoding and Decoding.

Proceedings of the REU Program in Mathematics. NSF and Oregon State University. Corvallis, Oregon. August,
2004.

[BS] B. M. Stewart.Solution to advanced problem 3918.American Mathematics Monthly, 48 (1941), pp. 217219.

FRANKLIN W. OLIN COLLEGE OFENGINEERING

E-mail address: kathleen.king@students.olin.edu

