A NEW PUZZLE BASED ON THE SF LABELLING OF ITERATED COMPLETE
GRAPHS

KATHLEEN KING

ADVISOR: PauL CuLL
OREGON STATE UNIVERSITY

ABSTRACT. The Towers of Hanoi puzzle inspired the creation of a pédae error correcting code
on an iterated complete graph of dimension three. This qotlen became was generalized into the
SF code, which is a perfect one error correcting code ont@dreomplete graphs of odd dimension.
In this paper, we use the SF code to create a puzzle similaetddwers of Hanoi. We then proceed
to give efficient algorithms to determine the minimum numdfamoves in which the puzzle can be
solved.

1. INTRODUCTION

The Towers of Hanoi puzzle is supposedly based on of a legEimel story goes that Buddhist
monks were required to move a stack of 64 sacred disks fromamagion in their temple to
another. There was only one spot in the temple, other thainitied and final places, that was holy
enough to hold the disks. The disks were incredibly fragieno larger disk could be set on top of
a smaller one, and only one could be carried at a time. Acogrtdi the legend, when the monks
finished moving the entire stack to the new location, the évabuld end [LHS].

The legend inspired Edouard Lucas to create the Towers obiHarzzle, which he published
in 1883. Happily, those who took up the problem of the Towéidanoi determined that it would
require 24— 1 moves to shift the entire tower. Thus, even if the monks veateemely efficient
and moved one disk each minute, it would take over 3.5% ¢8ars to move the entire stack.

Of course, mathematicians being what they are, nobody whisigvio let the problem rest,
feeling secure in the knowledge that the world will not beirgdany time in the near future.
Nor were they satisfied with turning the problem into a ctalds game, in which disks of varying
diameter can be placed on three pegs (“towers”), with theegaies as those that bound the monks.
No, various aspects of the Towers of Hanoi puzzle have peaviimple material to entertain
mathematicians.

One problem of interest is the Towers of Hanoi puzzle withertban three towers. Although a
Frame and Stewart independently found a solution in 194 bnechas been able to prove that this
solution is true [JF],[BS]. Others have found new applmasi for the traditional three-peg puzzle.
Of particular interest to this paper is the work done by Calll &Nelson, who in 1999 created a
perfect one error correcting code based on a graph of therSaiéianoi [CN].

The graph used in the Towers of Hanoi graph is an iterated engraph of degree three.
Because of the excellent properties provided by the Towktdamoi code it inspired others to

Date August 13, 2004.
This work was done during the Summer 2004 REU program in Ma#ties at Oregon State University.
142

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 143

search for similar codes on iterated complete graphs ofegegreater than three. Of the various
attempts to create such a code, the most successful hashee8# tode for odd degree iterated
complete graphs [SK].

This paper uses the SF code to create a new puzzle, one tivailes $o the Towers of Hanoi,
but has several additional rules and can be played with adyathber of towers. The new puzzle
also considers beginning or ending the game at disk confignsaother than simple stacks on the
various towers. We explain how to solve the puzzle and ptesealgorithm to find the minimum
number of moves necessary to do so.

2. DEFINITIONS
Before we proceed, we must present several definitions tildiewised throughout this paper.

Definition 2.1. A graph, G, consists of a nonempty finite set V(G) of elements cedigntes and
a finite set E(G) of distinct unordered pairs of distinct eéants of V(G) calle@dges. Two vertices,
Vi,Vj € V(G) are adjacent if the edge{vi,vj} € E(G). Asubgraph S of G consists of a V(8)
V(G) together with the edges connecting any adjacent \estig, vj € V(S).

FIGURE 1. A simple graph

Example 2.2.In Figure 1, we see a graph G with the vertex set V(Q)esb, ¢, d, e} and the edge
set E(G) ={(a,b),(a,c),(b,c),(c,d)}. Any combination of vertices and their associated edges
could be a subgraph. One subgraph S has the vertex set V{8)d-e} and the edge set E(G) =

{(c.d)}.

Definition 2.3. Two disjoint subgraphs;Sand $ of a graph G areadjacent if there exist adjacent
vertices in G yand » such thaty e V(S) and w € V().

Definition 2.4. If a vertex v is adjacent to j other vertices, then v dagree .

Definition 2.5. A complete graph on d vertices, denoted I, is a graph which has d vertices and
Vi,Vj € E(Kq) for all vi,vj € V(Kq) with i # |.

Example 2.6. Figure 2 shows the complete graphs on 3, 5, and 13 vertices.

Definition 2.7. An iterated complete graph on d vertices with n iterations, denoted Kcan be
defined recursively. j(is the complete graph on d verticesy I§ composed of d copies oQKl,
and edges such that exactly one edge connects e(%‘c‘ns}(lbgraph to every otherQ(1 subgraph

so that exactly one vertex in eactj‘T"\1 subgraph has degree-d1 and all other vertices have
degree d.

144 Kathleen King

e

FIGURE 2. The complete graphss, Ks, K13

Example 2.8. Figure 3 shows the iterated complete graptﬁ Khich has four iterations on three
vertices, and K, which has two iterations on seven vertices. Note that teiraat the next itera-
tion, d copies are made of the current iteration, and theggeare then essentially placed at the
vertices of a I§ graph.

A

Y ‘
vlq“\\vvé\%"bgé\%%wv{“\\v
=P

XL

L e
Ve e
290
e
S 4'!'.‘95
\V»A«\v('..“,\»}

RN

N N

D)
YRR Y, v
A N A A
N By
T %S
Ry N

FIGURE 3. The iterated complete grapkg, andK?

Definition 2.9. The " subgraph of a K§ graph, with1 < j<nisa Iﬁ graph that is a part of the
Kf graph. The K subgraph hasrder j.

Definition 2.10. A corner of a Iﬂi subgraph of a K graph is a vertex that is adjacent to only-dl

vertices within the [#subgraph. Arexternal corner of a Ké subgraph is a corner that is adjacent

to only d— 1 vertices within the &*1 subgraph that contains it. Aomplete corner is a corner of
the K| graph itself.

Example 2.11.In Figure 4, the three types of corners are indicated by eschnd labelled.

Definition 2.12. A code on a graph G is any subset of vertice§& C V(G). A vertex o= C(G)
is calledcodevertex. A vertex ve V(G) — C(G) is called anon-codevertex.

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 145

(n)

Complete Corner

e

< % VA¥
”.\"A" External Corner
4“4‘! of order 1

AN R subgraph
R
DS LS < <
VTRV TRV,

Corner of order
AR

FIGURE 4. The iterated complete gra|b1§’ with corner types shown

Definition 2.13. A perfect one error correcting code is a code that satisfies the following proper-
ties:

(1) No two codevertices are adjacent.

(2) Every non-codevertex is adjacent to exactly one codevertex

3. THE TOwWERS OoFHANOI CODE

In their paperPerfect Codes, NP-Completeness, and Towers of Hanoi Gré&phisand Nelson
present a family of graphs, such that each graph has a perfearror correcting code. The graph
was inspired by the Towers of Hanoi puzzle; each vertex ledq@lesents a configuration of the
Towers of Hanoi game, and edges indicate possible movesauBemf this, the vertex labels of
each graph naturally correspond to location of the verté¥ [Eigure 3 shows a Towers of Hanoi
graph with vertex strings of length three. Notice that iths iterated complete graph33. All
Towers of Hanoi graphs are iterated complete graphs of tire K. The family of graphs is
infinite since a graph can be constructed for any valuxe.

3.1. Labelling a Towers of Hanoi Graph. We will take a moment to examine how the vertex
labels correspond to the Towers of Hanoi puzzle. The labelstaings of ternary digit§,0, 1, 2}.
In a vertex label of length, a;ay...an, each digitg; corresponds to a disk in the Towers of Hanoi
puzzle. The disks increase in size from the first (leftmogfit do the last digit. The value of the
digit indicates the tower on which the disk is located. Soef@mmple, the label 00120 corresponds
to the configuration in which the first, second, and fifth diaks on tower 0, the third disk is on
tower 1, and the fourth disk is on tower 2, as shown in Figure 6.

By considering the rules of the Towers of Hanoi puzzle, wevktizat from position 00120 we
can move the first (blue) disk to either of the other towersyercan move the third (yellow) disk

146 Kathleen King

FIGURE 5. The Towers of Hanoi graph for label strings of length 3

FIGURE 6. The Towers of Hanoi configuration corresponding to lalodl2D

from tower 1 to tower 2. Thus, the vertex labelled 00120 onitdrated complete graph labelled
for the Towers of Hanoi code is adjacent to vertices labelle#i20, 20120, and 00220. These
configurations are shown in Figure 7. The graph shown in Eigur

For Cull and Nelson, this labelling system is the basis feirtbode, which they show to have
exceedingly desirable characteristics. In particulaytshow that a finite state machine for error
connection exists, and its size is independent of the leofgthe label string. They also present
a simple method of encoding and decoding. These featuree thakcode an ideal one, but this
paper shall not focus on the Towers of Hanoi as a code. We @ulggto note its excellent traits
because these explain why others have worked to generaézmtie.

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 147

.

2

0 1 2

Al

FIGURE 7. The Towers of Hanoi configurations corresponding to &ld€1120,
20120, and 00220, respectively

FIGURE 8. Part of the Towers of Hanoi code &3

4. THE SF CoDE

In 2003, Stephanie Kleven created the SF code in an attenggtrteralize the Towers of Hanoi
code for all odd dimension iterated complete graphs. Thé&wone by Danielle Arett in 1999
indicated that to create a complete Towers of Hanoi codeiffiren dimensions (i.e., more towers)

148 Kathleen King

than three was impractical [DA]. Kleven's code, howevearsls several of the desirable properties
of the Towers of Hanoi code, including simple finite state miaes for codeword detection and
error correction and a natural correspondence betweeexviatiels and locations. For dimension
3, the SF code is the Towers of Hanoi code [SK]. In 2004 Pamaks&l “proved” that the SF
code is a subset of the true Towers of Hanoi code for odd nusrdfé¢owers; it includes all of the
vertices that would appear in a true Towers of Hanoi grapthobly some of the edges. Moreover,
Russell showed that it is not possible to create such a cadevém dimension iterated complete
graphs [PR]. Thus, it appears that the SF code is an excglemtralization of the Towers of Hanoi
code, which made it likely that a simple puzzle correspogdinthe code could be created.

4.1. Construction of the SF labelling. To construct the SF code we begin by Iabellhtl(b The
top vertex is 0, and the numbers increase by 1 countercleekarnound the polygon, up tb—1.
To labelK}, each digit,x, of each label irKgl"l must be permuted by, wherea(x) = a(%)

modd. Then, we makel copies of the permuteld(rj“1 graph.Kj is constructed by rotating tHé
copy ofK(’}*1 by %‘ radians and adding the diditto the end of each label.

Example 4.1. An example of the SF labelling construction is shown in Fegl#, 10, and 11.

FIGURE 9. SF labelling ork2

FIGURE 10. SF labelling ork2

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 149

0o

FIGURE 11. SF labelling ork3

4.2. Observations on SF-Labelled Graphs.We now proceed to prove some special features of
SF-Labelled iterated complete graphs. These will be ugefuk in constructing the SF Puzzle.
Before we begin, please note that when the “first” digit of laelais mentioned, we mean the
leftmost character of the label. Similarly, “last” refexs the rightmost digit. Also, it will be
very important to recall from the construction of iteratemmplete graphs that eadtj graph is

composed ofl Kg‘*l graphs, each of which is connected to every ot('gé’rl exactly once.

Lemma 4.2. Within a Iﬁ subgraph of a K graph, all vertices must share the same last jdigits.

Proof. We shall prove this lemma using induction. Consider the onduibgraphKj, that is the
graph itself. In constructing it copies oﬂ(&“1 were made, with a different digit appended to the

end of the label of each vertex, depending onl(ﬁé1 subgraph to which it belonged. Therefore,
all of the labels of the vertices & share no ending digits in common.

Now, let us assume that the last j digits are the same in anyg, subgraph oK}j. Consider,
then, aKgl_1 subgraph. The last— | digits of its vertices’ labels must be identical, since it is
part of aK(jj subgraph. However, in constructing tKé:, a digit is appended to the labels of each
Ké’l subgraph, indicating its position. Since the digit is n@ siame for altl subgraphs, it is not

150 Kathleen King

counted as part of the— | identical digits shared by all vertex labels in ﬂhégraph. Therefore,

the labels of the vertices inkaé_1 subgraph share the same- j +1=n— (j — 1) last digits.
Thus, since the lemma is true fi(], and its being true foKé'I implies its truth forKé_l, itis

true for all cases that the last- j digits of aK(jj subgraph oK} must be identical. O

Lemma 4.3. The labels of the complete corner vertices of & dtaph consist of strings of n
identical digits, where the digit indicates the positiortloé corner.

Proof. We will use induction to show that this is true. F{q} each label is only one digit long, and
the SF Labelling states that one labels the corners of thghgséth the numbers from 0 td — 1
starting at the top and travelling counterclockwise arotiregraph. Thus, the lemma is true for
n=1.

Now, we will assume that it remains true for= j, and show that this assumption implies that
it must be true fon= j + 1. To create thda(é“ graph, we first make copies of theKélJrl graph.
Each digit of each label is then multiplied 8. Then, eactk'h subgraph is rotated bf8%)k,
which is equivalent to addinéJzL1 to each digit of each label in the subgraph. Finally, thetdigi
is appended to each of label of tk8 subgraph. In order for the lemma to be true, kHecorner
of thek!" subgraph must biek...k (j + 1 times). Since th&" corner of thek | graph was labelled
kk...k (j times). Then, we can trace the manipulation of this labethE#git, k, was operated on as
follows: k(9442) +k(452) = 2k(%4L) = k(d+1) = kd+k = k (modd). This leaves th&" corner

of eachK_(‘j subgraph with the labédk...k (j times). Then, the digik is appended to each label in

thek!h K subgraph. Thus, thé" corner in thek /™" graph has the labék...k (j + 1 times), so the
lemmais true fon= j +1.

Therefore, since the lemma is true fo= 1 and since its being true for= j implies its being
true forn=j 4+ 1, the lemma is true by induction. O

Lemma 4.4. The first j digits in the label of a corner of aél@ubgraph of a K graph must be
identical.

Proof. From Lemma 4.2, all of the vertices inlég| subgraph of &j graph must share the same
lastn— j digits. If we consider the construction of tII’(%1 graph chronologically, we notice that

the first of these identical digits was appended WherKrrj"lgraph first became a subgraph. Before
that,Ké was itself simply an SF-labelled iterated complete graplit,Isad complete corner vertices

whose labels were strings pfdentical digits. Then, whel&iéI was incorporated into larger iterated
complete graphs, these corner labels were permuted byt sincea (k) = a(k), for all digitsk,

the labels of the corners Kfc’j.kept their opening strings gfidentical digits. Thus, the firgtdigits
in the label of a corner of Ké subgraph must be identical. O

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 151

Theorem 4.5. Each vertex in the SF labelling on gjigraph is adjacent to & 1 vertices whose
labels have the same lastr1l digits as itself but whose first digits are all distinct. Irmial vertices
are also adjacent to an additional vertex, as defined below:

Given the label with digits @,...a,, let & = ap = ... = aj, wherel < j < n. The vertex asso-
ciated with this label is adjacent to another vertex, whaseel is identical except for digit;as,
which has a value da; —aj1 (mod d).

Proof. From Lemma 4.2, we know that vertices in the sa(ﬁesubgraph share the same last 1
digits. Since theK& subgraph is simply the complete graphrertices, any vertex within it is
adjacent to each of thek— 1 other vertices, all of which differen only in their first dig} Since we
see by the construction ofl] graph that all vertices are part of soﬂﬁé subgraph, the first part
of this theorem must be true.

Now, we consider the second part of the theorem. In iteradeapiete graphs, only the corners
of a Ké subgraphs connect to vertices outside Ihdﬁsubgraph. Lemma 4.4 tells that a vertex’s

label indicates that it is a corner oﬂq subgraph if the firs§ digits of its label are identical. The
vertex that is adjacent must share these firdigits, since the SF Labelling is a Gray code, so
adjacent vertices’ labels may only differ by one digit. Alsoorder to be connected in an iterated
complete graph, two vertices that are cornerK&)Bubgraphs must lie within the sarKéH, so,
from Lemma 4.2, the last— j + 1 digits of the vertices must be the same. This leaves only the
j + 11" digit to differ between the adjacent vertices.

Now, since these adjacent vertices must have the same-tapt 1 digits, we will ignore these
and consider only labels of the foraa...ab, where the firsj — 1 digits are the same,and the last
digit, b, is different. Recall that in the SF labelling, the last tigfia label indicates the position
of its subgraph, and the position of a subgraph tells the murabrotations that it has undergone.
“Rotating” a subgraph b%’ is equivalent to addiné%1 to each digit of each label in the subgraph.
Therefore, the transformation of a digibn theKé"‘1 graph into a digit on thé" subgraph of the
K graph is(352)z+ (442)i.

Recall also that in the SF labelling of tKg graph labels in thg!" subgraph are only connected
to labels in thgt" position of the othen— 1 subgraphs. So, given a label of the faamn..ab, there
must be an adjacent label of the foam...ac, whereb # ¢, such that(d—gl) + b(%) =a(mod
d). We can solve to find that= a(%)fl —b (modd). We know that{942)(2) =d+1=1 (mod

d), so(9:1) ! =2 andc = 2a— b (modd).
Thus, we see that a vertex with a labebgé,...an, witha; = a; = ... = aj, with 1 < j <n, must
be adjacent to another vertex whose labehi...aj[2a; — aj1(mod d)aj,»...an. O

Example 4.6.In Kg‘, the vertex 3341 will be adjacent to 0341, 1341, 2341, and. 48uhce those
vary only in the first digit. Also, since the digits of 3341 am all the same, it cannot be a corner
vertex, and so it will also be adjacent to 3R — 4(modbs)]1 = 3321.

In K73, the vertex 625 will be adjacent to 620, 621, 622, 623, 628, 64d 66-2— 2(mod7)]5
= 635.

152 Kathleen King

5. THE SF RuzzLE

Now we are prepared describe the SF Puzzle. It has similes tol the traditional Towers of
Hanoi. One may play with any number of disks and no larger dialy ever be placed on top of a
larger one. However, the SF Puzzle is rather more comptic&tiest, only odd numbers of towers
may be used in play. Also, no disk may be moved at all unlessfdahe disks smaller than it
are stacked together, even if other towers are open. Then,wkien all of the smaller disks are
stacked together, the location of the stack and the cumeatibn of the larger disk itself determine
where the larger disk may be moved to. In particular, if weHetd towers be numbered 0 through
d — 1 with the stack of smaller disks on toweeand the larger disk on towéx then the larger disk
may only move to tower numbea2- b (modd). This may sound rather familiar; it is simply the
adjacency rule for labels, Theorem 4.5, transferred backsks and towers. As with the Towers
of Hanoi puzzle, the location of a digit indicates tower nemland the value of a digit indicates
disk number.

Example 5.1. The label 4400 on af(graph corresponds to the configuration shown in Figure 12
below. Tower number 3 is colored yellow because the thewalisk may be placed there next,
since2(4) —0= 8= 3 (mod 5). Of course, the smallest disk may always move to avsr,teince
there are no smaller disks to stack and regulate its movenigate that this ability to move the
smallest disk anywhere corresponds to the adjacency ofe talall of the labels with different
first digits, as described in Theorem 4.5.

LNy

FIGURE 12. The SF Puzzle configuration for the label 4400

One interesting feature of the SF puzzle is that it is somegimore challenging to play when
the starting and ending configurations are not simply stackd! of the disks. Given any two
configurations, one can attempt to move from one to the othgrguhe minimum number of
moves.

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 153

6. SOLVING THE SF RuzzLE

Because the moves and configurations of the SF puzzle maye tedidpes and vertices of an
SF-labelled iterated complete graph, we know that it musags$ be possible to solve the puzzle,
no matter what starting and ending positions are given. Teesihe puzzle requires recursive
thinking. One must begin by considering to what tower thgdat disk must be move. In order to
get the largest disk to its end location, where do all of theptlisks need to be stacked? And in
order to get the second largest disk to this point, where thesbthem — 2 disks be placed? One
follows this reasoning until the placement of the top disklésermined, and then one can begin
moving all of the others.

A natural question to ask is how many moves it will take to sdhe puzzle. We can prove that
the minimum number of moves necessary to shift the entigkstbn disks ond towers is 2 — 1,
which we do in subsection 6.1. However, it is also intergstmconsider the case in which the
puzzle is played with different starting and ending posisioIn order to solve this problem, we
create an algorithm, which is given in subsection 6.2.

6.1. The Minimum Number of Moves to Solve the Traditional SF-Puzze. We first consider
solving the SF-Puzzle in the traditional Towers of Hanolestyrhat is, we move a stack ofdisks
from one ofd towers to another. This problem is equivalent to finding tistathce between two
vertices on an SF-labelled graph, where the vertices quureskto different single stack configura-
tions of the puzzle. Now, from Lemma 4.3, we know that labelghe corners oK} graphs consist
of strings ofn identical digits. Recall from Section 3 that when all of theisks of a puzzle are on
tower numberj, the corresponding label is a stringrofi’s. Thus, we may convert the problem of
finding the minimum number of moves between stacks to findieglistance between two corner
vertices on th&{ graph. We will now solve this problem.

Theorem 6.1.2" — 1 is the shortest length for a path that connects any two disttomplete
corner vertices on the Kgraph. Moreover, this path is unique.

Proof. We will prove this using mathematical induction.

Forn = 1, there is clearly a unique shortest path of length-4 = 1 between any two corner
vertices onK(} sinceK& is simply the complete graph ahvertices, so one edge connects each
vertex to every other vertex and a path of length 1 is the shbgossible between two distinct
vertices.

Now, let us assume that there exists a unique shortest pathgih 2~ — 1 for Kg‘l. Note that
in order to get from one complete corner to another we mustiagel from the complete corners
to external corners of the sarﬁé‘*l subgraphs because complete corners are not adjacent to ver-
tices outside their own subgraphs. Thus, the the shortésnpast start from one of the complete
corner vertex in onda(g’l subgraph, pass through an external corner in the same glihgnad

then somehow move to an external corner of the destindﬂ&hﬁ subgraph before finally getting
to the final corner vertex. From the inductive hypothesis kwew that the lengths of the paths
between the complete and external corners oN&‘rel subgraphs must each b&2 — 1 and, for
two given corners, these paths are unique.

Now, we must consider how to travel between the two subgrapes shortest distance between
any two distinct vertices in a graph is 1. Since iterated detepgraphs allow exactly one edge

154 Kathleen King

between every pair of subgraphs, we know that a unique pdémgth 1 must exist to connect the
two subgraphs. Also, this edge determines a second coreachmof the two subgraphs that must
be hit by the path. Thus, we know two corners in eKQﬁl subgraph, so from our assumption, a
unique shortest path can be found in each subgraph, and, twbe@a pieces are put together, the
complete shortest path between the corner vertices is eniqu

The length of this shortest path is simply the lengths of ththg through the two subgraphs
added to one, for the connecting edge. From the inductivethysis, the length of shortest path
through the subgraph i$"2! — 1. So, we can now find that the length of the shortest path ¢rou
theK] graphis 22" -1)+1=2"-2+1=2"-1.

So, by mathematical induction, we find thdt-21 is the shortest length for a path that connects
any two distinct corner vertices on thg graph and this path is unique. O

6.2. The Minimum Number of Moves to Solve the General SF Puzzleln the previous subsec-
tion we showed that it is possible to solve the SF puzzld'in 2 moves, if one is moving all of the
disks from one tower to another. However, we mentionedegatiiat a more interesting approach
to the SF puzzle is to consider starting and ending positimsr than simple stacks. Since each
position of the SF puzzle corresponds to a vertex on an Sélkabgraph, we can approach this
problem by considering the distance between any two vertoean SF-Labelled iterated complete
graph. In this subsection we discuss an efficient algorithem¢olves the problem. This algorithm
uses Theorems 4.5 and 6.1 to calculate distance. Pseudfmrdtie algorithm is shown below.
There are two parts. The first is all of the code necessary dotfia total distance between two
vertices whose labels atabelAandlabelB. The second finds the distance from a gilaiel to
thea'" corner of itsK(’j\l subgraph. We now present this algorithm.

Met hod Fi ndDi st ance(| abel A, | abel B)
best Di stance =2"-1

start = n-1
aLast = | abel A(start)
bLast = | abel B(start)

whi | e(alLast == bLast)

start = start - 1

alLast = | abel A(start)

bLast = | abel B(start)
count =0

whi | e(count < d)
i f(count # alast)
di stance = ToCor ner (0, |abel A, count, start)
I f(count == (alLast+bLast)/2 nmod d)
di stance = distance + 1 + ToCorner (0, |abel B, count, start)
el se
Roundabout = (2(count)+bLast-alLast)/2 nod d
di stance = distance + 2" 1+ 1 + ToCor ner (0, |abel B, Roundabout, start)
I f(distance < bestDistance)
best Di stance = di stance
count =count+1

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 155

Met hod ToCor ner (previousDi stance, |abel, a, N
i f(N>0)
if(a!=1label (N1)
a=(a+ (label(N-1))/2 nod d
previ ousDi stance = previousDi stance + oN-1
ToCor ner (previousDi stance, |abel, a, N1)

We must make several comments about the format of the cog@? here means- 21 (mod
d). So, ford =5, 271 = 3, andx/2 = 3x. Also, please assume th&aCor ner returns the final
distance that it finds. In practice, these methods wereeritt Java, and a private distance variable
was made available to both tfieCor ner andFi ndDi st ance methods.

Now, we are free to show that the find distance algorithm dodagt, find the distance correctly.

Theorem 6.2.TheToCor ner algorithm given above correctly finds the shortest distdreteveen
a vertex and the a corner of the graph of order N in which it isdted.

Proof. We shall prove the theorem using induction. Bgt) be the proposition that thEaCor ner
algorithm gives the correct distance from a corner ofkfjesubgraph to any vertex within it.

We must show thaP(1) is true (i.e., the algorithm work correctly fat}). Recall that aK}
subgraph is simply the complete graph @wertices. Thus, the distance from any vertex of the
graph to any corner is either O (if the vertex and the correcamcident) or 1 (since all vertices on
the complete graph are connected). We can show thatota ner algorithm finds the distance
correctly in either case.

ToCor ner is given several initial variables. First @eviousDistancewhich tells the distance
already travelled on the path from the original corner towegex. Then)abel simply tells the
name of the vertexa declares the corner to which we are calculating distance Natells the
degree of the current subgraph, which is 1 in this instance.

WhenToCor ner runs withN = 1, we see that if = label(0) (the O, or first, digit oflabel is
the same aa), then nothing is done but callinigpCor ner again, this time witiN = 0, which ends
the program on the run through. Since we know that the contBcated bya and the vertex to
which thelabel belongs are in the saméa1 subgraph, if they have the same first digit, they are
coincident. Therefore, the distance between them is O, lamdotal distance should remain the
previousDistancgeas entered into the method. The algorithm does this cdyrect

Now, if ais not the first digit in the label, the vertex must have a dis¢éeof one from the corner.
The algorithm sees that the two are not equal, and so it adds-22° = 1 to thepreviousDistance
before calling itself again witN = 0 to end the program. This also is correct. (Note that althoug
ais also affected when the corner and vertex were not cointidleis change has no effect on the
running of the program since it ends immediately thereafter

Thus, we have found th&(1) is true. We now assume thfj — 1) is true and use this to show
thatP(j) must also be true.

ToCor ner will first check to see that > 0. Once assured of this, it compageandlabel(j —1).

If, a=label(j — 1) then the vertex to which thiabel belongs is in the samlé(‘fl subgraph as

the corner. Thus, it requires no additional moves to reaelctihner of theéabel's Kéfl subgraph,
so no distance is added. The algorithm simply calls itski§ time with j — 1 rather thanj, and

156 Kathleen King

by the inductive assumption we know that the algorithm munst fhe correct distance, 84 j) is
true.

Itis also possible, though, that# label(j — 1). Then the destination vertex is notin the corner’s
Ké_l subgraph (because we know from Lemma 4.2 that vertices iaatmeKé_l subgraph share
the same lagt — (j — 1) vertices). So, to find the path from the corner to the vertexmust first

move to the vertex’ﬂ;(é'_1 subgraph. To do this, we travel to a different corner of thgifu@ng
corner’sKé_l subgraph, since our original corner must be an externakcdr&cause it is also the
a corner of aKé| subgraph. From theorem 6.1, we know that the distance battmeecorners of a
Kéfl graph must be®! — 1. Since we want the shortest complete path, we choose ardbate
is adjacent to thé(é‘fl subgraph containing the destination vertex, so that tte tiistance from
the initial corner to a corner of the destination verteh'(c'lé‘1 subgraph ig2"-1 - 1)+ 1 =21
This is the amount of distance added on by Th€or ner algorithm.

However, we must know how to choose the corner adjacent tdabknation subgraph because
only one of thed — 1 non-external corners is adjacent to the destination xers&ibgraph. Fortu-
nately, Lemma 4.2 tells that corners K)j_l subgraphs share the same last j — 1 digits. This
means that digits 0, 1, ...j,— 2 may be different, but digif — 1 of every vertex in the subgraph
will be identical. Also, from Theorem 4.5 we know the form bétlabel for adjacent vertices that
do not lie within the samda((} subgraph. Now we wish to travel from our initial corner, whos
label we shall calba...abc.. (where there arg a’s followed by a string oih— j other digits) to
the corner in the destination vertex’s subgraph with thellathose;j'" digit is label(j — 1) (since
we start counting digits at zero).

We first travel from our starting cornas...abc.. to another corner in the same subgraph, which
from Lemma 4.4 must have the fomx...xabc.. (where there ar¢ — 1 x’s). The corner labelled
xx...xabc.. is adjacent to the corner in the subgraph of our destinatitex, which we already
said is labellecx...x[label(n— 1)].... From Theorem 4.5, we know that th& digit of these two
labels must have a special relationship, so we can writeghateon X—a = label(j —1) and solve
to find thatx = (label(j — 1) +a)/2 modd. The corner of the destination verte>l<§*1 subgraph
with the label satisfying these requirements becomes tkiecoener to be input to th&Cor ner
algorithm, so the algorithm sets igsvariable to this new value. Having accomplished this, the
ToCor ner algorithm calls itself with its adjustegreviousDistancea, andj — 1. Then, we know
from our inductive assumption that theCor ner algorithm works correctly for thﬁé_l subgraph.
Since we have shown that ﬂzi@| ToCor ner does, in fact, increment the distance correctly and set

the value of the next corner appropriately, we know that therghm is prepared to work fd{é’l.
So,P(j) is true.

Thus, sinceP(1) is true, and sinc®(j — 1) true implies thaP(j) is true, we can declare that
theToCor ner algorithm given above correctly finds the shortest distdratereen a vertex and the
acorner of theKél\l subgraph in which it is located. O

Example 6.3.Let us look at how th€oCor ner algorithm works whenitis called @ Cor ner (0,
0231, 4, 3) inside a g<graph. This means that we are trying to find the distance frben t
vertex labelled 0231 to the 4 corner of its:j ksubgraph. The 4 corner of thengubgraph
containing 0131 is 4441. Now, we shall trace through the atgm. Since N= 3 > 0 and

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 157

previousDistancelabelN—1) | a| N
0 3 43
4 2 112
6 0 411
7 - 2|0

TABLE 1. The values of variables in tA@Cor ner algorithm

label(3— 1) = label(2) = 3 # 4 = a, we adjust the values of a and previousDistance. Thus,

a= (label(2) +a)2~1 = (3+4)(3) = 21=1 (mod d) and previousDistanee0+ 231 = 4.
NowToCor ner is called again, but this time with a new set of variabl&sCor ner (4, 0231,

1, 2). Thus, we are now finding the distance from the vertexdlatb 0231 to the 1 corner of its§<

subgraph, which is labelled 1131. Again, we see that0 and label1) = 2 # 1, so we find new

values for a and previousDistance, as shown in Table 1. Tdar@hm is then called again with the

new values for previousDistance, a, and N, and since sineelN> 0 and label0) = 0# a=4,

a and previousDistance are adjusted once again, to the gdlug@able 1. The program then calls

ToCor ner (7,0231, 2, 0), but since N 0, N #» 0 and the program ends with a final distance is 7.

We can confirm this by looking at a graph og,KNhich is shown in Figure 13.

FIGURE 13. Part of the SF Labelldd\é,1 graph, showing the path from 4441 to 0231
measured by th€oCor ner algorithm

158 Kathleen King

Theorem 6.4. TheFi ndDi st ance algorithm given above correctly finds the shortest distance
between two vertices on an SF-labellefidtaph.

Proof. To travel from one vertex to another orkd graph, we must first determine whether the
two vertices lie within any of the same subgraphs. This igciateid by the label, since Lemma 4.2
states that labels with the same lastigits lie within the the samlig_J subgraph. Thus, to find
the distance between two points, we determine whether thasesany common digits. Thege
digits are then ignored, and the problem is considered wtt’léKg_J graph. Theri ndDi st ance
algorithm performs this task of looking for common subgmaphthe first while statement, which
determines how many digits are shared by the two labels.tdtteestart value accordingly to
n— j —1, which is the highest order of subgraph which does not cobiath vertices. It also sets
the values ofiLastandbLastto be the last non-shared digits of the two labels.

Now, we have two vertices, let us call theknand B, each lying in differenK3*®" subgraphs

of the sameKj ! subgraph, so that the label &fis that which containaLastand similarlyB.

To travel fromA to B, we must move from onlégta‘rt subgraph to the other. Since subgraphs are
only connected to other subgraphs by their corners, we masltfromA to an corner of itsk(jta”
subgraph, then somehow cross to an cornd®,&nd finally proceed from that corner Boitself.

Of course, we have many choices here; how do we choose therspand how do we connect
them?

TheFi ndDi st ance algorithm calculates the distance frokandB to each corner in their sub-
graphs, except for the subgraphs’ external corners, whyctidfinition are not adjacent to any
otherKgftallrt subgraph within the sarrié(;'*J graph. The distance from to each of its corners is
calculated first, using th€Cor ner algorithm, since we know from Theorem 6.2 tfatCor ner
correctly finds the distance from a vertex to an external eoaof its theKjtalrt subgraph. We then
find the closest cornd8’s subgraph, and calculate the sum of all of the distancesn(& to its
corner, between the two corners of the subgraphs, andBramts external corner).

Of course, we have not yet explained how the external cofeksandB are matched, or how
the distance between these corners is calculated. Sincaevefkom the construction of iterated
complete graphs that there is one corner of subgrafitat is adjacent to a corner of subgraph
we will consider this easy case first. Since these two coraersadjacent, the distance between
them is 1. Then, using Theorem 4.5, we can find which cornesetlare within their respective
K§'a" subgraphs. Because these adjacent vertices are corr€f§'dsubgraphs, their firsttart
digits must identical. Since the SF Labelling is a Grey caddy one digit can vary in the labels
of adjacent vertices, so the stringssvart identical digits at the beginning of each corner’s label
must be the same as one another. (Because if one digit inrthg saried, all of the digits would
vary, and unless this is the trivial case, that would makeentban one digit different between
adjacent labels.) Recall also that since &nandB subgraphs are part of the samflgfJ graph,
Lemma 4.2 states that the Igstligits must be the same for vert@x vertexB and all of the other
vertices in the subgraph. This leaves only the nunsbent digit of the adjacent external corners to
be differ between the two labels. So, the external corneulb§gaphA that has a label of the form
xx...X[aLasi... is adjacent to the corner of subgraph B with..x[bLas{..., wherex is some digit
andalLastandblLastare the numbestart digits in each label. From Theorem 4.5, we know that
2x —alast= bLast Thus, the distance between the A and B subgraphs is 1 if wecsm@ecting
thex = (aLast+ bLast) /2 modd corners of each subgraph.

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 159

To travel from any other corner @& to any other corner oB, we must “cut across” other
subgraphs. To keep these paths as short as possible, weopaers of subgraph& andB that
are adjacent to the sarmﬁ*‘*l subgraph. Thus, from Theorem 6.1, the distance betweemthe t
corners is only & (2%t 1)+ 1 =28t 4 1 since it is a distance of 1 between the external corner
of subgraphA and its adjacent corner, a distancé*2— 1 between corners of the sarkg'@"
subgraph, and another distance of 1 between the externarcof subgraptB and its adjacent
corner.

Thus, we know the distance between nonadjacent externaéisoof subgraph8 andB, but
we must still determine how to pair these corners. InRhedDi st ance algorithm, we find the
distance toA to one of the external corners of K§'@" subgraph, and then pair it to the appropriate
corner in subgrapB. If the external corner of’'s subgraph is not directly adjacent to any corner
of B, we know that we must cut across another subgraph. So, wefimdishe external corner of
subgrapiB that is adjacent to the same subgraph asthentcorner of subgrapi. For ease of
writing, we will let k = count Now, as described earlier, adjacent cornensgﬁﬁ‘“ subgraphs have
the differ only in thestart digits of their labels. Thus, from Theorem 4.5, t@unt, or k, corner
of subgraphA is adjacent to a corner in another subgraph with a label ofdha kk...k[2k —
alLasf..., where X — alLast(modd) is the value of thestart digit. Similarly, there exists some
corner of subgrapB that is adjacent to a corner in the same subgraph with thechdélthe form
XX..X[2x—bLas{..., where X — bLast(modd) is the value of thestart digit. However, since both
the corner labelletk ..k[2k — aLasti... and the corner labelledk..x[2x— bLasti... are in the same
K52 subgraph, we know from Lemma 4.2 that-2bLast= 2k — aLast We solve to find that
X = (2k — alLast+ bLast)/2 modd. This means that thecorner of subgrapB is adjacent to the
same subgraph as theuntcorner of subgraph, and we have already determined that the distance
between these corners of subgraptendB is 252" 1.

Within its second while loop, th&i ndDi st ance algorithm calculates the distance frolto
its subgraph’s corners usingCor ner, matches these corners with the appropriate corners of
subgrapiB, and finds the distance froBito the correct corners. It adds up the taladtanceof
each path, and compares each of these values tegt®istancereplacing théestDistancevith
distancef the distancds shorter. Thus, in the end, thestDistancés indeed the shortest distance,
so we see that thei ndDi st ance algorithm does correctly calculates the distance betwaen t
given vertices on an SF-labelléd graph. O

Example 6.5. We will look at the workings of théi ndDi st ance algorithm on the I§ graph,
which is shown in Figure 11. We will let labekA424 and labelB= 331 The code initially sets
bestDistance= 23 -1=8—-1=7and start=n—1=3— 1= 2, so aLast= labelA(2) = 4 and
bLast= labelB(2) = 1. Since4 # 1, we do not change the values of alLast, bLast, or start. Now
we set count to 0 and enter the second while loop.

Since count= 0# 4 = al ast, we set distance TmCor ner (0,424,0, 2), which returns 2, which
we can confirm by looking at the grap@ IKhown in Figure 11 and checking the distance between
vertex 424 and vertex 004. Then, we check to see whether (aitast+ bLast)(9521). In

this case,(4+ 1)(5i21) = 15= 0 (mod d), which is equal to count. This means that the corner
004 is adjacent to a corner of labelB’s subgraph, namely 0Uke vertex labelled with labelB
is a distance offoCor ner (0,3310,2) = 3 away from 001, so the total distance of this path is

160 Kathleen King

3+1+3=7. Since bestDistance was already set to 7, the calculatell igato shorter, and
bestDistance is not changed. The count variable is theremented and the process repeated.
This time, count= 1, which is still not equal to 4, so we find that the distance fé24d to
114 is 2, and we set distance accordingly. Since 114 is nectlyr adjacent to the subgraph
containing labelB, we must find out which corner of labelBibgraph is adjacent to the same
subgraph which is adjacent to 114. We find that Roundabo@(count) + blast—aLast) (451) =

(2(1) +1—4)(22) = —3=2(mod d). So, we now must find the distance between the vertices
labelled 221 and331 using theToCor ner algorithm, which we can see by inspection must be
22 -1 =3, since 221 and 331 are corners of an order 2 subgraph (Theéréin This gives a total
distance o+ (224 1) +3 = 10, which is more than the current bestDistance of 7. We coatinu
this process, until we have considered the paths throughe#tcorners of labelA’s subgraph
which are connected to other subgraphs. As it turns out, #ik fhrough 224 is the shortest, with

a length of 6.

We now know that th&i ndDi st ance andToCor ner algorithms correctly determine the mini-
mum number of moves necessary to solve the SF puzzle. Howeaay algorithms exist to solve
every (solvable) problem. We wish to find an algorithm that oy works, but is also efficient.
Thus, we must also consider the run time of each algorithmd¥®g&e that the time needed to run
the algorithm grows linearly with respecttand with respect td.

Lemma 6.6. TheToCor ner algorithm given above has a run time®fN).

Proof. The ToCor ner algorithm performs a constant number of calculations eauk it calls
itself, and it calls itselN times. ThereforeToCor ner has a run time 0®(N). O

Theorem 6.7. TheFi ndDi st ance algorithm given above has a run time®tdn).

Proof. The Fi ndDi st ance algorithm begins with several lines that are run only on@gheof
which take constant running time. Now, in the worst case fwming time, the vertices are in
different Kgfl subgraphs of th&] graph. In this case, the last digits of the two vertex labeds a
different, so the while loop conditional is also checkedyace.

We now enter a for loop that runs d times. Within in this loop aeveral steps that use only
constant time for each pass through of the loop. How&eé€lor ner method is called twice during
each pass. Lemma 6.6 states thatTit@r ner method itself has a run time @& (N). Since in this
case, the initial value foN is start, and, for the worst case, we allstart=n—1. So, the run
time of ToCor ner is ®(n—1) = ©(n).

So, theFi ndDi st ance algorithm has a number of constant calculations, a numbdrtohes
constant calculations, andi®(n) = ©(2dn) = ©(dn) calculations. Since we only look at the
leading term to determine run time, we can see thakiiheDi st ance algorithm has a run time of
O(dn). O

7. DISCUSSION

We have presented a study of the SF labelling, used this studseate a new puzzle, found
the minimum number of moves needed to solve the standardeyurrl presented an algorithm
to find the minimum moves for the puzzle with any starting andieg configurations. We also

A New Puzzle Based On the SF Labelling of Iterated CompletgpGs 161

showed that the algorithms used to calculate the minimumbeuraf moves has an efficient run
time.

We did not give an algorithm to find the sequence of moves thlaés the SF puzzle. However,
this could be done easily by using Theorem 4.5 and buildifgfahe current algorithms, which
already determine the corners of the subgraphs throughwitécpath travels. To solve the puzzle
one would only need to write a simple program to determing#ibs between the various corners.

We also do not address the amount of computer memory usedchyaégorithm, although we
believe that the algorithms presented use an acceptablerdmibspace. However, since we have
not given any proof of the minimum possible run time or spaeecannot say with certainty that
the distance finding algorithm has maximal efficiency.

REFERENCES

[DA] Arett, Danielle.Coding Theory on the Generalized Towers of HaRoaceedings of the REU Program in Math-
ematics. NSF and Oregon State University. Corvallis, Onegaoigust, 1999.

[CN] Cull, Paul and Ingrid NelsorPerfect Codes, NP-Completeness, and Towers of Hanoi Gr&pitietin of the
Institute of Combinatorics and its Applications, Volume 28-38. 1999.

[JF] J. S. FrameSolution to advanced problem 39%8nerican Mathematics Monthly, 48 (1941), pp. 216217.

[SK] Kleven, StephaniePerfect Codes on Odd Dimension Serpinski Graftreceedings of the REU Program in
Mathematics. NSF and Oregon State University. Corvalliegon. August, 2003.

[LHS] Lawrence Hall of Science.Towers of Hanoi. University of California, Berkeley. Website url
http://www.lhs.berkeley.edu/Java/Tower/towerhistotmyl. July 29, 2004.

[PR] Russell, Pamel@erfect One Error Correcting Codes on Iterated Completeghia Encoding and Decoding.
Proceedings of the REU Program in Mathematics. NSF and @r8taie University. Corvallis, Oregon. August,
2004.

[BS] B. M. Stewart.Solution to advanced problem 39¥8nerican Mathematics Monthly, 48 (1941), pp. 217219.

FRANKLIN W. OLIN COLLEGE OFENGINEERING
E-mail addresskat hl een. ki ng@t udents. ol i n. edu

