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ABSTRACT. Seven simple population models are widely used in biological literature. These models
display global stability when they display local stability. We examine various graphical representa-
tions of these seven models. (How each demonstrates the stable or unstable behavior of each model
due to varying parameters such as reproductive rates.) Thisgraphical exploration is done through
the use of basic curves, time plots, time-plus-2 curves, bifurcation maps and complex convergence
plots. We study the effect of various parameters like reproductive rate on the models’ behaviors. We
conclude that while these models differ in details, they cangenerally be used interchangeably.

1. INTRODUCTION

Typical population growth and decay can be modeled by discrete one-dimensional difference
equations. The models of interest share the characteristicthat they increase to a certain carrying
capacity and decrease thereafter. When these models are globally stable, they reach equilibrium
where the birth and death rates are equal, regardless of initial population. For our purposes, these
models have been normalized so that the equilibrium is at x=1. When they are locally stable, they
converge to this equilibrium only for initial populations that are already near equilibrium. These
models display global stability if they display local stability. Previous work has found a condition
that demonstrates this characteristic is that these seven models have been shown to demonstrate
local stability and therefore global stability if they are enveloped by linear fractional functions.
These simple models can demonstrate complex behavior for high reproductive rates. Both the
stable and the complex behavior will be demonstrated graphically through the use of basic curves,
time plots, time-plus-2 curves, bifurcation maps and blackand white complex convergence plots.

1.1. Background and Definitions.

Definition 1.1. The following definitions and theorems are from[1, 2, 3]. A one-dimensional
population model is a function of the form

xt+1=f(xt )

where f is a continuous function from the nonnegative reals to the nonnegative reals and there is a
positive number̄x, the equilibrium point, such that:
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f(0)=0
f (x)> x for 0< x< x̄
f (x) = x for x= x̄
f (x)< x for x> x̄

and if f′(xm) = 0, where xm is a critical point and xm ≤ x̄ then
f ′(x)> 0 for 0≤ x< xm
f ′(x)< 0 for x> xm such that f(x)> 0.

Definition 1.2. A model is globally stable if and only if for all xo such that f(xo) > 0 we have

lim
x→∞

xt = x̄.

wherex̄ is the unique equilibrium point of xt+1=f(xt ).

Definition 1.3. A model is locally stable if and only if for every small enoughneighborhood of̄x if
xo is in this neighborhood, then xt is in this neighborhood for all t, and

lim
x→∞

xt = x̄.

While difficult to test, the following theorems determine when a model is locally or globally stable.

Theorem 1.4. If f (x) is differentiable then, a model is locally stable if| f ′(x̄)|< 1, and if the model
is locally stable then| f ′(x̄)| ≤ 1.

Theorem 1.5.A continuous model is globally stable if and only if it has no cycle of period 2. (That
is, there is no point except̄x such that f( f (x)) = x.)

If we examine the following example, we can ascertain a somewhat simpler method of determining
local stability.

Example 1.6. Theorem 1.4 gives that for x slightly less than 1,f (x) is below a straight line with
slope -1, and if forx slightly greater than 1,f (x) is above the same straight line, then the model
is locally stable. If we examine model 1 withr = 2: xt+1 = xte2(1−xt ), it can be seen that the local
stability bounding line is 2−x. It can also be seen that this line is an upper bound onf (x) for all
x in [0,1) and a lower bound for allx> 1. From Theorem 1.5 we note that since the bounding line
has a cycle of period 2, 2− (2−x) = x, then our model cannot have a cycle of period 2 and hence
is globally stable. The next definition follows from this idea.

Definition 1.7. A functionφ(x) envelops a function f(x) if and only if

• φ(x)> f (x) for x∈ (0,1)
• φ(x)< f (x) for x> 1 such thatφ(x)> 0 and f(x)> 0

Definition 1.8. A linear fractional function is a function of the form

φ(x) = 1−αx
α−(2α−1)x whereα∈ [0,1).
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These functions have the following properties:

• φ(1)=1
• φ′(1) =−1
• φ(φ(x)) = x
• φ′(x)¡0.

As the models are meant to represent real populations, for practicality reasons these functions are
only of interest when x> 0 andφ(x) > 0.

The main argument in [1],[2],[3] is that iff (x) is enveloped by a linear fractional function, then
f (x) is locally stable and therefore globally stable. As such, additional results and proofs of the
following theorem appear in [1],[2] and [3].

The following theorem assumes that the model of interest isxt+1 = f (xt), and that the model is
normalized so that the equilibrium point is 1, that is f(1) = 1.

Theorem 1.9.Letφ be a monotone decreasing function which is positive on (0,x) andφ(φ(x))= x.
If f (x) is a continuous function such that:

• φ(x)> f (x) on (0,1)
• φ(x)< f (x) on (1,x )
• f (x)> x on (0,1)
• f (x)< x on (1,∞)
• f (x)> 0 on (1,x∞)

then for all x∈ (0,x∞),

lim
k→∞

f (k)(x) = 1.

Corollary 1.10. If f1(x) is enveloped by f2(x), and f2(x) is globally stable, then f1(x) is globally
stable.

Corollary 1.11. If f (x) is enveloped by a linear fractional function then f(x) is globally stable.

Additionally, from [1, 2, 3] we know that population models with one choice of parameters will
envelop the same model with a different choice of parameters. In these papers, the enveloping
technique was applied to the seven models from literature, however it was noted that enveloping
was not necessary for global stability.

2. CHARACTERISTICS AND METHODS OFPLOTS

For the following models basic curves, time plots, time-plus-2 curves, bifurcation maps and
black and white complex convergence plots will be used to examine stable and unstable behavior.
The basic curves, time plots and time-plus-2 curves were created using Maple while the bifurcation
maps and black and white convergence plots were created using programs written in Java.

2.1. Basic Curves. The purpose of the basic curve is to show they = f (x) curve for a specific
parameter or rate. That is, we can find the maximum size of the population for a particular rate
after one time step by solvingf ′(x) = 0 and also where the population dies out by solvingf (x) = 0,
excluding the obvious solution of f(0)=0.
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FIGURE 1. A basic curve

2.2. Time Plots. The purpose of the time plot is to show what happens to the population over
several time steps for a particular reproduction rate and initial population. In these plots, the size
of the population is plotted against time. For different reproduction rates or initial populations, the
behavior of the model could demonstrate stable behavior where the population either approaches
equilibrium (one population size or oscillates between twoor more population sizes or unstable
behavior with the model degenerating into chaos. Unless otherwise specified, all time plots in this
paper will begin with initial populationx= .1.
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FIGURE 2. Time plot with population approaching equilibrium

2.3. Time-Plus-2 Curves. Unlike the basic curve, the time-plus-2 curve shows the behavior of
the population after two time steps. That is, it plotsy = f ( f (x)) and they = x line. A series
of time-plus-2 curves can demonstrate the rate where the population will oscillate between two
different sizes. If the population still approaches the equilibrium for a given rate, thef ( f (x))
curve will only intersect they = x line at one place, the equilibrium, in our casex = 1. When a
rate is where the population oscillates, thef ( f (x)) curve will be tangent to they = x line at the
equilibrium point. The time-plus-2 curves make it easy to distinguish when a rate is beyond the
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FIGURE 3. Time plot with period 2 oscillation
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FIGURE 4. Time plot with period 4 oscillation
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FIGURE 5. Time plot with chaotic behavior
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FIGURE 6. Time-Plus-2 Curve before bifurcation point

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

FIGURE 7. Time-Plus-2 Curve at bifurcation point

bifurcation point because thef ( f (x)) curve will intersect they = x line at exactly three places,
the unstable equilibrium, and the population values that have oscillation of period 2. Thus if one
solved f ( f (x)) = x, they would find the population values for which the equilibrium is no longer
stable because an equilibrium point is stable if and only if there is no oscillation of period 2 (see
theorem 1.5 above). This result can be found as a result of Sarkovskii’s Theorem given in [6]
and a modification of Sarkovskii’s Theorem given in [5]. As demonstrated in [15], the rates that
generate oscillations of period 4 can be found be plotting time-plus-4 curves, which would yield
five intersection points with they= x line: the unstable equilibrium and the four population values
that have oscillation of period 4. Thus one can easily find oscillations of period k by looking at
time-plus-k curves.

2.4. Bifurcation Maps.

Definition 2.1. A bifurcation is a split in two, typically due to a parameter change in a system. The
parameter at which the bifurcation occurs is typically known as a bifurcation value. Bifurcation
values occur where a system is structurally unstable.[6, 12]
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FIGURE 8. Time-Plus-2 Curve after bifurcation point

FIGURE 9. Bifurcation Map

Bifurcation maps are useful because they demonstrate the long term behavior of a population
affected by many reproductive rates and initial populationvalues. The program that creates the bi-
furcation maps iterates the function an infinite number of times (in our case 500 represents infinity)
for many initial population values and rates but does not plot the population. This is done in order
to eliminate bifurcation transients. Bifurcation transients are unusual behavior after a bifurcation
due to too few iterations [12]. It then plots the population value after an additional 500 iterations
as the vertical value and the rate it corresponds to as the horizontal value. By examining the plot,
one will see a single line where the population is at equilibrium and then see it split in two, or
bifurcate, representing an oscillation of period two. It can then bifurcate again into oscillations of
period four and so on until the plot becomes chaotic and one can no longer distinguish where the
model bifurcates except in the white stripes. The white stripes represent areas of stability until they
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bifurcate into chaos again. One can even predict where the next bifurcation valueBk occurs, from
a period 2k orbit to a period 2k+1 orbit as it is

lim
k→∞

Bk−Bk−1

Bk+1−Bk

This is known as Feigenbaum’s number and it is approximately4.669 [7]. In particular, we are
interested in the period-doubling bifurcations mentionedin [6] as a change from an attraction to
a fixed point to the creation of a period two orbit. When used inconjunction with the time plots
and time-plus-2 curves, one can confirm the rates and population values that the population will
bifurcate at.

2.5. Black and White Complex Convergence Plots.Complex convergence plots give indica-
tions of a model’s stability at particular reproduction rates along the real axis. The program to
create the complex plots begins with a complex initial population then iterates for an infinite num-
ber (again 500) of times. If the final population value is within a certain range or box, then the
population value is considered to be converging to the equilibrium and the point corresponding to
the starting value is colored white. However, if the final value is not within the range, then the
population is considered to be shooting toward infinity and the starting value will be colored black.
The range of the plot (or bounds of the box ) are the horizontalrange from 0 to 2, which is meant to
be the real part of the complex number, and the vertical rangefrom -1 to 1, which is the imaginary
part of the complex number. It is necessary to make plots for various rates for each model to gain
an accurate idea of when the equilibrium is stable and when itis not. If the equilibrium is stable,
the real axis should be white, and the population values are considered to be converging to one.
However if there are breaks on the real axis, the equilibriumis considered to be unstable, and thus
these plots might suggest rates where the population again bifurcates.

FIGURE 10. Complex Convergence Plot
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3. THE SEVEN MODELS

3.1. Model I. xt+1 = xter(1−xt)
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FIGURE 11. Model I basic curve

Model I from [9],[10] and [14] is one of the most commonly usedpopulation models. From
[1, 2, 3] we know that the model is is globally stable when 0< r ≤ 2. We observe this behavior of
the model by examining the following plots.
When examining the time plot of model 1 withr = 1.4 we observe that the model does behave as
predicted and the population approaches the equilibrium.
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FIGURE 12. Model I Time Plot withr = 1.4

However forr = 2, it appears as if the population is cycling between 2 valueswhen in fact it
should be approaching equilibrium if the model were globally stable at this rate as Cull suggests.
The explanation for this discrepancy is actually due to computer approximation and the actual time
plot for r = 2 should look similar to that ofr = 1.4.
For r > 2 we expect the population to not converge to the equilibrium, and actually for values of
2< r ≤ 2.5 the population oscillates between 2 population values as demonstrated by the time plot
with r = 2.4.
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FIGURE 13. Model I Time Plot withr = 2
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FIGURE 14. Model I Time Plot withr = 2.4 with a period 2 oscillation

For r ≥ 2.5 the population bifurcates again and again from a period 4 oscillation to period 8 and
so forth until it descends into chaos. This is demonstrated by the time plot forr = 2.6 which
demonstrates the period 4 oscillation and the time plotr = 3.4 which demonstrates the chaotic
behavior of the population exhibited at this reproduction rate.

For r ≥ 2.5 the population bifurcates again and again from a period 4 oscillation to period
8 and so forth until it descends into chaos. This is demonstrated by the time plot forr = 2.6
which demonstrates the period 4 oscillation and the time plot r = 3.4 which demonstrates the
chaotic behavior of the population exhibited at this reproduction rate. The previous time plots
were generated with an initial population ofx = .1 because it was sufficiently close to 0.x = 0
cannot be used as a starting population for the time plots becausex= 0 is a fixed point of the the
population,x= 1, the equilibrium, is also a fixed point and can’t be used as aninitial population
either. Does the behavior of the model change for other initial populations?
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FIGURE 15. Model I Time Plot withr = 2.6 with a period 4 oscillation
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FIGURE 16. Model I Time Plot withr = 3.4 exhibiting chaotic behavior
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Example 3.1. We find by solving f( f (x)) = x when r= 2.5 results in the values x= .2895and
x= 1.71. It can be shown for any initial population when r= 2.5 that the population still oscillates
between these exact values. We note this behavior demonstrated by the time plots for r= 2.5 with
initial populations x= .3,x= 1.1 and x= 2.6 respectively.
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FIGURE 17. Model I Time Plot withr = 2.5 and initial populationx= .3
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FIGURE 18. Model I Time Plot withr = 2.5 and initial populationx= 1.1

Since there are many indications that the behavior of the model is independent of the initial
population for all seven models, this part of the discussionwill be neglected for the following six
models.

We can also verify that the population for Model I is globallystable atr ≤ 2 by examining the
time-plus-two curves. For the globally stable values ofr ≤ 2 the curve intersects they = x line
only atx= 1 as demonstrated by the time-plus-two curve forr = 1.6.
Whenr ≤ 2, and the model is globally stable, the time-plus-2 curve lies tangent to they= x line at
the equilibrium point as demonstrated by the time-plus-twocurve forr = 2.
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FIGURE 19. Model I Time Plot withr = 2.5 and initial populationx= 2.6
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FIGURE 20. Model I Time-Plus-2 Curve withr = 1.6
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FIGURE 21. Model I Time-Plus-2 Curve withr = 2
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When r > 2, and the model is no longer stable, the cycle of period two can be seen by the
three intersections of the curve with they= x line as demonstrated by the time-plus-two curve for
r = 2.4.
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FIGURE 22. Model I Time-Plus-2 Curve withr = 2.4

The stability of Model I can also be demonstrated by looking at the bifurcation map for Model I.
It can be seen that the model remains at the equilibrium untilit bifurcates atr = 2, the period 4
oscillation is also visible nearr = 2.6.

FIGURE 23. Bifurcation Map Model I

One final exploration of the behavior of Model I can be performed by looking at a series of com-
plex convergence plots. These plots can suggest at what reproductive rates the bifurcations of the
population may be taking place. The amount of white surrounding the real axis in the plots is an
indication of how stable the model is at that reproductive rate. At r = 1.7 the real axis is entirely
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FIGURE 24. Model I Complex Convergence Plot forr = 1.7

surrounded in white, thus providing further evidence for the stability of the model at this rate.
At the bifurcation value ofr = 2, the real axis is still surrounded in white, however there is evi-
dence that the convergent area is beginning to ”collapse” around the real axis at the equilibrium.

FIGURE 25. Model I Complex Convergence Plot forr = 2

Shortly after the bifurcation value ofr = 2, in this caser = 2.3, the convergent area has in fact
collapsed around the real axis at the equilibrium point.
Long after the first bifurcation value ofr = 2, for example the possible second bifurcation value
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FIGURE 26. Model I Complex Convergence Plot forr = 2.3

r = 2.6, the convergent area has collapsed in many areas around thereal axis, indicating the insta-
bility of the equilibrium.

FIGURE 27. Model I Complex Convergence Plot forr = 2.6
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3.2. Model II. xt+1 = xt [1+ r(1−xt)]
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FIGURE 28. Model 2 basic curve

Model II from [16] is also commonly used and is considered to be a variation on Model I [1, 2, 3].
From [1, 2, 3] we know that this model, like Model I is also globally stable when 0< r ≤ 2. We
observe this behavior of the model by examining the following plots.
When examining the time plot of model 2 withr = 1.8 we observe that the model does behave
as predicted and the model approaches the equilibrium. However for r = 2, it again appears as
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FIGURE 29. Model II Time Plot withr = 1.8

if the population is cycling between 2 values when in fact it should be approaching equilibrium
if the model were globally stable at this rate as Cull suggests. Again, this is due to computer
approximation and the actual time plot forr = 2 should look similar to that ofr = 1.8.
For r > 2 we expect the model to not converge to the equilibrium, and actually for values of
2< r ≤ 2.4 the population oscillates between 2 population values. Itthen bifurcates into a period
4 oscillation as demonstrated by the time plot withr = 2.5.
For r ≥ 2.5 the model bifurcates again and again from a period 4 oscillation to period 8 and so
forth until it descends into chaos. This is demonstrated by time plot r = 2.7 which demonstrates
the chaotic behavior of the population exhibited at this reproduction rate.
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FIGURE 30. Model II Time Plot withr = 2
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FIGURE 31. Model II Time Plot withr = 2.5 with a period 4 oscillation
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FIGURE 32. Model II Time Plot withr = 2.7 displaying chaotic behavior
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We can also verify that the population for Model II is globally stable atr ≤ 2 by examining the
time-plus-two curves. For the globally stable values ofr ≤ 2 the curve intersects they = x line
only atx= 1 as demonstrated by the time-plus-two curve forr = 1.5.
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FIGURE 33. Model II Time-Plus-2 Curve withr = 1.5

Whenr = 2, and the model is globally stable, the time-plus-2 curve lies tangent to they= x line at
the equilibrium point as demonstrated by the time-plus-twocurve forr = 2.
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FIGURE 34. Model II Time-Plus-2 Curve withr = 2

Whenr > 2, and the model is no longer stable, the cycle of period two can be seen by the three
intersections of the curve with they= x line as demonstrated by the time-plus-two curve forr =2.4.

The stability of Model II can also be demonstrated by lookingat the bifurcation map for Model II.
It can be seen that the model remains at the equilibrium untilit bifurcates atr = 2, the period 4
oscillation is also visible nearr = 2.5.

One final exploration of the behavior of Model II can be performed by looking at a series of
complex convergence plots. These plots can suggest at what reproductive rates the bifurcations of
the population may be taking place. Atr = 1.9 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the model atthis rate.
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FIGURE 35. Model II Time-Plus-2 Curve withr = 2.4

FIGURE 36. Bifurcation Map Model II

Shortly after the bifurcation value ofr = 2, in this caser = 2.1, the convergent area has in fact
collapsed around the real axis.
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FIGURE 37. Model II Complex Convergence Plot forr = 1.9

FIGURE 38. Model II Complex Convergence Plot forr = 2.1
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At r = 2.4, the collapse of the convergent area along the real axis is even more pronounced than
at r = 2.1, indicating the instability of the equilibrium.

FIGURE 39. Model II Complex Convergence Plot forr = 2.4

3.3. Model III. xt+1 = xt [1− rlnxt ]
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FIGURE 40. Model 3 basic curve

Model III is from [11]. From [1, 2, 3] we know that this model, like Model I and Model II is also
globally stable when 0< r ≤ 2. We observe this behavior of the model by examining the following
plots.
When examining the time plot of Model III withr = 1.8 we observe that the model does behave
as predicted and the population approaches the equilibrium. However forr = 2, it again appears
as if the population is cycling between 2 values when in fact it should be approaching equilibrium
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FIGURE 41. Model III Time Plot withr = 1.8

if the model were globally stable at this rate as Cull suggests. Again, this is due to computer
approximation and the actual time plot forr = 2 should look similar to that ofr = 1.8.
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FIGURE 42. Model III Time Plot withr = 2

For r > 2 we expect the population to not converge to the equilibrium, and actually for values of
2< r ≤ 2.3 the population oscillates between 2 population values as demonstrated by the time plot
with r = 2.2.
At r = 2.8 there is an example where the population actually dies out after only eight iterations of
the function as demonstrated by the time plot withr = 2.8
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FIGURE 43. Model III Time Plot withr = 2.2
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FIGURE 44. Model III Time Plot withr = 2.8
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We can also verify that the population for Model III is globally stable atr = 2 by examining the
time-plus-two curves. For the globally stable values ofr ≤ 2 the curve intersects they = x line
only atx= 1 as demonstrated by the time-plus-two curve forr = 1.8.
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FIGURE 45. Model III Time-Plus-2 Curve withr = 1.8

Whenr = 2, and the model is globally stable, the time-plus-2 curve lies tangent to they= x line at
the equilibrium point as demonstrated by the time-plus-twocurve forr = 2.
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FIGURE 46. Model III Time-Plus-2 Curve withr = 2

Whenr > 2, and the model is no longer stable, the cycle of period two can be seen by the three
intersections of the curve with they= x line as demonstrated by the time-plus-two curve forr =2.4.
Also, for r = 2.8 we can detect chaotic behavior (in this case the populationdying out) by the time-
plus-two curve.
The stability of Model III can also be demonstrated by looking at the bifurcation map for Model
III. It can be seen that the model remains at the equilibrium until it bifurcates atr = 2.
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FIGURE 47. Model III Time-Plus-2 Curve withr = 2.4
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FIGURE 48. Model III Time-Plus-2 Curve withr = 2.8

FIGURE 49. Bifurcation Map Model III
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One final exploration of the behavior of Model III can be performed by looking at a series of
complex convergence plots. These plots can suggest at what reproductive rates the bifurcations of
the population may be taking place. Atr = 1.9 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the model atthis rate.

FIGURE 50. Model III Complex Convergence Plot forr = 1.9

Shortly after the bifurcation value ofr = 2, in this caser = 2.1, the convergent area has in fact
collapsed around the real axis.

At r = 2.4, the collapse of the convergent area along the real axis is even more pronounced than
at r = 2.1, indicating the instability of the equilibrium.
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FIGURE 51. Model III Complex Convergence Plot forr = 2.1

FIGURE 52. Model III Complex Convergence Plot forr = 2.4
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3.4. Model IV. xt+1 = xt(
1

b+cxt
−a) wherec= 1
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FIGURE 53. Model IV basic curve

Model IV from [18] differs from the first three models in that it has two parameters or reproduction
rates. From [1, 2, 3] we know that the model is is globally stable when

a−1
(a+1)2 ≤ b<

1
a+1.

To avoid assymptotes forx> 0, we must havea> 1. We observe this behavior of the model by
examining the following plots. In order to investigate the plots however, one parameter must be
fixed, in our casea, and we vary the other.
When examining the time plot of model IV witha = 20,b = .0435 we observe that the model
does behave as predicted and the population approaches the equilibrium. However fora= 20,b=
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FIGURE 54. Model IV Time Plot witha= 20,b= .0435

.0430, it again appears as if the population is cycling between 2 values when in fact it should be
approaching equilibrium if the model were globally stable at these rates as Cull suggests. Again,
this is due to computer approximation and the actual time plot for b= .0430 should look similar
to that ofb= .0435
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FIGURE 55. Model IV Time Plot witha= 20,b= .0430

For b < .0430 orb > .0476 we expect the population to not converge to the equilibrium, and
actually for values of.0421< b< .0430 the population oscillates between 2 population valuesas
demonstrated by the time plot withb= .0427.
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FIGURE 56. Model IV Time Plot witha= 20,b= .0427

Forb< .0430 orb> .0476 the population bifurcates again and again from a period4 oscillation
to period 8 and so forth until it descends into chaos. This is demonstrated by the time plot for
b = .0417 which demonstrates the chaotic behavior of the model and the time plotb = .0477
which demonstrates the population immediately crashing and approaching 0.

We can also verify that the population for Model IV is globally stable atb= .0430 by examining
the time-plus-two curves. For the globally stable values of.0430< b≤ .0476 the curve intersects
they= x line only atx= 1 as demonstrated by the time-plus-two curve forb= .0435.
Whenb= .0430, and the model is globally stable, the time-plus-2 curve lies tangent to they= x
line at the equilibrium point as demonstrated by the time-plus-two curve forb= .0430.
When.0421< b< .0430, and the model is no longer stable, the cycle of period two can be seen by
the three intersections of the curve with they= x line as demonstrated by the time-plus-two curve
for b= .0427.
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FIGURE 57. Model IV Time Plot witha= 20,b= .0417
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FIGURE 58. Model IV Time Plot witha= 20,b= .0477
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FIGURE 59. Model IV Time-Plus-2 Curve witha= 20,b= .0435
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FIGURE 60. Model IV Time-Plus-2 Curve witha= 20,b= .0430
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FIGURE 61. Model IV Time-Plus-2 Curve witha= 20,b= .0427
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The stability of Model IV can also be demonstrated by lookingat the bifurcation map for Model
IV. This bifurcation map appears to be a mirror image of the others in that it can be seen that the
model does not reach the equilibrium untilb= .0430.

FIGURE 62. Bifurcation Map Model IV

One final exploration of the behavior of Model IV can be performed by looking at a series of
complex convergence plots. These plots can suggest at what reproductive rates the bifurcations of
the population may be taking place. Atb= .0435 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the model atthis rate.

FIGURE 63. Model IV Complex Convergence Plot fora= 20,b= .0435

Shortly before the bifurcation value ofb= .0430, in this caseb= .0427, the convergent area has
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in fact collapsed around the real axis.

FIGURE 64. Model IV Complex Convergence Plot fora= 20,b= .0427

At b= .0420, the collapse of the convergent area along the real axisis even more pronounced than
at b= .0427, indicating the instability of the equilibrium.

FIGURE 65. Model IV Complex Convergence Plot fora= 20,b= .0420
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3.5. Model V. xt+1 =
(1+aeb)xt
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FIGURE 66. Model V basic curve

Model V is from [13] and also has two parameters or reproduction rates. From [1, 2, 3] we know
that the model is is globally stable when

a(b−2)eb ≤ 2

It is also assumed for this model thata> 0 andb> 0. We observe this behavior of the model
by examining the following plots. In order to investigate the plots however, one parameter must be
fixed, in our casea, and we vary the other.
When examining the time plot of model V witha = 5,b = 1.8 we observe that the model does
behave as predicted and the population approaches the equilibrium.
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FIGURE 67. Model V Time Plot with a=5, b=1.8

However fora= 5,b= 2, it again appears as if the population is cycling between 2 values when
in fact it should be approaching equilibrium if the model were globally stable at these rates as Cull
suggests. Again, this is due to computer approximation and the actual time plot forb= 2 should
look similar to that ofb= 1.8
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FIGURE 68. Model V Time Plot witha= 5,b= 2

For b > 2 we expect the population to not converge to the equilibrium, and actually for values
of 2< b< 2.6 the population oscillates between 2 population values as demonstrated by the time
plot with b= 2.3.
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FIGURE 69. Model V Time Plot witha= 5,b= 2.3

We can also verify that the population for Model V is globallystable atb≤ 2 by examining the
time-plus-two curves. For the globally stable values ofb ≤ 2 the curve intersects they = x line
only atx= 1 as demonstrated by the time-plus-two curve forb= 1.
Whenb= 2, and the model is globally stable, the time-plus-2 curve lies tangent to they= x line
at the equilibrium point as demonstrated by the time-plus-two curve forb= 2.
Whenb > 2, and the model is no longer stable, the cycle of period two can be seen by the three
intersections of the curve with the y=x line as demonstratedby the time-plus-two curve forb= 3.
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FIGURE 70. Model V Time-Plus-2 Curve witha= 5,b= 1
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FIGURE 71. Model V Time-Plus-2 Curve witha= 5,b= 2
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FIGURE 72. Model V Time-Plus-2 Curve witha= 5,b= 3
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The stability of Model V can also be demonstrated by looking at the bifurcation map for Model
V. It can be seen that the model remains at the equilibrium until it bifurcates atb= 2.

FIGURE 73. Bifurcation Map Model V

One final exploration of the behavior of Model V can be performed by looking at a series of
complex convergence plots. These plots can suggest at what reproductive rates the bifurcations of
the population may be taking place. Atb = 2 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the model atthis rate.

FIGURE 74. Model V Complex Convergence Plot fora= 5,b= 2

Shortly after the bifurcation value ofb = 2, in this caseb = 2.3, the convergent area has in fact
collapsed around the real axis.
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FIGURE 75. Model V Complex Convergence Plot fora= 5,b= 2.3

At b= 2.5, the collapse of the convergent area along the real axis is even more pronounced than at
b= 2.3, indicating the instability of the equilibrium.

FIGURE 76. Model V Complex Convergence Plot fora= 5,b= 2.5
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3.6. Model VI. xt+1 =
(1+a)bxt

(1+axt )b
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FIGURE 77. Model VI basic curve

Model VI is from [8] and also has two parameters or reproduction rates. It also has two cases to
consider with respect to stability, when 0< b≤ 2 andb> 2. For our purposes we will look at the
case whenb> 2. From [1, 2, 3] we know that the model is is globally stable when

a(b−2)≤ 2

It is also assumed for this model thata> 0 andb> 0. In our case, whena= 10, this givesb= 2.2.
We observe this behavior of the model by examining the following plots. To investigate the plots
however, one parameter must be fixed, in our casea, and we vary the other.
When examining the time plot of model VI witha = 10,b = 2 we observe that the model does
behave as predicted and the population approaches the equilibrium. However fora= 10,b= 2.2, it
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FIGURE 78. Model VI Time Plot witha= 10,b= 2

again appears as if the population is cycling between 2 values when in fact it should be approaching
equilibrium if the model were globally stable at these ratesas Cull suggests. Again, this is due to
computer approximation and the actual time plot forb= 2.2 should look similar to that ofb= 2.
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FIGURE 79. Model VI Time Plot witha= 10,b= 2.2

Forb> 2.2 we expect the population to not converge to the equilibrium, and actually for values
of 2.2< b< 2.8 the population oscillates between 2 population values as demonstrated by the time
plot with b= 2.4.
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FIGURE 80. Model VI Time Plot witha= 10,b= 2.4

At b= 3 we find a nice example of the population demonstrating a period 4 oscillation with the
time plot withb= 3.
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FIGURE 81. Model VI Time Plot witha= 10,b= 3
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We can also verify that the population for Model VI is globally stable atb= 2.2 by examining
the time-plus-two curves. For the globally stable values ofb≤ 2.2 the curve intersects they= x
line only atx= 1 as demonstrated by the time-plus-two curve forb= 1.8.
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FIGURE 82. Model VI Time-Plus-2 Curve witha= 10,b= 1.8

Whenb= 2.2, and the model is globally stable, the time-plus-2 curve lies tangent to they= x line
at the equilibrium point as demonstrated by the time-plus-two curve forb= 2.2.
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FIGURE 83. Model VI Time-Plus-2 Curve witha= 10,b= 2.2
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In this particular case whenb > 2.2, and the model is no longer stable, the cycle of period
two cannot be seen by the three intersections of the curve with they= x line, there are only two
intersections as demonstrated by the time-plus-two curve for b= 2.3.
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FIGURE 84. Model VI Time-Plus-2 Curve witha= 10,b= 2.3

The stability of Model VI can also be demonstrated by lookingat the bifurcation map for Model
VI. It can be seen that the model remains at the equilibrium until it bifurcates atb= 2.2. However
it bifurcates in such a way that helps explain the behavior ofthe previous time-plus-two curve
because one can note that one of the bifurcation values is at or very near 0.

FIGURE 85. Bifurcation Map Model VI

One final exploration of the behavior of Model VI can be performed by looking at a series of
complex convergence plots. These plots can suggest at what reproductive rates the bifurcations of
the population may be taking place. Atb= 2 the entire plot surrounded in white, thus providing
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further evidence for the stability of the model at this rate.(As such, a plot of this type will not be
shown).
Shortly after the bifurcation value ofb= 2.2, in this caseb = 2.25, the convergent area has col-
lapsed around the real axis in a rather unusual way.

FIGURE 86. Model VI Complex Convergence Plot fora= 10,b= 2.25

At b= 2.3, the collapse of the convergent area along the real axis is even more pronounced than at
b= 2.25, indicating the instability of the equilibrium.

FIGURE 87. Model VI Complex Convergence Plot fora= 10,b= 2.3
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3.7. Model VII. xt+1 =
(axt)

1+(a−1)xb
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FIGURE 88. Model VII basic curve

Model VII is from [17] and also has two parameters or reproduction rates. It also has three cases
to consider with respect to stability, when 0< b≤ 2, b> 2 andb≥ 3. For our purposes we will
look at the case whenb> 2 . From [1, 2, 3] we know that the model is is globally stable when

a(b−2)≤ b

We observe this behavior of the model by examining the following plots. In order to investigate
the plots however, one parameter must be fixed, in our casea, and we vary the other.
When examining the time plot of Model VII witha= 8,b= 1.8 we observe that the model does
behave as predicted and the population approaches the equilibrium. However fora= 10,b= 2.3, it
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FIGURE 89. Model VII Time Plot witha= 8,b= 1.8

again appears as if the population is cycling between 2 values when in fact it should be approaching
equilibrium if the model were globally stable at these ratesas Cull suggests. Again, this is due to
computer approximation and the actual time plot forb= 2.3 should look similar to that ofb= 1.8.
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FIGURE 90. Model VII Time Plot witha= 8,b= 2.3

Forb> 2.3 we expect the population to not converge to the equilibrium, and actually for values
of 2.3< b< 2.9 the population oscillates between two population values as demonstrated by the
time plot withb= 2.7.
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FIGURE 91. Model VII Time Plot witha= 8,b= 2.7

We can also verify that the population for Model VII is globally stable atb= 2.3 by examining
the time-plus-two curves. For the globally stable values ofb≤ 2.3, the curve intersects they= x
line only atx= 1 as demonstrated by the time-plus-two curve forb= 2.
Whenb= 2.3, and the model is globally stable, the time-plus-2 curve lies tangent to they= x line
at the equilibrium point as demonstrated by the time-plus-two curve forb= 2.3.
When b > 2.3, and the model is no longer stable, the cycle of period two can be seen by the
three intersections of the curve with they= x line as demonstrated by the time-plus-two curve for
b= 2.7.
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FIGURE 92. Model VII Time-Plus-2 Curve witha= 8,b= 2
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FIGURE 93. Model VII Time-Plus-2 Curve witha= 8,b= 2.3
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FIGURE 94. Model VII Time-Plus-2 Curve witha= 8,b= 2.7
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The stability of Model VII can also be demonstrated by looking at the bifurcation map for Model
VII. It can be seen that the model remains at the equilibrium until it bifurcates atb= 2.3.

FIGURE 95. Bifurcation Map Model 7

One final exploration of the behavior of Model VII can be performed by looking at a series of
complex convergence plots. These plots can suggest at what reproductive rates the bifurcations of
the population may be taking place. However, very interesting plots were obtained by this time
holding b fixed and varyinga. At a = 1.5 the real axis is surrounded in white, thus providing
evidence for the stability of the model at this rate.

FIGURE 96. Model VII Complex Convergence Plot fora= 1.5,b= 3

Shortly after the bifurcation value, in this casea= 5, the convergent area has collapsed around the
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real axis.

FIGURE 97. Model VII Complex Convergence Plot fora= 5,b= 3

At a= 7, the collapse of the convergent area along the real axis is even more pronounced than at
a= 5, indicating the instability of the equilibrium.

FIGURE 98. Model VII Complex Convergence Plot fora= 7,b= 3
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4. WHAT ’ S NEXT

In order to further understand the complex behavior of thesemodels, we intend to look at what
happens when a higher order polynomial is added to the existing parameters. After preliminary
investigations for two such models, it is our suspicion thatthese new models behave in a similar
fashion.

5. CONCLUSION

Through graphical analyis, we have shown that the required stability conditions found by [1, 2,
3] are correct. We have also confirmed that for all but Model IV, reproduction rates slightly larger
than those for which the model is globally stable will resultin period-two doubling bifurcations
and an eventual descent into chaos for even larger rates. Additionally, we have demonstrated that
the models can appear very similar with respect to certain graphical representations such as basic
curves, time-plus-2 curves and bifurcation diagrams, however their striking differences are obvious
when one examines the time plots and complex convergence plots for these same models with the
same rates. Therefore, we find it necessary to examine each type of plot to fully understand the
stable characteristics of these models.
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