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ABSTRACT. Seven simple population models are widely used in biokddjierature. These models
display global stability when they display local stabilitife examine various graphical representa-
tions of these seven models. (How each demonstrates tHe stalnstable behavior of each model
due to varying parameters such as reproductive rates.) grahical exploration is done through
the use of basic curves, time plots, time-plus-2 curvesirbétion maps and complex convergence
plots. We study the effect of various parameters like repctide rate on the models’ behaviors. We
conclude that while these models differ in details, they gamerally be used interchangeably.

1. INTRODUCTION

Typical population growth and decay can be modeled by disaee-dimensional difference
equations. The models of interest share the charactetiistichey increase to a certain carrying
capacity and decrease thereafter. When these models dalglstable, they reach equilibrium
where the birth and death rates are equal, regardless ial pdapulation. For our purposes, these
models have been normalized so that the equilibrium is at ¥#ien they are locally stable, they
converge to this equilibrium only for initial populationisat are already near equilibrium. These
models display global stability if they display local stélyi Previous work has found a condition
that demonstrates this characteristic is that these seweielsnhave been shown to demonstrate
local stability and therefore global stability if they arsveloped by linear fractional functions.
These simple models can demonstrate complex behavior ¢br f@productive rates. Both the
stable and the complex behavior will be demonstrated geapiiithrough the use of basic curves,
time plots, time-plus-2 curves, bifurcation maps and blkao# white complex convergence plots.

1.1. Background and Definitions.

Definition 1.1. The following definitions and theorems are fr¢in 2, 3] A one-dimensional
population model is a function of the form

X+1=F(xt)
where fis a continuous function from the nonnegative reathé nonnegative reals and there is a
positive numbek, the equilibrium point, such that:
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f(0)=0
f(x) >x forO<x<x
f(x)=x forx=x
f(x) <x forx>x
and if f'(xm) = 0, where x, is a critical point and x, < x then
f'(x) >0 for0<X< Xm
f'(x) <0 for x> xm such that fx) > 0.

Definition 1.2. A model is globally stable if and only if for alk»such that f(¥) > 0 we have
lim x = X.
X—00

wherex is the unique equilibrium point of x=f(x;).

Definition 1.3. A model is locally stable if and only if for every small enoungiighborhood oX if
Xo IS in this neighborhood, then is in this neighborhood for all t, and

lim x = X.
X—00

While difficult to test, the following theorems determineavie model is locally or globally stable.

Theorem 1.4.If f (x) is differentiable then, a model is locally stabléfif(x)| < 1, and if the model
is locally stable thenf’(X)| < 1.

Theorem 1.5. A continuous model is globally stable if and only if it has gole of period 2. (That
is, there is no point exceptsuch that {f(x)) = x.)

If we examine the following example, we can ascertain a samagsimpler method of determining
local stability.

Example 1.6. Theorem 1.4 gives that for x slightly less thanf1x) is below a straight line with
slope -1, and if foix slightly greater than 1f (x) is above the same straight line, then the model
is locally stable. If we examine model 1 with= 2: %1 = €1 7%) it can be seen that the local
stability bounding line is 2- x. It can also be seen that this line is an upper bound (ai for all

xin [0,1) and a lower bound for ai > 1. From Theorem 1.5 we note that since the bounding line
has a cycle of period 2,2 (2—Xx) = x, then our model cannot have a cycle of period 2 and hence
is globally stable. The next definition follows from this a&le

Definition 1.7. A function@(x) envelops a function(k) if and only if
e @x) > f(x) forxe(0,1)
e @(x) < f(x) forx>1such thatp(x) >0and f(x) >0

Definition 1.8. A linear fractional function is a function of the form

P(X) = % whereac [0,1).
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These functions have the following properties:

e ¢(1)=1

o J(1)=-

* Yo(x)) =

e ¢(x)i0
As the models are meant to represent real populations, factprality reasons these functions are
only of interest when x 0 and@(x) > O.

The main argument in [1],[2],[3] is that if (X) is enveloped by a linear fractional function, then
f(x) is locally stable and therefore globally stable. As suclditaahal results and proofs of the
following theorem appear in [1],[2] and [3].

The following theorem assumes that the model of interest,is= f(x), and that the model is
normalized so that the equilibrium pointis 1, thatis f(1).= 1

Theorem 1.9.Let@be a monotone decreasing function which is positive onYand@(@(x)) = x.
If f(x) is a continuous function such that:

e @(x) > f(x)on (0,1)

<P() f(x) on(1,x)
e f(x) >xon(0,1)
f(x) <xon (1)

e f(X)>00n(1x%)

then for all x€ (0,%),

lim f®(x) = 1.

k— o0
Corollary 1.10. If f1(x) is enveloped by,fx), and %(x) is globally stable, then;fx) is globally
stable.

Corollary 1.11. If f(x) is enveloped by a linear fractional function the(xf is globally stable.

Additionally, from [1, 2, 3] we know that population modelstivone choice of parameters will

envelop the same model with a different choice of parameterghese papers, the enveloping
technique was applied to the seven models from literatwwegekier it was noted that enveloping
was not necessary for global stability.

2. CHARACTERISTICS ANDMETHODS OFPLOTS

For the following models basic curves, time plots, timesgRucurves, bifurcation maps and
black and white complex convergence plots will be used torgna stable and unstable behavior.
The basic curves, time plots and time-plus-2 curves weedaising Maple while the bifurcation
maps and black and white convergence plots were createg piigrams written in Java.

2.1. Basic Curves. The purpose of the basic curve is to show yhe f(x) curve for a specific
parameter or rate. That is, we can find the maximum size of tipelption for a particular rate
after one time step by solvinfj(x) = 0 and also where the population dies out by solMifg) = 0,
excluding the obvious solution of f(0)=0.
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FIGURE 1. A basic curve

2.2. Time Plots. The purpose of the time plot is to show what happens to the lpbpn over
several time steps for a particular reproduction rate aitélipopulation. In these plots, the size
of the population is plotted against time. For differentrogfuction rates or initial populations, the
behavior of the model could demonstrate stable behavioreMie population either approaches
equilibrium (one population size or oscillates between bwanore population sizes or unstable
behavior with the model degenerating into chaos. Unlessratise specified, all time plots in this

paper will begin with initial populatiox = .1.
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FIGURE 2. Time plot with population approaching equilibrium

2.3. Time-Plus-2 Curves. Unlike the basic curve, the time-plus-2 curve shows the Wiehaf
the population after two time steps. That is, it plgts- f(f(x)) and they = x line. A series
of time-plus-2 curves can demonstrate the rate where thalgkgn will oscillate between two
different sizes. If the population still approaches theildgnium for a given rate, thef(f(x))
curve will only intersect thgy = x line at one place, the equilibrium, in our case- 1. When a
rate is where the population oscillates, the (x)) curve will be tangent to thg = x line at the
equilibrium point. The time-plus-2 curves make it easy tstidguish when a rate is beyond the
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FIGURE 3. Time plot with period 2 oscillation
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FIGURE 4. Time plot with period 4 oscillation
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FIGURE 5. Time plot with chaotic behavior
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o 0.2 04 06 038 1 12 14 16 18 2

FIGURE 7. Time-Plus-2 Curve at bifurcation point

bifurcation point because thi f(x)) curve will intersect they = x line at exactly three places,
the unstable equilibrium, and the population values thee lescillation of period 2. Thus if one
solvedf(f(x)) = x, they would find the population values for which the equilibm is no longer
stable because an equilibrium point is stable if and onlizef¢ is no oscillation of period 2 (see
theorem 1.5 above). This result can be found as a result &b®skii's Theorem given in [6]
and a modification of Sarkovskii's Theorem given in [5]. Asydmnstrated in [15], the rates that
generate oscillations of period 4 can be found be plottimgetplus-4 curves, which would yield
five intersection points with thg= x line: the unstable equilibrium and the four population eslu
that have oscillation of period 4. Thus one can easily findllasons of period k by looking at
time-plus-k curves.

2.4. Bifurcation Maps.

Definition 2.1. A bifurcation is a split in two, typically due to a parametérange in a system. The
parameter at which the bifurcation occurs is typically kmoas a bifurcation value. Bifurcation
values occur where a system is structurally unstajiie12]
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FIGURE 9. Bifurcation Map

Bifurcation maps are useful because they demonstrate tigetésm behavior of a population
affected by many reproductive rates and initial populatiaines. The program that creates the bi-
furcation maps iterates the function an infinite numberra&s (in our case 500 represents infinity)
for many initial population values and rates but does natgble population. This is done in order
to eliminate bifurcation transients. Bifurcation tramggare unusual behavior after a bifurcation
due to too few iterations [12]. It then plots the populati@ue after an additional 500 iterations
as the vertical value and the rate it corresponds to as theombal value. By examining the plot,
one will see a single line where the population is at equiiarand then see it split in two, or
bifurcate, representing an oscillation of period two. I ¢hen bifurcate again into oscillations of
period four and so on until the plot becomes chaotic and onenodonger distinguish where the
model bifurcates except in the white stripes. The whit@egirepresent areas of stability until they
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bifurcate into chaos again. One can even predict where tktebifarcation valueBy occurs, from
a period # orbit to a period 81 orbit as it is

. Bx—By_
||m kinl
k=00 By 1 — By

This is known as Feigenbaum’s number and it is approximat€g9 [7]. In particular, we are
interested in the period-doubling bifurcations mentioirefb] as a change from an attraction to
a fixed point to the creation of a period two orbit. When usedadnjunction with the time plots
and time-plus-2 curves, one can confirm the rates and popubetlues that the population will
bifurcate at.

2.5. Black and White Complex Convergence PlotsComplex convergence plots give indica-
tions of a model’s stability at particular reproductionestalong the real axis. The program to
create the complex plots begins with a complex initial pafiah then iterates for an infinite num-
ber (again 500) of times. If the final population value is with certain range or box, then the
population value is considered to be converging to the dajiuim and the point corresponding to
the starting value is colored white. However, if the finaluaals not within the range, then the
population is considered to be shooting toward infinity dreldtarting value will be colored black.
The range of the plot (or bounds of the box ) are the horizaataje from O to 2, which is meant to
be the real part of the complex number, and the vertical rénoge -1 to 1, which is the imaginary
part of the complex number. It is necessary to make plotsdapus rates for each model to gain
an accurate idea of when the equilibrium is stable and whismiot. If the equilibrium is stable,
the real axis should be white, and the population values @mnsidered to be converging to one.
However if there are breaks on the real axis, the equilibisioonsidered to be unstable, and thus
these plots might suggest rates where the population agancdtes.
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FIGURE 10. Complex Convergence Plot
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3. THE SEVEN MODELS

3.1. Model I. X1 =x€& @)

FIGURE 11. Model | basic curve

Model | from [9],[10] and [14] is one of the most commonly usedpulation models. From
[1, 2, 3] we know that the model is is globally stable whea 0 < 2. We observe this behavior of

the model by examining the following plots.
When examining the time plot of model 1 with= 1.4 we observe that the model does behave as

predicted and the population approaches the equilibrium.
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FIGURE 12. Model | Time Plot withr = 1.4

However forr = 2, it appears as if the population is cycling between 2 vallesn in fact it
should be approaching equilibrium if the model were glopsathble at this rate as Cull suggests.
The explanation for this discrepancy is actually due to cot@papproximation and the actual time
plot forr = 2 should look similar to that af = 1.4.

Forr > 2 we expect the population to not converge to the equilibriand actually for values of
2 <r < 2.5 the population oscillates between 2 population valuegasdstrated by the time plot

withr = 2.4.
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FIGURE 13. Model | Time Plot withr =2
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FIGURE 14. Model | Time Plot withr = 2.4 with a period 2 oscillation

Forr > 2.5 the population bifurcates again and again from a periodcéllaison to period 8 and
so forth until it descends into chaos. This is demonstratethb time plot forr = 2.6 which
demonstrates the period 4 oscillation and the time plet3.4 which demonstrates the chaotic
behavior of the population exhibited at this reproductiaier

Forr > 2.5 the population bifurcates again and again from a periodddllason to period
8 and so forth until it descends into chaos. This is demotesirby the time plot for = 2.6
which demonstrates the period 4 oscillation and the time ple 3.4 which demonstrates the
chaotic behavior of the population exhibited at this repicithn rate. The previous time plots
were generated with an initial population ot .1 because it was sufficiently close to =0
cannot be used as a starting population for the time plotaussx = 0O is a fixed point of the the
populationx = 1, the equilibrium, is also a fixed point and can’t be used amitial population
either. Does the behavior of the model change for otheaimipulations?
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FIGURE 15. Model | Time Plot withr = 2.6 with a period 4 oscillation
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Example 3.1. We find by solving (ff (x)) = x when r= 2.5 results in the values % .2895and
x=1.71 It can be shown for any initial population wher+2.5 that the population still oscillates
between these exact values. We note this behavior demimusirathe time plots for+ 2.5 with
initial populations x= .3,x= 1.1 and x= 2.6 respectively.
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FIGURE 17. Model | Time Plot withr = 2.5 and initial populationx = .3
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FIGURE 18. Model | Time Plot withr = 2.5 and initial populationxx= 1.1

Since there are many indications that the behavior of theainisdndependent of the initial
population for all seven models, this part of the discussidhbe neglected for the following six
models.

We can also verify that the population for Model | is globadhable atr < 2 by examining the
time-plus-two curves. For the globally stable values &f 2 the curve intersects the= x line
only atx = 1 as demonstrated by the time-plus-two curverfer1.6.

Whenr < 2, and the model is globally stable, the time-plus-2 cureg fangent to the = x line at
the equilibrium point as demonstrated by the time-plus-¢wwe forr = 2.
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FIGURE 19. Model | Time Plot withr = 2.5 and initial populatiorx = 2.6
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FIGURE 21. Model | Time-Plus-2 Curve with= 2
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Whenr > 2, and the model is no longer stable, the cycle of period two lza seen by the
three intersections of the curve with the- x line as demonstrated by the time-plus-two curve for
r=24.

FIGURE 22. Model | Time-Plus-2 Curve with=2.4

The stability of Model | can also be demonstrated by lookittha bifurcation map for Model |.
It can be seen that the model remains at the equilibrium urigifurcates atr = 2, the period 4
oscillation is also visible near= 2.6.
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FIGURE 23. Bifurcation Map Model |

One final exploration of the behavior of Model | can be perfediby looking at a series of com-
plex convergence plots. These plots can suggest at whatdegtive rates the bifurcations of the
population may be taking place. The amount of white surroumthe real axis in the plots is an
indication of how stable the model is at that reproductite.rétr = 1.7 the real axis is entirely
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FIGURE 24. Model | Complex Convergence Plot floe 1.7

surrounded in white, thus providing further evidence fa $tability of the model at this rate.
At the bifurcation value of = 2, the real axis is still surrounded in white, however thereui-
dence that the convergent area is beginning to "collaps®irat the real axis at the equilibrium.
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FIGURE 25. Model | Complex Convergence Plot fo 2

Shortly after the bifurcation value of= 2, in this case = 2.3, the convergent area has in fact
collapsed around the real axis at the equilibrium point.
Long after the first bifurcation value of= 2, for example the possible second bifurcation value
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FIGURE 26. Model | Complex Convergence Plot floe 2.3

r = 2.6, the convergent area has collapsed in many areas arourghttaxis, indicating the insta-
bility of the equilibrium.
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FIGURE 27. Model | Complex Convergence Plot o= 2.6
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3.2. Model Il. X1 =%[1+r(1—x)]

15 2 25 3

FIGURE 28. Model 2 basic curve

Model Il from [16] is also commonly used and is consideredd@alvariation on Model I [1, 2, 3].
From [1, 2, 3] we know that this model, like Model | is also gidlly stable when B<r < 2. We

observe this behavior of the model by examining the follaypiots.
When examining the time plot of model 2 with= 1.8 we observe that the model does behave

as predicted and the model approaches the equilibrium. wawer r = 2, it again appears as

0.8
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FIGURE 29. Model Il Time Plot withr = 1.8

if the population is cycling between 2 values when in factib@ld be approaching equilibrium
if the model were globally stable at this rate as Cull suggegtgain, this is due to computer
approximation and the actual time plot fo 2 should look similar to that af = 1.8.

Forr > 2 we expect the model to not converge to the equilibrium, atdadly for values of
2 <r < 2.4 the population oscillates between 2 population valuetheh bifurcates into a period
4 oscillation as demonstrated by the time plot with 2.5.

Forr > 2.5 the model bifurcates again and again from a period 4 osoifldo period 8 and so
forth until it descends into chaos. This is demonstratedrog plotr = 2.7 which demonstrates

the chaotic behavior of the population exhibited at thisedpction rate.
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FIGURE 30. Model Il Time Plot withr =2
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FIGURE 31. Model Il Time Plot withr = 2.5 with a period 4 oscillation
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FIGURE 32. Model Il Time Plot withr = 2.7 displaying chaotic behavior
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We can also verify that the population for Model Il is glolyadtable ar < 2 by examining the
time-plus-two curves. For the globally stable values &f 2 the curve intersects the= x line
only atx = 1 as demonstrated by the time-plus-two curverfer1.5.
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FIGURE 33. Model Il Time-Plus-2 Curve with= 1.5

Whenr = 2, and the model is globally stable, the time-plus-2 cureg tangent to thg= x line at
the equilibrium point as demonstrated by the time-plus-¢wwe forr = 2.

FIGURE 34. Model Il Time-Plus-2 Curve with=2

Whenr > 2, and the model is no longer stable, the cycle of period twolkEaseen by the three
intersections of the curve with tlye= xline as demonstrated by the time-plus-two curve fer2.4.

The stability of Model Il can also be demonstrated by lookanthe bifurcation map for Model I1.
It can be seen that the model remains at the equilibrium urifurcates atr = 2, the period 4
oscillation is also visible near= 2.5.

One final exploration of the behavior of Model Il can be peried by looking at a series of
complex convergence plots. These plots can suggest at efraiductive rates the bifurcations of
the population may be taking place. At 1.9 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the modetlas rate.
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FIGURE 35. Model Il Time-Plus-2 Curve with=2.4

1.5 1.64 7.79 7.94 209 2.24 239 254 259 284 2.99

FIGURE 36. Bifurcation Map Model I

Shortly after the bifurcation value of= 2, in this case = 2.1, the convergent area has in fact
collapsed around the real axis.
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FIGURE 37. Model Il Complex Convergence Plot foe= 1.9
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FIGURE 38. Model Il Complex Convergence Plot foe 2.1
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At r = 2.4, the collapse of the convergent area along the real axi®ismore pronounced than
atr = 2.1, indicating the instability of the equilibrium.
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FIGURE 39. Model Il Complex Convergence Plot for= 2.4

3.3. Model lll. X+1 = %[1—rInx]

FIGURE 40. Model 3 basic curve

Model Il is from [11]. From [1, 2, 3] we know that this modeiké Model | and Model Il is also
globally stable when & r < 2. We observe this behavior of the model by examining thevatg
plots.

When examining the time plot of Model 11l with= 1.8 we observe that the model does behave
as predicted and the population approaches the equilibridoavever forr = 2, it again appears
as if the population is cycling between 2 values when in feshould be approaching equilibrium
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FIGURE 41. Model lll Time Plot withr = 1.8

if the model were globally stable at this rate as Cull sugge#tgain, this is due to computer
approximation and the actual time plot fo= 2 should look similar to that af = 1.8.
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FIGURE 42. Model lll Time Plot withr =2

Forr > 2 we expect the population to not converge to the equilibriand actually for values of
2 <r < 2.3 the population oscillates between 2 population valuegasdstrated by the time plot

withr = 2.2.

At r = 2.8 there is an example where the population actually diesftert@nly eight iterations of
the function as demonstrated by the time plot with 2.8
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FIGURE 43. Model lll Time Plot withr = 2.2

FIGURE 44. Model lll Time Plot withr = 2.8
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We can also verify that the population for Model Il is glolyadtable atr = 2 by examining the
time-plus-two curves. For the globally stable values &f 2 the curve intersects the= x line
only atx = 1 as demonstrated by the time-plus-two curverfer1.8.

o 0.2 0.4 0.6 0.8 1 12 14 16 18 2

FIGURE 45. Model lll Time-Plus-2 Curve with = 1.8

Whenr = 2, and the model is globally stable, the time-plus-2 cureg tangent to thg= x line at
the equilibrium point as demonstrated by the time-plus-¢wwe forr = 2.

0 02 04 056 038 1 12 14 16 18 2

X

FIGURE 46. Model lll Time-Plus-2 Curve with = 2

Whenr > 2, and the model is no longer stable, the cycle of period twolkmaseen by the three
intersections of the curve with tlye= xline as demonstrated by the time-plus-two curve fer2.4.
Also, forr = 2.8 we can detect chaotic behavior (in this case the populdtiorg out) by the time-
plus-two curve.

The stability of Model Ill can also be demonstrated by logkat the bifurcation map for Model
lll. It can be seen that the model remains at the equilibriumil it bifurcates atr = 2.
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FIGURE 48. Model lll Time-Plus-2 Curve with = 2.8

1.8 T8BE 187 206 215 224 233 247 2571 260 2.69

FIGURE 49. Bifurcation Map Model Il
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One final exploration of the behavior of Model 11l can be penfed by looking at a series of
complex convergence plots. These plots can suggest at efraiductive rates the bifurcations of
the population may be taking place. At 1.9 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the modetlas rate.

1

1.99

FIGURE 50. Model lll Complex Convergence Plot fore= 1.9

Shortly after the bifurcation value of= 2, in this case = 2.1, the convergent area has in fact
collapsed around the real axis.

At r = 2.4, the collapse of the convergent area along the real axi®ismore pronounced than
atr = 2.1, indicating the instability of the equilibrium.
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1.949

FIGURE 51. Model Ill Complex Convergence Plot foe 2.1

441.99

FIGURE 52. Model lll Complex Convergence Plot foe= 2.4
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FIGURE 53. Model IV basic curve

Model IV from [18] differs from the first three models in thahias two parameters or reproduction

rates. From [1, 2, 3] we know that the model is is globally Eathen
ﬁ <b< 1.

To avoid assymptotes for> 0, we must hava > 1. We observe this behavior of the model by
examining the following plots. In order to investigate tHetp however, one parameter must be
fixed, in our cas@, and we vary the other.

When examining the time plot of model IV with= 20,b = .0435 we observe that the model

does behave as predicted and the population approacheguitibream. However fora= 20,b =

0.8 |

0.6

0.4

50

30 40

FIGURE 54. Model IV Time Plot witha = 20,b = .0435

.0430, it again appears as if the population is cycling betwgalues when in fact it should be
approaching equilibrium if the model were globally stalti¢hese rates as Cull suggests. Again,
this is due to computer approximation and the actual timefplob = .0430 should look similar

to that ofb = .0435
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FIGURE 55. Model IV Time Plot witha = 20,b = .0430

Forb < .0430 orb > .0476 we expect the population to not converge to the eqiuhirand
actually for values 0f0421< b < .0430 the population oscillates between 2 population veadiges

demonstrated by the time plot with= .0427.
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FIGURE 56. Model IV Time Plot witha = 20,b = .0427

Forb < .0430 orb > .0476 the population bifurcates again and again from a pdristillation
to period 8 and so forth until it descends into chaos. Thiseimahstrated by the time plot for
b = .0417 which demonstrates the chaotic behavior of the moceltla®m time plotb = .0477
which demonstrates the population immediately crashimgegproaching 0.

We can also verify that the population for Model 1V is glolyadtable ab = .0430 by examining
the time-plus-two curves. For the globally stable value©9d480< b < .0476 the curve intersects
they = xline only atx = 1 as demonstrated by the time-plus-two curvelfer .0435.

Whenb = .0430, and the model is globally stable, the time-plus-2 elies tangent to thg = x

line at the equilibrium point as demonstrated by the timesgivo curve foib = .0430.
When.0421< b < .0430, and the model is no longer stable, the cycle of periadcam be seen by
the three intersections of the curve with the x line as demonstrated by the time-plus-two curve

forb = .0427.
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FIGURE 57. Model IV Time Plot witha = 20,b = .0417
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FIGURE 58. Model IV Time Plot witha = 20,b = .0477

FIGURE 59. Model IV Time-Plus-2 Curve with = 20,b = .0435
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FIGURE 60. Model IV Time-Plus-2 Curve with = 20,b = .0430

FIGURE 61. Model IV Time-Plus-2 Curve with = 20,b = .0427
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The stability of Model IV can also be demonstrated by loolahthe bifurcation map for Model
IV. This bifurcation map appears to be a mirror image of theedd in that it can be seen that the
model does not reach the equilibrium uriti= .0430.

FIGURE 62. Bifurcation Map Model IV

One final exploration of the behavior of Model IV can be peried by looking at a series of
complex convergence plots. These plots can suggest at epratductive rates the bifurcations of
the population may be taking place. Bt .0435 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the modetlas rate.

1

1.94

FIGURE 63. Model IV Complex Convergence Plot far= 20,b = .0435

Shortly before the bifurcation value bf= .0430, in this casé = .0427, the convergent area has
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in fact collapsed around the real axis.

1

1.94

FIGURE 64. Model IV Complex Convergence Plot far= 20,b = .0427

At b =.0420, the collapse of the convergent area along the realsaai®n more pronounced than
atb =.0427, indicating the instability of the equilibrium.

1

FIGURE 65. Model IV Complex Convergence Plot fae= 20,b = .0420
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(1+a)x

3.5. Model V. %11 =T

FIGURE 66. Model V basic curve

Model V is from [13] and also has two parameters or reprodactates. From [1, 2, 3] we know
that the model is is globally stable when
ab—2)eP <2
It is also assumed for this model theat> 0 andb > 0. We observe this behavior of the model
by examining the following plots. In order to investigate tilots however, one parameter must be

fixed, in our cas@, and we vary the other.
When examining the time plot of model V with= 5,b = 1.8 we observe that the model does

behave as predicted and the population approaches théeiquil.

08|
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0.5

FIGURE 67. Model V Time Plot with a=5, b=1.8

However fora=5,b = 2, it again appears as if the population is cycling betweeal@es when
in fact it should be approaching equilibrium if the model evgtobally stable at these rates as Cull
suggests. Again, this is due to computer approximation hadcctual time plot fob = 2 should
look similar to that ot = 1.8
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FIGURE 68. Model V Time Plot witha=5,b =2

Forb > 2 we expect the population to not converge to the equilibriand actually for values
of 2 < b < 2.6 the population oscillates between 2 population valuesasdstrated by the time
plot withb = 2.3.
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FIGURE 69. Model V Time Plot witha=5,b=2.3

We can also verify that the population for Model V is globaitgble ab < 2 by examining the
time-plus-two curves. For the globally stable valuedaf 2 the curve intersects the= x line
only atx = 1 as demonstrated by the time-plus-two curvelfer 1.

Whenb = 2, and the model is globally stable, the time-plus-2 curgs tangent to thg = x line
at the equilibrium point as demonstrated by the time-plus¢urve forb = 2.

Whenb > 2, and the model is no longer stable, the cycle of period twolmseen by the three
intersections of the curve with the y=x line as demonstratethe time-plus-two curve fdy = 3.
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FIGURE 70. Model V Time-Plus-2 Curve with=5,b=1

FIGURE 71. Model V Time-Plus-2 Curve with=5,b=2

FIGURE 72. Model V Time-Plus-2 Curve with=5,b =3
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The stability of Model V can also be demonstrated by lookintea bifurcation map for Model
V. It can be seen that the model remains at the equilibriunhitibifurcates atb = 2.

T.0 119739 7.89 1.79 1.99 219 2.39 258 279 2.949

FIGURE 73. Bifurcation Map Model V

One final exploration of the behavior of Model V can be perfediby looking at a series of
complex convergence plots. These plots can suggest at epratductive rates the bifurcations of
the population may be taking place. Bt 2 the real axis is entirely surrounded in white, thus
providing further evidence for the stability of the modettas rate.

FIGURE 74. Model V Complex Convergence Plot fare=5b=2

Shortly after the bifurcation value d&f = 2, in this caséy = 2.3, the convergent area has in fact
collapsed around the real axis.
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FIGURE 75. Model V Complex Convergence Plot fae= 5,b=2.3

At b = 2.5, the collapse of the convergent area along the real axi®ismore pronounced than at
b = 2.3, indicating the instability of the equilibrium.

1.949

FIGURE 76. Model V Complex Convergence Plot fae=5,b= 2.5
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3.6. Model VI. X1 = Eﬁ::)xé

FIGURE 77. Model VI basic curve

Model VI is from [8] and also has two parameters or reprodurctates. It also has two cases to
consider with respect to stability, when<Ob < 2 andb > 2. For our purposes we will look at the
case wher > 2. From [1, 2, 3] we know that the model is is globally stableeswh

ab-2)<2
It is also assumed for this model treat- 0 andb > 0. In our case, whea= 10, this gived = 2.2.
We observe this behavior of the model by examining the falgwplots. To investigate the plots
however, one parameter must be fixed, in our @asad we vary the other.
When examining the time plot of model VI with= 10,b = 2 we observe that the model does
behave as predicted and the population approaches théeguil. However foa=10,b=2.2, it

30 40 50

FIGURE 78. Model VI Time Plot witha= 10,b =2

again appears as if the population is cycling between 2 galinen in fact it should be approaching
equilibrium if the model were globally stable at these rae<£ull suggests. Again, this is due to
computer approximation and the actual time plotdes 2.2 should look similar to that df = 2.
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FIGURE 79. Model VI Time Plot witha= 10,b = 2.2

Forb > 2.2 we expect the population to not converge to the equilibriana actually for values
of 2.2 < b < 2.8 the population oscillates between 2 population valuegasdstrated by the time
plot withb = 2.4.
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FIGURE 80. Model VI Time Plot witha=10,b=2.4

At b = 3 we find a nice example of the population demonstrating agetioscillation with the
time plot withb = 3.
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FIGURE 81. Model VI Time Plot witha=10,b =3
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We can also verify that the population for Model VI is glolyadtable ath = 2.2 by examining
the time-plus-two curves. For the globally stable valueb gf2.2 the curve intersects the= x
line only atx = 1 as demonstrated by the time-plus-two curveldfer 1.8.

FIGURE 82. Model VI Time-Plus-2 Curve wita=10,b=1.8

Whenb = 2.2, and the model is globally stable, the time-plus-2 cures fangent to thg= x line
at the equilibrium point as demonstrated by the time-plus¢urve forb = 2.2.

o 0.2 0.4 0.6 0.8 1 12 14 16 18 2

FIGURE 83. Model VI Time-Plus-2 Curve with = 10,b=2.2
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In this particular case whelh > 2.2, and the model is no longer stable, the cycle of period
two cannot be seen by the three intersections of the curyethgty = x line, there are only two
intersections as demonstrated by the time-plus-two cuwe £ 2.3.

FIGURE 84. Model VI Time-Plus-2 Curve with = 10,b=2.3

The stability of Model VI can also be demonstrated by lookahthe bifurcation map for Model
VI. It can be seen that the model remains at the equilibriutil ilbbifurcates atb = 2.2. However
it bifurcates in such a way that helps explain the behaviathefprevious time-plus-two curve
because one can note that one of the bifurcation values rsvatrpnear O.

/Z

TO T.28 7.0 178 1.00 220 Ta0 T o0 2

FIGURE 85. Bifurcation Map Model VI

One final exploration of the behavior of Model VI can be paried by looking at a series of
complex convergence plots. These plots can suggest at efraiductive rates the bifurcations of
the population may be taking place. Bt 2 the entire plot surrounded in white, thus providing
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further evidence for the stability of the model at this rg&s.such, a plot of this type will not be
shown).

Shortly after the bifurcation value &if= 2.2, in this casd = 2.25, the convergent area has col-
lapsed around the real axis in a rather unusual way.
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FIGURE 86. Model VI Complex Convergence Plot fae= 10,b = 2.25

At b = 2.3, the collapse of the convergent area along the real axi®ismore pronounced than at
b = 2.25, indicating the instability of the equilibrium.
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FIGURE 87. Model VI Complex Convergence Plot far= 10,b = 2.3
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3.7. Model VII. X1 = -2,

FIGURE 88. Model VIl basic curve

Model VIl is from [17] and also has two parameters or reprauncrates. It also has three cases
to consider with respect to stability, whenOb < 2, b > 2 andb > 3. For our purposes we will
look at the case whelm> 2 . From [1, 2, 3] we know that the model is is globally stableswh

ab—-2)<b

We observe this behavior of the model by examining the falgwplots. In order to investigate
the plots however, one parameter must be fixed, in our &zaed we vary the other.
When examining the time plot of Model VII with = 8,b = 1.8 we observe that the model does
behave as predicted and the population approaches théeiguil. However fora= 10,b= 2.3, it

0.9

0.8

FIGURE 89. Model VII Time Plot witha=8,b=1.8

again appears as if the population is cycling between 2 galinen in fact it should be approaching
equilibrium if the model were globally stable at these rae<Lull suggests. Again, this is due to
computer approximation and the actual time plotider 2.3 should look similar to that df = 1.8.
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FIGURE 90. Model VII Time Plot witha=8,b=2.3

Forb > 2.3 we expect the population to not converge to the equilibriana actually for values

of 2.3 < b < 2.9 the population oscillates between two population valgedeamonstrated by the
time plot withb = 2.7.
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FIGURE 91. Model VII Time Plot witha=8,b=2.7

We can also verify that the population for Model VI is glolyadtable atb = 2.3 by examining
the time-plus-two curves. For the globally stable valueb gf2.3, the curve intersects the= x
line only atx = 1 as demonstrated by the time-plus-two curvelfer 2.

Whenb = 2.3, and the model is globally stable, the time-plus-2 cures fangent to thg= x line
at the equilibrium point as demonstrated by the time-plus¢urve forb = 2.3.
Whenb > 2.3, and the model is no longer stable, the cycle of period two loa seen by the

three intersections of the curve with the- x line as demonstrated by the time-plus-two curve for
b=27.



A Graphical Exploration of Stable Characteristics of SienPbpulation Models

— —
////
-
y ~
/
_—
_—
049
02
0 02" 04 06 08 1 12 14 16 18 2

0 02 04 056 038 1 12

14

16

18

25

FIGURE 94. Model VII Time-Plus-2 Curve with=8,b=2.7
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The stability of Model VII can also be demonstrated by logjka the bifurcation map for Model
VII. It can be seen that the model remains at the equilibriuti it bifurcates ato = 2.3.

20 216 233 250 267 284 301 3.18 3.35 352 3.69

FIGURE 95. Bifurcation Map Model 7

One final exploration of the behavior of Model VII can be penfied by looking at a series of
complex convergence plots. These plots can suggest at epratductive rates the bifurcations of
the population may be taking place. However, very intengsgilots were obtained by this time
holding b fixed and varying. At a= 1.5 the real axis is surrounded in white, thus providing
evidence for the stability of the model at this rate.

3 060 T8 iE 2 14 1591774971499

FIGURE 96. Model VII Complex Convergence Plot far=1.5,b=3

Shortly after the bifurcation value, in this case- 5, the convergent area has collapsed around the
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real axis.

FIGURE 97. Model VII Complex Convergence Plot far=5,b=3

At a =7, the collapse of the convergent area along the real axigers more pronounced than at
a=>5, indicating the instability of the equilibrium.

1.949

FIGURE 98. Model VII Complex Convergence Plot far=7,b=3
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4. WHAT’S NEXT

In order to further understand the complex behavior of tlresdels, we intend to look at what
happens when a higher order polynomial is added to the egigiarameters. After preliminary
investigations for two such models, it is our suspicion thase new models behave in a similar
fashion.

5. CONCLUSION

Through graphical analyis, we have shown that the requilsallgy conditions found by [1, 2,
3] are correct. We have also confirmed that for all but Moder&groduction rates slightly larger
than those for which the model is globally stable will resalperiod-two doubling bifurcations
and an eventual descent into chaos for even larger ratestiédwhdly, we have demonstrated that
the models can appear very similar with respect to certaplycal representations such as basic
curves, time-plus-2 curves and bifurcation diagrams, vewtheir striking differences are obvious
when one examines the time plots and complex convergentefpldhese same models with the
same rates. Therefore, we find it necessary to examine epeltofyplot to fully understand the
stable characteristics of these models.
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