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ABSTRACT. The authors consider self-intersections of closed cuorethe punctured torus. The
intersection numbeof a homotopy class of curves is defined to be the minimum numbkans-
verse self-intersections among all curves in that classnétopy classes are denoted by words in the
free group on two generatofs(a,b). Formulas for intersection number of some particular eass
of primitive words are proved, as well as a formula for iné&tson number of a power of a primitive
word given the intersection number of the primitive word.o@esics of the hyperbolic plane that
project to closed curves on the torus are also considerediar to achieve some similar results.

1. INTRODUCTION

Let T be the torus with one puncturey (T) is the free group on two generators. Thewifs
a word inF (a,b) = m (T), we would like to study the self-intersections of the closadves on
T that representv. We say that two closed curvdsandg on T are equivalent if there is some
homeomorphism oT that mapsf to a curve that is freely homotopic tp Then two wordswvy
andw, in F (a,b) are equivalent if there is some automorphisntdf, b) that mapsw; to ws.
Let theintersection numbeof a free homotopy class of a closed cufven T be the minimum
number of transverse self-intersections among all gemasition curves in that class. Then the
intersection number of a wond in F (a,b) is the intersection number of the corresponding class
of curves. So given any wond, it would be nice to be able to determine the intersectionlmem
by just looking at the form ofv. In this paper, we prove formulas for some particular clasge
words. In sections 2 through 6 the first author employs sompelégical and geometric methods:
in section 2, a convention for drawing curves is introdu@edgection 3, some characterizations of
minimal intersection are proved, in section 4, intersectiambers for some primitive classes of
words are proved, in section 5, the intersection number davgps of primitive words is proved,
and in section 6, some other related results are presentesections 7 through 10 the second
author employs geometric and algebraic methods, examgeoegesics in the hyperbolic plane,
the universal cover of : in section 7, the necessary hyperbolic geometry is intteduin section
8, algebraic methods are used to investigate particulasetaof geodesics, in section 9, geometric
methods are used, and in section 10, similar methods areedppladditional classes of words.
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2. A “CANONICAL FORM” FORCLOSED CURVES

Throughout the next sections, we assume that every worddiscesl (contains no subwords
equivalent to the identity word) and that every curve is ingyal position (passes through no point
more than twice). For a wordl in F (a,b), @(w) denotes the intersection numbenaf We will
use intersection to mean transverse self-intersectionaftosed curve : St — T, w; denotes
the word inF (a,b) that f represents. We consider all words to be “cyclic” words (tleat the
first letter follows the last letter, so that there is no reaferred first or last letter), since they
represent free homotopy classes of closed curves. We sag tfemeral position curve hascess
intersectionf it is homotopic to a curve with fewer intersections.

The punctured torus is homeomorphic to a square with oppesites identified and corners
removed. Let this square be in the Euclidean plane, centgriga origin with side length 2. Call
this squares. Letloopsa: St — T andb: St — T (whereS' is defined a$0,1]/ (0 ~ 1)) be defined
as follows:

(2t,0) if t < %
(2—-2,0) ift>3,
(

0,2t) ift <32
b(t) = { (0,2t—2) ift> %
The fundamental group &f is the free group on two generators. Products ahdb (and their
inversesA andB) generate loops in all free homotopy classes and there iglaban betweera
andb, somy (T) = F (a,b).

In our search for minimal self-intersection, we would likereduce the much too large free
homotopy classes to smaller, more manageable classes. Wd lke to be able to deform ev-
ery curve to a curve in some sort of “canonical form”, and weulddike this to decrease self-
intersection as much as possible, or at least certainlynooéase self-intersection. We will start
by examining curves o8.

Let f be any closed curve i, projected ontd&. Define an arc to be a path #joining two
edges of the boundary & So f is composed of several arcs. We may continuously deform each
arc in f to a straight line segment, while fixing the endpoints (Feglrl to 1.2). Call the resulting
curve f’. Sof’ crosses the edges 8fat the same points and in the same ordef asut all paths
between consecutive edge crossings are straight line segnieclaim thatf’ cannot have more
intersections thari. Suppose that two arcs @f, denoted by segmentsB andCD, intersect each
other. Then they must intersect exactly once, and the papsints{A,B} and{C,D} must sepa-
rate each other on the boundary®fSo any two arcs traveling from poiAtto pointB and from
pointC to pointD, respectively, must intersect. Thus the two path$ that were deformed into
segment@AB andCD in f’ must intersect at least once. Thus every intersectidi aorresponds
to a different intersection i, so f” has no more intersections théan

However, f’ still may have some unnecessary arc$ ifias unnecessary edge crossings. The
necessary edge crossingsfoére those corresponding to the letters in the reduced werdhe
correspondence between edges and letters is: «gattop <> b, left «++ A, bottom+« B, which is
derived from the definitions of loopsandb above). If there are any unnecessary edge crossings
in f, there must be an arc that starts and ends on the same efgého$ arc, inf/, then becomes
a segment lying entirely on that edge ®f Let B andC be the points where this segment starts
and ends, respectively. Then ketbe the starting point of the arc with endpoBitand letD be
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the endpoint of the arc with starting poi@t Let f” be the curve obtained frorfi by replacing
segmentAB, BC, andCD with segmentAD (Figure 1.2 to 1.3). | claim that” does not have
more intersections thafi. If some segment intersects segmAB, then it must intersect at least
once any path from poim to pointD that does not cross the boundary of the square. In partjcular
it must intersect the path iff composed of segmen#sB, BC, andCD at least once. Thus every
intersection inf” corresponds to a different intersectionfifp so has no more intersections than
f’. This process can be applied repeatedly until we get a cuithem unnecessary edge crossings
and no segments lying entirely on an edge. d¢.be this final curve.

Then we see thag must cross the edges corresponding to each letter in the ma@®ethat they
occur inws, and it crosses no additional edges. And if necessary, wealsaydeformg slightly
so that no intersections occur on the boundary of the squatteout changing the number of in-
tersections. We summarize the previous discussion in tlening lemma.
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FIGURE 1

Lemma 2.1. Let f be a closed curve on T. Then f is freely homotopic to eedasirve g which
has no more intersections than f and satisfies the followrngqrties:

(1) as g is traversed once on S, the letters corresponding todgesecrossed (right> a, top
— b, left— A, bottom— B) form w,

(2) all arcs between consecutive edge crossings are straig@tsegments,

(3) all intersections with edges of S are transverse, and

(4) no intersections occur on an edge of S.

We say that a closed curve satisfying these four propediasdanonical form

3. METHODS FORPROVING MINIMALITY

It is easy to prove upper bounds for the intersection numbarword. If we draw any closed
curve representing a given word, the number of transvetsasersections of that curve gives an
upper bound for the intersection number. It is more diffi¢alprove lower bounds or to prove
that a curve has no excess intersection. Fortunately, Jasd Bihd Peter Scott have proved several
helpful theorems. The following definition and two theoreans from [HS], slightly modified for
consistency of notation.

Definition 3.1. If f : S' — F is a closed curve on a surface F, we say that f hasgonif there is
a subinterval | of $such that f identifies the endpoints of | ang defines a nullhomotopic loop
on F. We say that f has2rgonif there are disjoint subintervals | and J of Such that f identifies



Intersection Numbers of Closed Curves on the PuncturedsToru 33

the endpoints of | and J and,f,; defines a nullhomotopic loop on F. And f haweak 2-gonif
there are distinct (but not necessarily disjoint) subintgs | and J of $such that f identifies the
endpoints of | and J and|; defines a nullhomotopic loop on F.

Theorem 3.2.[HS] Let f be a closed curve on an orientable surface F. If f has excelf-
intersection, then f has a 1-gon or 2-gon.

Remark 3.3. The converse of the above theorem is true, which is easy téagei¢ f has a 1-gon,
itis a nullhomotopic loop and can be removed to decreasetingxer of intersections by one. And
if f has a 2-gon, its two edges form a nullhomotopic loop, dredd is a homotopy that exchanges
the two edges, removing two transverse self-intersectaia@intness of | and J is required here).

Theorem 3.4.[HS] Let f be a closed curve on a surface F. If f has excess selfsgtgon, then
f has a 1-gon or a weak 2-gon.

Remark 3.5. The converse of the above theorem is not true in general: @ediar & must always
contain a weak 2-gon, even when drawn without excess getsaction. | claim that the converse
istrue if and only if w is primitive (it can be seen that any closed curve represgrainonprimitive
word must have a weak 2-gon and any closed curve represempnignitive word that has a weak
2-gon must also have a 2-gon).

Wei will need to introduce some additional concepts andtratdo give a useful characteriza-
tion of 1-gons and 2-gons. We already have a clear corregmmedbetween closed curves dn
and words irF (a,b). We will define a similar correspondence between subcuevessgriction of
a closed curvd to a subinterval oB') and subwords. Lef be a closed curve in canonical form
onS If gis a subcurve off, let us form the subword ofs corresponding t@ by traversingg
on Sand reading off the letters corresponding to the edges edogsst as in Lemma 2.1). If an
endpoint lies on an edge & we will consider that to be an edge crossing. And i a subword
of wt, we can find the corresponding subcurve ddy restricting its domain frons! to an interval
such that its image starts at any point whose immediate migyd erossing corresponds to the first
letter of v and ends at any point whose immediate previous edge crossingsponds to the last
letter ofv (and the edges crossed in between match up with the lettéetween, of course). So
for a subcurvey of closed curvef, definewg to be the corresponding subwordwf. Note that
subwords, unlike (cyclic) words, do have well-defined firsd éast letters, and that subcurves are
not necessarily closed. More generally, we can make the samespondence from any (open)
curve to a (noncyclic) word. Then it is clear thatfifis a curve traveling from poim to pointB
(B on the interior ofS), g is a curve traveling from poirB to pointC, andh is the curve traveling
from pointA to pointC along f andg, wy = wfwg. An arc is a special case of a subcurve repre-
senting a two-letter word whose endpoints lie on the bound&a§, so we will label arcs by their
corresponding words.

Lemma 3.6. Let f be a closed curve in canonical form. Then f does not hayelegons. Also, if
f has a 2-gon and if g= f|; and h= f|; are the subcurves forming the edges of the 2-gon (I and
J defined as in Definition 3.1), thenyw (Wh) ™1,

Proof. f cannot have any 1-gons since every arc is a straight line esgigamd all intersections
with edges ofSare transverse.
Suppose that has a 2-gon. Leg andh be the subcurves forming the edges of the 2-gon (as
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above). The union of the images @aandh must be a null-homotopic loop, so depending on the
relative orientation of the two curves, eithegwy, or wg (W) must be equivalent to the identity
word. Also, sincef is in canonical form, subwordgy andwy, are reduced. Thusgwy, = id implies

Wy = (Wh)~ andwg (Wh) * = id implieswg = wy,. Moreover, since the words are reduced, this
equality is not simply that the two words represent the saement ofF (a,b), but that the two
words are identical strings of letters. O

In the case where the two subcurves have the same orienfatjeaw), the first 2-gon vertex
must be an intersection of two arcs with the same second [gttach is the first letter ofig),
the other 2-gon vertex must be an intersection of two arcs thie same first letter (which is the
last letter ofwg). And in the case where the two subcurves have the oppositetation, the same
holds if we invert all the labels of arcs that are parhof

4. INTERSECTIONNUMBERS FORSOME PRIMITIVE CLASSES OFWORDS
Theorem 4.1.¢(ab!) = (i— 1) (j — 1).

Proof. First, we would like to show thap(a'b’) < (i—1)(j —1). Figure 2 shows a method of
drawing a curvef representingib! that has(i — 1) (j — 1) intersections. First, copies ofa are
drawn with no intersections, moving upwards3nThen j copies ofb are drawn, moving right-
wards inS. This makesj — 1 complete vertical arcs, each of which intersects eachef thl
complete horizontal arcs. Then the curve can be closed. are are(i —1)(j —1) total in-
tersections forf, which representa'b’ (by Lemma 2.1, since it crosses the correct edges in the
correct order). Sdi—1)(j —1) is an upper bound for the minimum number of transverse self-
intersections over the entire free homotopy clasa'lof.

FIGURE 2

Now, if we show thatf has no 1-gons or 2-gons, then by Theoremf3tas no excess intersec-
tion, that is,f realizes the minimum number of intersections for its frembtopy classf has no
1-gons by Lemma 3.6 (as drawn in the figufas not officially in canonical form, since some arcs
were not drawn as straight segments in favor of visual glalhibwever it should be clear thétis
homeomorphic to a curve in canonical form). Suppose thaas a 2-gon, with edges formed by
subcurveg andh. By Lemma 3.6wg = W, (it cannot be thatvy = (wh)*l sincews contains no
A or B). gandh must also start at a mutual intersection. However, the arirsections irf are
between araa arc and &b arc, so no two subcurves starting at an intersectioh cdn represent
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the same subword. Thereforehas no 2-gons. So .finallm(ai bi) =>1i-1)(j—1).
(We will see an alternate method of provipga'b!) > (i — 1) (j — 1) in section 6.) O

The next three proofs parallel the proof of Theorem 4.1.
Theorem 4.2.¢(ablakd') = (i+k—2) (j+1-2)+(i—K)+ (j—1)—1, fori >k and j>I.

Proof. Figure 3 shows thap(a'blakb') < (i+k—2)(j+1—-2)+(i—K) +(j—1)—1. In (1),i
copies ofa are drawn for the first part of. In (2), j copies ofb are drawn. Each of the result-
ing ] — 1 complete vertical arcs intersects all of the 1 complete horizontal arcs. So there are
(i—1)(j—1) intersections here. In (3), the nékxtopies ofa are drawn, interlaced with the first
set ofas. This makek — 1 complete horizontal arcs, each of which intersects alhefjt— 1
complete vertical arcs. So there drje- 1) (k— 1) additional intersections here. In (4), the first
of the next set obs is drawn. This intersects each of the complete horizoehents above the
lasta, of which there aré —k— 1. In (5), the remainindps are drawn, making— 1 complete
vertical segments, each of which intersects all ofithel + k— 1 complete horizontal segments.
So there aréi +k—2) (I — 1) additional intersections here. In (6), the final segmenidsecthe
curve is drawn. If < |, this intersects each of thje- | — 1 complete vertical segments to the right
of the lasth, and it also intersects the one diagonal segment. Othe(Wige- ), the final closing
segment intersects nothing. So in either case, therg-ateadditonal intersections here.
Therefore, in total there are

(i—-1D(j-D+(-)(k=1)+(i—-k=D)+(i+k=2)(1=2)+(j—1)
= (i-D)(j-)+k-D(j—-D+(i+k=2)(1-2)+(i—-K+(j—1)—1
= (i+k=2)(j—-1)+(i+k=2)(I-1)+(i—-k+(j—1)—1
= (i+k=2)(j+1-2)+(i-k) +(j-1)-1

intersections forf .

i—k—1
] }’

iTh—2

FIGURE 3

Now, we will show thatf has no 1-gons or 2-gond. has no 1-gons by Lemma 3.6. Suppose
that f has a 2-gon, with edges formed by subcuryesidh. By Lemma 3.6wg = W, (it cannot be



36

thatwg = (Wh)_l sincews contains ndA or B). Suppose thaty andw, each start with aa. There
is only one pair of arcs ending en(bothba) that could intersect (if and only if< j). Supposing
that they do intersect, if we follow the two subcurves legdavay from the intersection, we find
that afterk — 1 aa arcs, the two subcurves diverggonto anab arc,h onto anotherna arc (or the
other way around), sinde> k (see Figure 4. So it cannot be thaj andwy, each start with an
a. Butwg andwy, cannot each start withlasince there is no intersecting pair of arcs ending.in
Therefore,f has no 2-gons. So finallg(alblakd') = (i+k—2) (j+1-2)+(i—k) +(j —1) - 1.

0

FIGURE 4

Theorem 4.3.¢(a'bla*B') = (i+k—1) (j+1-1).

Proof. Figure 5 shows thap(a'blaB') < (i+k—1)(j+1—1). In (1),i copies ofaare drawn for
the first part off. In (2), j copies ofb are drawn. Each of the resultig- 1 complete vertical
segments intersects all of the 1 complete horizontal segments. So there(arel) (j — 1) inter-
sections here. In (3k more copies o& are drawn. Each of the resultikg- 1 complete horizontal
segments intersects all of tHe- 1 complete vertical segments, and one incomplete horizonta
segment intersects all of the- 1 complete vertical segments. So there @ j — 1) additional
intersections here. In (4), the remainingopies ofb are drawn. One incomplete vertical segment
intersectk — 1 complete horizontal segments and one incomplete hoakeagment; each of the
| — 1 complete vertical segments interseicts1 4+ k — 1 complete horizontal segments and one
incomplete horizontal segment; and one last incompletgcaésegment intersects- 1 complete
horizontal segments. So there &@rg(i +k — 1) additional intersections here.

Therefore, in total there are

(-Di-D+®I-D+1)(i+k=1)
= (i+k=1)(j—1D)+(i+k=1)()
(i+k=1)(j+1-1)
intersections forf.

Now, we will show thatf has no 1-gons or 2-gond. has no 1-gons by Lemma 3.6. Suppose
that f has a 2-gon, with edges formed by subcuyemdh. Suppose thaty = wh. Suppose that
Wy andwy each start with am. There is only one pair of arcs endingarthat intersect (onaa
and theBa). If we follow the two subcurves leading away from the ingmtson, we find that they
overlap (see Figure 6) which means that the correspondimgteuvalsl andJ are not disjoint, so
they cannot form the edges of a 2-gon. But it cannot bevhandw, start with ab or aB, either,
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since no two arcs ending inor B intersect. Then we must assume thigt= (wp) . Thenwg
must start with & or B, since starting with ar\ is impossible here and staring with arwould
imply thatwy, ends with anA. Without loss of generality, we may assume thgtstarts with &b,
sow, ends with aB. But no arcs that end with intersect arcs that begin wi, so suchg andh
cannot form a 2-gon. Thereforé has no 2-gons. So finallg(ab/aB') = (i +k—1)(j+1—1).

O

FIGURE 6

Theorem 4.4.¢(ablAB') = (i+k—1)(j+1-1) -1

Proof. Figure 7 shows thap(a'b/A*B') < (i+k—1) (j +1—1)—1. In (1),i copies ofaare drawn
for the first part off. In (2), j copies ofb are drawn. Each of the resulting- 1 complete vertical
segments intersects all of the 1 complete horizontal segments. So there(arel) (j — 1) inter-
sections here. In (3k copies ofA are added. Now, one incomplete horizontal segment and each
of thek— 1 complete horizontal segments intersect all of thel complete vertical segments. So
there argk) (j — 1) additional intersections here. In (4)copies ofB are drawn, closing. One
incomplete vertical segment intersekts 1 complete horizontal segments; each oflthel com-
plete vertical segments intersects 1+ k— 1 complete horizontal segments and one incomplete
horizontal segment; and one last incomplete vertical segm&ersects — 1 complete horizontal
segments. So there afe—1)+ (1 —1)(i+k—1)+(i—1) = (I) (i+k—1) — 1 additional inter-
sections here.

Therefore, in total there are

(i-D(-D+®RG-D+0)(+k=-1)-1
= (i+k=D)(j—-1)+(i+k-1)()—1
(i+k=1)(j+1-1)-1
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intersections forf.
Now we will show thatf has no 1-gons or 2-gong. has no 1-gons by Lemma 3.6. Suppose

() 2 3 “
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FIGURE 7

that f has a 2-gon, with edges formed by subcuryesndh. Suppose thaty = w,. Suppose that
Wy andwy each start with am. There is only one pair of arcs endingarthat intersect (onaa
and theBa). If we follow the two subcurves leading away from the inemtson, we find that they
overlap (see Figure 8) which means that the correspondibigteuvalsl andJ are not disjoint.
But it cannot be thatyg andw, start withA, b, or B, either, since no two arcs endingAnb, or B

intersect. Then we must assume thgt= (wh) . However, no arcs that end withintersect arcs
that begin withA, no arcs that end with intersect arcs that begin with no arcs that end witA
intersect arcs that begin with and no arcs that end withintersect arcs that begin with Thus no
choice of initial letter fowg (and resulting final letter fony) is consistent. So suchandh cannot
form a 2-gon. Thereforef, has no 2-gons. So finallyg(alb/AB') = (i+k—1)(j+1—1)—1.

O

FIGURE 8

Remark 4.5. The theorems proved in this section are enough to find theseddon number of
any any primitive word with four or fewer blocks of lettersifack is a subwordkwhere x is a
single letter such that no other subword with m> n contains this subword

Proof. A word with zero blocks is the identity word, which has ineg8on number 0. The only
primitive words with one block are those with only one lettdl of which have intersection num-
ber 0. It is clear that a reduced word with two blocks must bawedent to a word of the form

a'b! (i, j > 0) under a Whitehead Type | automorphism (a permutefioh{a, b, A,B} such that

S(x1) = S(x)~!; see [CR] for more on automorphismsffa, b)), whose intersection number is
given by 4.1. Words with more than one block must have an evenber of blocks since blocks
must alternate betwees or As andbs orBs (no letter can be adjacent to its inverse) and the first
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and last block are adjacent. Thus there are no words witle thiceks. It also follows that a word
with four blocks must be in one of the following formeylxkKy', X'yix—ky! xiyixky=! xiyix—ky-!
(wherex # y*1, i, j, k,1 > 0). X'yl x*y! is equivalent ta'b! akb! under some Whitehead Type | auto-
morphism, which, if primitive, is equivalent to some wordiloé same form with> kandj > | by
the following Lemma (4.6), whose intersection number iegiby 4.2.Xy! x Ky is equivalent to
b'alB¥al under some Whitehead Type | automorphism, which is in tutrivedent toal b'al B un-
der a cycle (i.e. conjugation by/), whose intersection number is given by Theorem #8xy !

is equivalent ta'b/akB' under some Whitehead Type | automorphism, whose intecsestimber
is given by Theorem 4.3. And finall)ly!x *y~! is equivalent ta&'b! AB! under some Whitehead
Type | automorphism, whose intersection number is givenligofem 4.4. O

Lemma 4.6. Every primitive word w of the form'alakb! is equivalent to a word of the same form
withi>kand j> 1.

Proof. Sincew is primitive, it cannot be that=k andj = 1. Then if it is not the case that> k
andj > | already, we have the following cases (ndicates equivalence under either a Whitehead
Type | automorphism or a cycle):

Fori < kandj <I: ablakb' ~ akb'albl, soleti’ =k, j’ =1, K =i, andl’ = j.

Fori <kandj > I: ablab' ~ b'albka ~ albkalb', soleti’ = j, j' =k, K =1, andl’ =.

Fori > kandj < |: ablakb' ~ b'albka ~ alb'albX, soleti’ =1, j’ =i, K = j, andl’ = k.
Thenabiakb' ~ a'bi'akb” andi’ > K andj’ > I 0

5. INTERSECTIONNUMBERS FORPOWERS OFWORDS
Theorem 5.1. For a primitive word w and a positive integer p(wP) = p?@(w) + p— 1.

Proof. First we will prove by induction om that@(wP) < p?@(w) + p— 1. We would like to find

a curvef for word wP with p?@(w) + p— 1 intersections. We would also liketo be formed ofp
parallel subcurve$, to fp, wherewy, = w, such that each successifyés drawn shifted by a small
distance to the right (from the direction of the curve)fpf;, an addition to a segment connecting
the end off, to the beginning of; (see Figure 9). Whep = 1, we can draw a curve fav without
any excess intersection, and all desired conditions withieé p?Q(W) + p— 1) |p=1=@(W)). So

we assume that, with wg = wP, drawn as described above, hag(w) + p — 1 intersections for
somep > 1. We would like to insert one more subcurvg, 1, to get a drawing ofvP+1. First,
remove the final segment frofnthat connectd,, to f;, crossing thep — 1 curves between (Figure
9.2). Then add the subcunfg,, (representing subwond) after f,, traveling parallel, just to the
right of f, (Figure 9.3). As we drawp, 1, the first time it crosses through a group of intersections
(all corresponding to one intersection in the original draywof w), it intersects thep transverse
sections off; through f, (Figure 10.2). The second time through such a group of iettiens,

it intersects allp curvesf; throughfp, plus itself, fp, 1 (Figure 10.3). Then to connect the end
of fy,1 to the beginning off;, all p previous copies of must be intersected (Figure 9.4). Call
this new closed curvé’. So we started withf, with p?p(w) + p — 1 intersections, subtracted
p— 1 intersections, addeg@p+ 1) (w) intersections, and then addpdnore intersections to get
f/. wp = WP, so we have a drawing afP with p2Q(w) + (2p+1) @(W) + p = (p+ 1) (W) +
(p+1) — 1 intersections, drawn as we had desired. TherefpfeP) < p?@(w) + p — 1 for all
p>1
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FIGURE 9

FIGURE 10

Basically, in drawing a curvé for wP, we have replaced a cuneerepresentingv (without
excess intersection) with a ribbon pparallel curves, reconnected properly at its ends so tleat it
one closed curve. Now we can identify two types of interggtiin f. Define Type | intersections
to be thep?@(w) intersections within transverse self-intersections @f ¢ntire ribbon. Define
Type Il intersections to be the— 1 intersections within the ribbon, where the rightmost sue
crosses over to become the leftmost subcurve. There is ehbijective correspondence between
blocks of p? Type | intersections irf and intersections of, which can be extended tomfold
covering mapy: f — e (if the correct topology is chosen). Intuitivelycontracts the ribbon gb
parallel subcurves of down to the single curve.

Now with this mapy, we will prove that a closed curviefor whichw; = wP, drawn as above, has
no 1-gons or 2-gons. It is easy to see thaian be drawn as above to be in canonical form. Thus
it will not contain any 1-gons. Now suppose tHahas a 2-gon, with edges formed by subcurves
g andh. Suppose that both 2-gon vertices are Type | intersectidbheny(g) andy(h) are edges
of a weak 2-gon ire. Buteis a primitive curve without excess intersection, whichte@ms no
weak 2-gons by Remark 3.5. So at least one vertex of the 2-gshlve a Type Il intersection. But
if we follow the two subcurves leaving any Type Il interseati we find that they overlap before
intersecting again (at a Type Il intersection), which cadicts the disjointness assumption of the
intervalsl andJ in the definition of a 2-gon. Thereford, has no 1-gons or 2-gons. Then by
Theorem 3.2f has no excess intersection.

Thereforep(wP) = p?@(w) + p— 1. O



Intersection Numbers of Closed Curves on the PuncturedsToru 41

6. OTHER RESULTS

Theorem 6.1.Let w be a word in Ka,b). Let rya be the number of aa or AA subwords in w and
Npp be the number of bb or BB subwords in w. ThEmw) > naanpp.

Proof. Subwordsaa and AA correspond to arcs joining the left and right sidesSofSubwords
bb andBB correspond to arcs joining the top and bottom sideS. of herefore, the endpoints of
eachaaandAA arc separate the endpoints of ebtiandBB arc on the boundary & Therefore
each of thengy horizontal arcs must intersect each of thg vertical arcs, so any closed curve
representingv must have at least,anpp transverse self-intersections. O

Remark 6.2. This lower bound gives an alternate proof th)s(iai bj) =(-1)(j—1). Itiseasyto
see thatp(a'b’) < (i—1)(j —1), and since for w=a'b), naa=i—1and = j— 1, p(a'b’) >

(i-1(-1).

The following theorem is presented to give a possible adtierapproach to finding intersection
numbers. Unfortunately, this technique became much margtEx when applied to any larger
cases.

Theorem 6.3.¢(a) =i — 1.

Proof. Suppose thaf is a closed curve represengtiagin canonical form ors with k intersec-
tions. Sof intersects the vertical boundary $ati distinct points. LeQ be the uppermost of these
points. Then leP andR be the other points at which the segments leading to andigdrom Q
intersect the boundary, respectively. Segmét@sand QR must intersect sincBQ starts below
Q on the left and ends & on the right whileQR starts atQ on the left and ends belo® on the
right. LetSbe this point of intersection. So if we form a curfefrom f by removing segments
PQ andQR and replacing them with the path along segmétfiand SR(see Figure 11), ona
loop is removed from thé, along with at least one intersection. Moreover, no inietlieas are
added since the set of pointsfhis a subset of the set of points fn Thenf’ represents! 1 with
with no more thark — 1 self-intersections. In particular, ffhas no excess intersectidn;- (p(a'),

sop(at) <g(a)-1.

0 0

[¢ P Q s

P R L P e P
—_—

R ... R R ... R

FIGURE 11

Now suppose thaj is a closed curve representiay® in canonical form orSwith | intersec-
tions. Sog intersects the vertical boundary $fti — 1 distinct points. LeR be the uppermost of
these points, and I€ be the other point at which the segment leadinB totersects the boundary.
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Then letQ be any point on the boundary aboReand letS be any point on segme®R which
is not separated from the top of the square by any other segr(tbere is a neighborhood &
containing such a point). So if we form a curyéfrom g by removing segmer®Rand replacing it
with the path composed of segmeRS SQ QS andSR(always traveling left to right) (see Figure
12), onea loop is added, and exactly one intersection is added. Thespresents' with | 41
intersections. In particular, §f has no excess intersectidn;- @(a ), sop(a') < @(a 1) +1.
Thereforep(a') = @(a~1) + 1. Then sincep(a) =0, ¢(a') =i — 1.
O

0 0

R>~... R Rio—... R
/ g

P e P P el

FIGURE 12

Here we describe an algorithm for determining interseatiomber and minimal configurations.
In the canonical form, two arcs intersect if and only if thetpairs of endpoints separate on the
boundary ofS. Moreover, if two arcs intersect, they intersect exactlgenSo all intersections of
a curve in canonical form are determined only by the ordeohgdge crossings. Since there is
only a finite number of permutations of the edge crossingsnaptiter program can check them
all and tell us the minimum number of intersections in additio the permutations that give us
that minimum. This algorithm is extremely inefficient (fagal time), but a Mathematica imple-
mentation still proved to be invaluable in the developmémnmnach of the results of this paper.
What follows is a more detailed explanation of how the alioni is implemented. Given a word
w, with a or A in positionsiy throughin, andb or B in positionsj; through j,,, and a list of
integers{p1, P2, .., Pratny, }» Where{pi., pi,,. ... P, } = {1,2,...,na} and{pj,, Pj,---, Pjna } =
{1,2,...,np} (setwise), we labeah, points on the vertical boundary (1 through) andny points
on the horizontal boundary (1 througg) and draw a curvd (wherew; = w) in the following
way. We may assume that the first lettemois a, so we start at the point labeled 1 on the vertical
boundary ofS. Then for each successive letter, we draw a straight segtméhée yet unvisited
point with the smallest label on the corresponding edg&. oAt the end, connect back to the
point labeled 1 on the right edge. Complete code for thewioiig relevant Mathematica functions
can be found in the appendix.nt er sect ByDrawi ng[ word_String, order List, max_], if
max = —1, returns the number of intersections fgfdrawn as just described fov = word and
(P1,---sPnatn,) = Order. Otherwise, it returns the minimum abx and the number of inter-
secitonsDr awi ngPer nut at i ons[ wor d_St ri ng] returns a list of alha!ny! possible lists{ p1, . . ., Pna+n,
for wordwor d. And finally, M ni mal Per nut at i ons[wor d_St ri ng] returns the intersection num-
ber ofwor d with all lists (py, . . ., Pny+n,) that give the minimum.
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7. INTRODUCTION TOHYPERBOLIC GEOMETRY

In order to examine the intersections of geodesics reptiegeciosed curves on the torus, we
need to review some hyperbolic geometry. This backgroutakin directly from [DIW] and [C].
The upper half plane model of the hyperbolic plaHejs defined on the sét+iy: y > 0}. Note
that in this plane, geodesics are represented by semitelgered on the real axis or infinite ver-
tical lines. All geodesics iffl that project to closed geodesics Bwill have irrational endpoints,
and the geodesics on the torus are a projection of these gjesdd@he pair of points on the real
axis that determines the position of the geodesic are ctileteetof the geodesic. We use the

group

d
to act upont through the homomorphism defined by

ab b
TZ(C d)l—)TZ:%

This group of fractional linear transformationdis= PSL(2,Z), and we will denote the matrix in
SL(2,Z) and the transformation ih = PSL(2,Z) by the same symbol. Lét' be the commutator
subgroup of . " is a free group on the two generatarandb, where

11 1 -1
a:<1 2)andb:<_1 5 )
Note thatl™ is isomorphic to the commutator subgroupS3if(2,Z). We will denote the inverses
of aandb asA andB respectively. We can now consider the fundamental regioof H. This

SL(2,Z) = {( i b) ‘ab,c,deZ ad—bc= 1}

FIGURE 13. The fundamental regian

region is enclosed between two infinite vertical lines atntl & and above two semicircles with
feet at -1 and 0 and at O and 1 (see Figure 13). The operaianslb act on® by identifying
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opposite edges of the region. In this fashion, we can coctstrtorus. Note that the point which is
missing (namely, that at infinity) represents the “punctofehe torus.

8. ALGEBRAIC APPROACHES TODETERMINING THE FEET OF GEODESICS

8.1. Monotonicity of roots. From the following tables, it appears that both roots of adnafithe
form albX increase when addiras to the word, and decrease when addirgto the word. These
tables were created with the help of a program created byME]will prove this monotonicity in

two lemmas, using a nested induction.

Word

Root

aabb
alaabb
aaabb
alaabb
a*aabb
a®aabb
abaabb

1.76759
1.781
1.7831
1.7834
1.78345
1.78346
1.78346

565741
.610308
.616905
.617869

.61801

.61803
.618033

Word

Roots

a’bb
a*bbbt
a*bbk?

1.7831
1.640685
1.62131

0.616905
0.6168
0.616785

Word

Roots

a°bb
a°bbbt
a®bbk?
abbbb?

1.7834
1.640725
1.621315

1.61851

0.617869
0.617855
0.61785
0.61785

Word

Roots

abbb
abbbbt
abbbk?
abbbb?
abbbht

1.78345
1.64073
1.62132
1.61851

1.6181

.61801
.618008
.618007
.618007
.618007
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Word

Roots

a’bb
a’bbbt
a’bbt?
a’bbb?
a’bbt
a’bbb

1.78346
1.640735
1.621315

1.61851
1.618105

1.618045

0.61803
0.61803
0.61803
0.61803
0.61803
0.61803

Word

Roots

atbb
aBbbbt
aSbbk?
albbb?
albbis*
aSbbb
aSbbtP

1.78346
1.640735
1.621315

1.61851
1.618105
1.618045
1.618035

0.618035
0.618035
0.618035
0.618035
0.618035
0.618035

0.618035

To begin, we introduce some information essential to thiefohg proofs.

Definition 8.1. Let® = @ represent the golden ratio.

45

Remark 8.2. The Fibonacci numbers satisfy the recurrence equatjpa F, 2+ F,_1 forn> 3,
with the convention that=1and b = 1.

Remark 8.3. The limh_« Fn

Lemma 8.4. The matrix of 8 is (
Fon

le = ® and the lim_
I:anl

Font1

Fn represents the nth Fibonacci number.

Fna

H"I
Fan ) and that of B is (

1

), where

Proof. We will prove this using an inductive argument. It is giveattthe matrix ofis ( i ) .

1
2
n-1_ ( Fan-3 Fon2 nooame1 (11 Fonsa Fon2 \
Now assume&’'™ = ( Fon s Fon1 ) Thena" = ad"* = < 1 2) < B> Fon 1 ) =

Fon-1 Fon i i i i 1 - n-1_
( B Fonia ) Itis also given that the matrix dfis { ", 5" |. Assumeb™ " =
Fonz —Fono -1 1 -1 Fonz  —Fono2 Fon-1 —Fon
. Thenb" = = — .
( —Fon2 Fona ) enb’’ =bb" ( -1 2 ) < —Fn2 Fona ) < —Fon Fonta )
O

Remark 8.5. We know that §2 — Fon_12 — FonFon_1 = —1. To see this, note that for= 1, that
is F, 12— 1x1—12 = —1. Assume this is true forF, that is n? — Fon—12 — F2, = —1. Then for
Foni+2 = Fani1 + Fon = 2Fon + Fan_1 We have(2Fon + Fan 1) — (2Fon + Fan-1) — (Fon-1 + Fan)* =

I:22n - I:22n—1 —FanFon-1=-1.
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Using this information, we can now begin the essential stéplse proof of monotonicity. As
a warning to the reader, in these proofs we exclude some ocatgd algebraic steps in order to
clarify the arguments presented.

Lemma 8.6. The roots of a word increase monotonically when adding aa veord of the form
albX, where k is fixed.

Proof. Suppose we have a word of the foeabb(the smallest case we will consider). The roots
of this word are approximately (within .00001) 1.767590 a®b5741. Now looking at the case
where we add ona to this word @aabl, we find that the roots occur at approximately 1.781 and
.610308, both of which are greater than the correspondimig afaabh Assume this monotonicity
holds when adding a’s to the wordaabh that is, the roots ai"bbare greater than those att'bb
and so on. To show the monotonicity holds when addingl a's to aabh we find the matrices of
the wordsa"bb anda™ 1bb. These are equal to

Fon-1 Fon 2 -3 _ —3Fon+2Fon-1 SFon—3Fon-1
Fon  Fonta -3 5 —Fon—3Fon-1 2Fon+5Fon-1
and

Fon Fon—1+Fon 2 -3 _ —Fon—3Fon-1 2Fon+5Fon—1
Fon-1+Fon Fon-1+2Fon -3 5 -4 —Fon-1 Thon+2Fon—1

respectively. Then the respective roots are

1(5F2n+3F2n1 ., \/ (5F2n+3F2n_1)2 . 45F2n—3F2n1)

2\ Fn+3Fna —Fon—3F2n-1 —Fon —3F2n-1

and

2\ 4on+Fona —4Fn —Fon-1 —4Fn —Fon-1

To prove monotonicity, we must show for our roots of the farsa /T andg+ vhthate+ /T <
g+vhande— /T < g—v/h. To simplify these inequalities algebraically, we will theonsider
the inequalities — g < vh— /T ande— g < /T —+v/h. So, continuing to use this notation, we
find thate— g is equal to
(5F2n+3F2n-1) (4Fon + Fon-1) — (8Fon +5F2n—1) (Fon + 3F2n-1)
(—4Fon —Fon-1) (—Fon — 3F2n-1)
12 —Fon-1%+ Fon? — FonPon-1 _ -12
(—=Fon—3Fon-1)(—4Fon—Fon-1)  (—Fon—3Fon-1)(—4Fon—Fon-a)

By expanding and simplifying the expressigfn — /T, we find that
\/ ( 8Fzn + 5Fzn 1 >2 S \/ ( 5Fon+ 3Fon 1 > 45— s
_4F2n - I:2n—1 _4F2n - I:2n—1 _F2n - 3F2n—1 _F2n - 3F2n—1

(—Fan— 3Fan-1) v/32F2n? + 5Fan_12 — 8FonFon—1 + (4Fan + Fan—1) v/5Fan? + 45Fan_12 — 18FanFan_1
(_4F2n - I:2n—1) (_F2n - 3F2n—1)

1(8F2n+5F2n1i\/(8F2n+5F2n1)2+42F2n+55n1)_
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Then our inequality oé— g < vh— /T is equivalent to

—12< (~Fon—3F2n-1) \/32F2n2 + 5Fon 1% — 8FonFon-1+ (4Fon + Fon-1) \/5F2n2 +45Fn 1% — 18FFon 1.

As we knowF, is at the least 518026~,_1 and at the mosPF,,_1 whenn > 7, we substitute
these into the above inequality. Note that for cases whete7, the monotonicity of the roots
can easily be verified by performing the computations by handdoing so, to ensure that the
inequality holds true we will substitute the larger vald¥;,, 1, whenevel, has a negative co-
efficient, and the smaller value,6lL8026~,_1 whenever~, has a positive coefficient. After this
substitution, the inequality reduces +83302< F2, ;. We know this is true a2, , is always
positive.

Now we consider the inequality— g < /T —v/h. After expanding and simplifying the expression
VT —+h, we find that it is equivalent to

\/(55n+35n_1)2+455n—35n_1 _\/<8F2n+5F2n_1)2+42F2n+5F2n_1

—Fon—3Fon-1 —Fon—3Fon-1 —4Fn —Fon-1 —4bn —Fon-1

(—4F2n—Fon_1)\/5Fan2+45F2n_12—18FonFan_1+(Fant3Fan_1)v/32F2n?+5Fon_12—8FonFon 1
(—4Fon—Fon_1)(—Fon—3Fon-1)

Then the inequality of— g < /T —v/his equivalent to

—12 < (—4Fn —Fon-1) \/5|:2n2 + 45|:2n—12 — 18FnFon—1+ (Fon+ 3Fon-1) \/32F2n2 + 5F2n—12 — 8FonFon—1
Again we substitute the maximum and minimum value$-gfas discussed above. Whan> 7
this inequality reduces te.0000174706< F2, . Again asF2, , is positive, this inequality is true.
Thus the proof is complete. O

Lemma 8.7. The roots of a word decrease monotonically when adding b word where the
number of a’s is fixed.

Proof. This proof is similar to that of Lemma 8.6. We will consider ard, saya*b®. Then we
know the roots of this word occur at approximately 1.783088 £16905. Then, adding oo
this word,a’b3, we find that the roots occur at approximately 1.640685 ahB86each of which
is smaller than the corresponding rootsalb?. Assume this monotonicity holds when addimg
b’'s to a word of the formalb¥. The matrices oélb™ andalb™? are respectively

<1 1)4(5n_1 —Fan ):(—21an+13F2n_1 8F2n+21F2n_1)
12 —Fn Fn+Fona —34on+ 211 13Fon + 3401

and

1 1) Fn —Fen—Fon1 | _ [ —8Fn—21Fn1 2920+ 8Fn 1
12 —Fn—Fn-1 P11+ 2k —13Fn — 3401 47+ 1301
Then the respective roots are

1 34F2n+21|:2n—1:l:\/< 34Fn + 21,1 >2+4 8o+ 21n-1 )

2| 340 —21F 1 " 34Fn + 21Fon 1 " 34F + 21Fon 1
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and

2\ 13Fn+ 3400 1 —13Fon — 34Fo 1 —13Fon — 34F2 1

Now, we wish to show that for our roots of the forer: /T andg+v/h, thate+ /T > g++vh
ande— /T > g—+/h. Again for simplicity, we will then consider the equivalenequalities
e—g>+vh— /T ande—g> /T —vh, using a method similar to that above. Using this same
notation, we finde— g equal to

<34F2n + 21F2n—1) _ (55F2n + 34F2n—1)
34k, — 2101 13Fon + 341

_ —1428( —Pon-1 +F2n —FonPon—1 ) _ 1428
(13Fn+34Fon_1) (34F2n—21Fon_1) (—13F2n—34F2n—1)(—34F2n+21F2n-1)

1 55Fo0+34Fn 1, \/ < 55Fon + 34Fon_1 )2 © 4 28 s )

Then after factoring and simplifying the expressigh— /T, we have

ﬂ 3450 + 215 1 >2+A 8Fon + 21Fon 1 ﬂ 5550 + 34F2n 1 >2+A 2% +8Fn 1 _
*34F2n + 2:|-|:2n—l N *34F2n + 2:I-FZn—l *13F2n - 34F2n—l N *13F2n - 34'FZn—l

(—34Fn +21F0-1) \/:|-51W:2n2 + 687012 — 62070Fon—1 — (—13Fon — 34Fon-1) \/68F2n2 + 220512 — 756FnFon 1
(*13F2n —34Fn-1) (*34F2n +21Fn-1)

Then the inequalitg — g > vh— /T simplifies to

1428> (~34Fon + 2020 1)/ (15173 + 68F3, | — 6200nFen-1) + (13Fzn + 34F2n 1)1/ (68FZ, + 22092, | — 756FnFzn 1)

As above, we substitute the boundsgf into this inequality, namely at the leas618026~, 1
and at the mosPFy,_1 (wheren > 7). In this case, to ensure that the inequality is true we must
substitute the larger valugbF, 1, whenF, has a positive coefficient and the smaller value,

1.618026~,_1, whenF, has a negative coefficient. Doing so, we firdd00018396< Fzznfl.
This inequality is true a§22n_1 is always positive. Similarly, the inequality fe— g > /T — vh
simplifies to

~1428< (130 + 34F2n 1)/ (68F3, + 2208, | — 756FnFon1) + (~34Fen + 2020 1),/ (1517, + 68FZ, ; — 620onFn 1)

Once again, we will substitute the values discussed abavExfo(nhote that because of the sign
change from the first inequalitypF,_1 will replace F», associated with negative coefficients
and 16180261 will replace those with positive coefficients). The inedtyathen reduces to
—61818< F2, ;. AsFZ, ; > 0, the inequality is true. Thus we know by induction that batbts

of a worda*h" are greater than the corresponding roots of the vadpi*2. O

Theorem 8.8. Through this double induction in Lemma 8.6 and Lemma 8.7 newkhat for any
word of the form &b¥, both roots increase monotonically when adding a’s and elese monoton-
ically when adding b’s.

8.2. Calculating roots of words. We will calculate the roots of the permutationsadb¥ using
the matrices for the respective symbols and the resultiagigic equation to demonstrate that the
word alb¥ has(j —1)(k— 1) intersections. In order to do so, we will introduce sevegattinas.
Note that these results depend on the previous double iedymtoof of monotonicity. Moreover,
the intervals found below are approximate within 0.00008%.enclose below tables that initially
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motivated results that follow. All tables presenting apgmoate numerical roots of permutations
were created with the help of the program by [B].

Permutation Roots
aabb| 1.76759 .565741
aaabb| 1.781|.610308

aaaabb| 1.7831| .616905
aaabbb| 1.64039| .609612
aaaaabb 1.7834|.617869
aaaabbb 1.64068 .616801

Lemma 8.9. The roots of the permutation'l& occur in the intervals (.381966, .618034) and
(1.618034, 2.618035).

Proof. Using the matrices defined farandb, wherea = ( i %) andb = ( _11 _21 ) then

the matrix forW is

( Foj—1Fok—1 — F2jFx —Foj_1Fox + FojFok + FojFok1 )
PjFxk-1—PjFx—Rj-1Fx FjFx-1+Fj_1Fx+Fj-1Fx-1

whereF, represents the nth Fibonacci number. Now we apply the wamsition

c d cz+d

notation we would have? + (d%"") zZ— %’ = 0. Thus, for the above matrix faW, we find that the
roots of its quadratic equation are

T ( ab ) — 328 and solve the resulting quadratic equatibfz) = z for z. So, using this

1 ( FoiFok—1+ Foj_1Fx + szFZKi\/<F2jF2k_1+F2j_1F2k+ szF2k>2+4—sz—1sz+ FoiFox + F2jF2k1)

2 FjFxk—1— Rk — Foj_1Fx FjFk—1— Rk — Foj-1Fx FojFok—1— F2jFak — Foj—1Fax

We take the limits of the roots asandk approacheo. Dividing each term of the numerator
and denominator of these roots ByjFx we find that asj andk approache, the roots of this

permutation approac?*fp_1i (21_2¢)2_4 =® d—1~1.618034, .618034, wherk represents the
golden ratio. Using the smallest word of the foaioX, ab, to establish the bounds of the intervals
of the feet, we find that the roots ab occur at .381966 and 2.618035. Thus the lower root is in
(.381966, .618034) and the upper root is in (1.618034, 2848 O

Definition 8.10. [M] A fixed pointof a function @x) is a point p such that(@) = p.

Definition 8.11. [M] The iteration g = g(pn-1) forn=0,1,... is calledfixed point iteration

Lemma 8.12. Words of the form & ™o a™ follow the fixed point iteration of G- Z-%.
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Proof. The method of this proof is taken from Lemma 3.9 found in [B§tW represent the matrix

t u t
v w ). ThenW(z) = 2. Suppose

the fixed points ofV are somep andq. For the wordal—1b*al we must cyclically permutiV
by bringing onea from the front to the back. To do so, we consid&¥a(x), and we find its
fixed pointsps, q;. Now if we letx = A(p), we haveAWa(A(p)) = AW (aA(p)) = AW (p) =
A(p) = p1. Thus when movingn ds to the back oW, we havepyn = A™(p). Then for each
successive image of the fixed points\Mf we need only consider the iterations of théunction.

AsA= ( 2 -1 ),We knowA (x) = -5 (see Figure 14). O

of alb¥, and without loss of generality suppogé=

-1 1

0 (O-1,0-1)
5 25 0, 25 5

(-®,-D) X

FIGURE 14. Graph ofA(x) = &1

The table below is an analysis of the behavior of the fixed tpitémation of A(X) = Exx—jrll on

different intervals.
Interval Behavior
(—o0, — D) Increase monotonically te ®
(—P,®—-1) Decrease monotonically to®
(CD 1,1) | Flip once to (1), flip to (-c0,-P), increase monotonically te ®
(1,00) Flip to (-e0,-®), increase monotonically te ®
2z+1

Lemma 8.13. Words of the form ' "alb" follow the fixed point iteration of G- S5

Proof. Using the same process as Lemma 8.12, we see thaffBalb” we consider cyclic per-
mutations ob¥al sendingo’s from the front to the back. Then we need only consider tens of

the B function. AsB = ( i i ) we knowB (x) = 2;:11 (see Figure 15). O
The table below is an analysis of the behavior of the fixed tpiténation of A(x) = 2= 11 on

different intervals.
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R

25
(1-0,1-D)

y 4

2] (@,0)

FIGURE 15. Graph ofB(x) = 2L

x+1
Interval Behavior
(—o0,—1) Flip to (@, «), decrease monotonically tb
(—=1,1— @) | Flip once to (so, -1), flip to (®, =), decrease monotonically tb
(1—,D) Increase monotonically t®
(P, 00) Decrease monotonically @

Permutation Roots
abba| -3.30278| 0.302776
aabba| -3.28042 0.56613
abbaa| -1.76638| 0.304839
aaabbal -3.27698| 0.610317|
aabbaal -1.76619| 0.56619
abbaaal -1.63849| 0.305159

Lemma 8.14. The permutation &™bka™ (where0 < m < |) creates a series of j concentric
semicircles with feet occuring in-o, -1.618034) and (-.618034, .618034).

Proof. This follows by applying Lemma 8.12 on the intervals foundttoe roots of the original
wordW (see Lemma 8.9). These iterations then create a serijesoofcentric semicircles, none of
which intersect. O

Permutation Roots
bbaa| -1.76759 -.565741
bbaaa| -1.63852 -.561484
bbbaaa| -1.64039| -.609612
bbbaaaal -1.62127| -0.609502
bbbbaaaa -1.62131| -0.616785

Lemma 8.15. The roots of the permutatiorf® occur in (-2.618035, -1.618034) and (-.618034,
-.381966).
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Proof. Using once again the matrices defineddandb, we find that the matrix is
( Fa1Poj—1—FxPj  Fa1Poj — FaPoji1 )

—FxP2j—1+ FaiaFy  —Fakej + FaraFej+

Taking the limit of the general equation for the rootkasd j approacho we have

2_(d_1)\2 2 _ 1) —
L[ e-1?) , e-p-0
—(P-1)+P —(P-1)+@
We will use the roots of the smallest word of this forna, to establish the bounds of the intervals.
We find that the roots occur at -2.618035 and -.381966. Satkevals for the feet of the geodesic

representing“al are (-2.618035, -1.618034) and (-.618034, -.381966). blare this geodesic is
the innermost of the nested geodesics for words of the &ribka™. O

1 92— (-1

) ~ —1.618034—.618034
2| —(o-1to ?

Permutation

Roots

baab
baaab
bbaaab
baaabb
bbbaaaab
bbaaaabhb

baaaabbh

3.30278
3.56613
3.56155
1.78078

3.6095
1.78306
1.64068

-.302776
-.280416
-.561553
-.280776
-0.609502
-0.560835
-0.277047

Lemma 8.16. The permutation ' "alb" (where0 < n < k) creates a series ofk 1 concentric
semicircles with feet occuring in (-.618034, .618034) ah@18034 ).

Proof. This follows by applying Lemma 8.13 to the intervals from Lea 8.15. These form a
series ok — 1 nested geodesics that do not intersect with each other. O

Lemma 8.17. The geodesics ofb"alb" intersect the geodesics dfikal—™ (with the exception

of bal).

Proof. We already know that these feetldf "a/b" are to the right of the the relevant footlfa/,

as we applied the iteration Lemma 8.16dt@/ and found that the roots & "a/b" are monoton-
ically increasing from this point. Now we must find an intdriar the rightmost foot oabal—1.

We already know from Lemma 8.14 that this foot must be in theriral (-.618034, .618034) as it
follows the formal~™bka™. Now, we find the matrix associated with the watdda* and find the
limit of the upper root ax approaches in the same fashion as above. We find this value to be
.2763932, and as the values of the rootalof™b*a™ were monotonically decreasing from at most
.618034, we know that the right foot ab‘al 1 thus lies in the interval (.2763932, .618034).

Now we must only find an interval for the left foot di/b*~1. Similar to the method above,
we know this foot to be in the interval (-.618034, .618034)tas of the formb*~"alb". We find
the matrix associated with the wobd/bY and find the limit of the upper root 3sapproaches.
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We compute this value to be -.276392, and as the values obthe ofbk"alb" were monoton-
ically increasing from -.618034, we know the left foot ! b~ lies in the interval (-.618034,
-.2763932). As this indicates that the leftmost feeb'of"alb" are between the rightmost feet of
bkal and that ofab‘al—1, we know they intersect. O

Lemma 8.18. The intersections of the geodesics of the wdidk @ccur within the fundamental
region.

Proof. Because the leftmost feet of the geodesickof'a/b” are greater than -.618034 and the
rightmost feet of the geodesicsati‘al ~1 are less than .618034, we know the right and left limiting
cases of intersections between these two groups of gesdaesiar between -1 and 1. Futhermore,
because the geodesicsaifal 1 andbalbX~! have radii greater than .5, we know that the lower
limiting case of their intersection occurs within the funtental region. 0

The table below organizes the intervals discussed abovéaini@to facilitate clarity.

Permutation Lower Root Upper Root
albK (.381966, .618034)(1.618034, 2.618035)
al~Mpkam (-0, -1.618034) (-.618034, .618034)
bkal | (-2.618035, -1.618034) (-.618034, -.381966))
b—Nalp (-.618034, .618034) (1.618034 )
abfal—1 (-0, -1.618034) (.2763932, .618034)
balbk-1| (-.618034, -.2763932) (1.618034 )

Theorem 8.19.A word W of the form &* (where j> k > 2) has(j — 1)(k— 1) intersections.

Proof. By Lemma 8.17, we know that the- 1 geodesics df* "a/b" intersect thg — 1 geodesics
of al~™Mbka™. Moreover, by Lemma 8.18, we know all these intersectiomsiowithin the funda-
mental region. Hence, the number of intersections withenftindamental region is
(j—1)(k—1). O

d [

FIGURE 16. Intersections irp of aaaabb

Example 8.20.The word aaaabb has 3 intersections in the fundamental ne(see Figure 16).
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9. GEOMETRIC APPROACHES TODETERMINING THE FEET OF GEODESICS

9.1. Background Information. In this section we will use cutting sequences to examine once
again the monotonicity of roots proved above, as well asraimeple patterns. This background
information is taken directly from [C]. Autting sequence(§) of a geodesig is a doubly infinite
sequence composed of the symbmlb, A, andB. When listing these sequences we usually omit
the commas, e.g.

wheren is a positive integer and/ is a word composed of the generatard, A, andB. We will
let W~1 denote the word obtained by reversMgand replacing each symbol by its inverse. We

b Ala b/B a
B A
b a
a B _|/5 A B N| oA b
B A

-2 =3/2 -1 -1/2 0 1/2 1 3/2 2

FIGURE 17. The labelled grid\

will now describe a labelled grid of geodesicgHn This grid is obtained by taking images under
I’ of the sides ofp (see Figure 17). We can now label this grid using the cyclitedng

We begin by labelling the vertical line between -1 amevithin ©» asa, and then moving counter-
clockwise around> we label the semicircle with feet at -1 and OByghat with feet at 0 and 1 as
A, and finally the vertical line between 1 amdasb. The labels of the other side of each gridline
correspond to the inverses of those discussed above. Alldalan thus be obtained using this la-
belling in . This grid is referred to as tHabelled grid induced by and is denoted bi. Recall
that as all geodesics ifi that project to closed geodesicsBmave irrational endpoints, each foot
will cut the lines ofA infinitely often. Note that readin§(y) from left to right corresponds to the
geodesigy traversing a grid line, with the convention that only thedainmediately after the line
is listed. [C] also notes that the sequence of grid linessad®yy is completely determined by the
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initial one, and that initial one belongs to some fan. Thabisay, at some pointwill entire a fan
of tiles never to leave again. This is important to the workimetude in this section, particularly
in Case 1 below. From this idea arise the following definitowl theorem.

Definition 9.1. [C] Theboundary expansio8() of an irrational pointg is the cutting sequence
of any geodesic which begins withinand ends a§. We write

S(&) = XoX1Xa......
where each Xe {a,b,A,B}.

Theorem 9.2.[C] Let& and¢&’ be distinct irrationals with boundary expansions
S(€) = XoX1Xa...... and S&') = X[X1X5...... ,
respectively. Thef < & if and only if XoX1Xo... < XX{X5. ...

From this theorem, we see that when comparing two words, wd aely look at the first place
the words differ to apply the cyclic ordering of the symbalsietermine which foot is larger than
the other. This result leads to the method applied in Caséovbe

9.2. Monotonicity of roots. Using the cutting pattern discussed in the previous sedtignot
difficult to prove the monotonicity of roots when addiag or b's to a word of the formalbX. To
do so then, we will make use of the following diagrams to prihemonotonicity once again by
double induction.

Case 1: We will first demonstrate that both roots afbX increase monotonically when adding
a’'s. We will consider the legs of the geodesic one at a timestkile see that for a word of the
form albX, one of the legs begins by cutting the right semicirclezof For simplicity, we will
denote the leftmost, centermost, and rightmost semisin@presenting a particular reflection of
the fundamental region as left, center, and right respelgtiunless noted otherwise.

FIGURE 18

After this, the foot will cut the center a total ¢gf— 1 times (see Figure 18). After cutting through
the j — 1th center semicircle, (and thus accounting for all &g, the foot then will cut the left.
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fR

FIGURE 19. Cutting sequence af b¥

A~

FIGURE 20. Cutting sequence af t1bK

From this point on, the foot will cut the center a totallofimes (see Figure 19). This process
will continue, as it is cyclic and the roots of the geodesk iarational. However, considering a
word of the formalt1bk, we know this foot will follow the same path up to the point whé cuts
thekth center (see Figure 20). After this, the foot will cross®ntore the center before crossing
the left and eventually centers representinglise By these figures then, we see that this foot is
monotonically larger for! t1bK than the respective foot af bX.

Now, for the other leg, we consider the woB§Al. We see that it crosses to the horizontal

A b
B

FIGURE 21

translation ofp, of which it cuts the rightmost semicircle (see Figure 21.c©theB'’s are ac-
counted for, the foot cuts the right and then proceeds taheuténter — 1 times, until theA's are
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all represented. Because of the cyclic nature of the cytthmgfoot then cuts the left and repeats

=

FIGURE 22. Cutting sequence @A

the pattern of above. (see Figure 22). For the wglfdi*1, the foot follows the same pattern up

A

FIGURE 23. Cutting sequence @&AI+1

to the point where it crosses thth center. From here, it cuts once more the center beformgutt
the left and repeating the previous pattern. Then, as sethe iiigures, this foot is monotonically
larger (see Figure 23).

Case 2:We will now show that both roots @flb* decrease monotonically when addinig, again
considering one foot as a time. We may do so using the sameothathabove, with a different
approach. Comparing the word&* andalbkt1, we see that the words are identical to a certain
point, namely where/b* cycles back ta andalb*** has one additiondi before cycling through
the word again (see Figure 24). As such, we kradw* cuts through arA at the same time as
albkt1 cuts aB. Using the cyclic ordering used in the cutting pattern offimedamental region,
..a<B<A<b< .., weseethaB < A. Hence, this foot of/bX*1 is smaller than that ol bX.
Similarly, to determine the monotonicity of the other foct see thaBXAl andB¥t1Al are iden-
tical until BKAl begins to cut the series afs, while B<*1Al cuts one additionab. By the same
cyclic ordering, ap < a, we know this foot oB*1Al is smaller than that d8*Al. Thus by simply
looking at a word and examining the first symbol at whi¢tandW; are different, we know which
word has larger or smaller feet. This completes the proof@hohonicity.
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aa...abb...byfa...)
aa...abb...b a...)
BB...B{A..\A,...
BB...B...A_,—...

FIGURE 24

10. RATTERNS OFOTHER WORDS

In this section, we will briefly discuss the patterns of thetfef geodesics of two other simple
word forms,alb*a'b™ andalbkal B™. We begin withalbkalb™, where without loss of generality
we can assume that> k. To do so, we use a method similar to that of Case 2 in the seahove.
That is, we examine the first point of divergence between woatid using the cyclic ordering
of symbols mentioned above, we can say which word has laaggs.r For a word of the form
albkalb™, we need only examine 16 possibilities of how roots can caamgen varying any of
i, k, I, or m. Although there are many more possibilities for hpwk, |, andm vary, note that
we are only concerned with the first location of divergendsveen words in our analysis, due to
Theorem 9.2. To see this, notice that the roots of waddsb*alb™ 1 would change in the same
general fashion fromalb¥alb™ as would those ofl+1bkal *1b™ 1, In the table below, each entry
indicates a comparison of the position of feet between aqodat Wy andWl’l with the original
W andW~1. An entry of “greater” is thus read as indicating that thetfow, orWl‘lis greater
than that oW or W—1. Note that when only one variable is changed, as in the fitstifoes, we
consider only the case where it increases (the other cassilg ebtained).
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Change to word Change in foot Change in foof
alb<alb™ of W of W1

Fix k, I, m(j increases) Greater Greater|
Fix j, I, m(kincreases) Less Less
Fix j, k, m(l increases) Greater Greater
Fix j, k, 1 (minceases) Less Less
Fix I, m

(j, k, increase) Greater Less
(j increasesk decreases Greater Greater|
Fix k, m

(j, I, increase) Greater Greater|
(j increased, decreases) Greater Less
Fix Kk, |

(j, m, increase) Greater Less
(j increasesm decreases Greater Greater|
Fix j, |

(k, m, increase) Less Less
(k increasesin decreases)) Less Greater|
Fix j, m

(k, I, increase) Less Greater|
(k increased, decreases) Less Less
Fix J, k

(I, m, increase) Greater Less
(I increasesn decreases Greater Greater|

From this table then, we can understand the behavior of tbdegics of words of the form
albkalb™ when changing the value gf k, |, andm, in relation to the original word. Using the
same method, we also present a table of the same type as abuopéicg the behavior of words
of the formalbkaB™ when changing, k, |, andm. Although this is just a brief analysis of the
behavior of words of these forms, it could perhaps serve &artirgy point for a further study of
this type. Certainly, as these tables only analyze one pation of each of these forms, more
work could be done to consider the behavior of all cyclic psgations.
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Change to word Change in foot Change in foof
albkalB™ of W of W1

Fix k, I, m(j increases) Greater Less
Fix j, I, m(kincreases) Less Less
Fix j, k, m(l increases) Less Greater
Fix j, k, 1 (minceases) Greater Greater
Fix [, m

(j, k, increase) Greater Less
(j increasesk decreases Greater Greater
Fix k, m

(j, I, increase) Greater Greater|
(j increased, decreases) Greater Less
Fix k, |

(j, m, increase) Greater Greater
(j increasesm decreases Greater Less
Fix |, |

(k, m, increase) Less Greater|
(k increasesin decreases) Less Less
Fix j, m

(k, I, increase) Less Greater|
(k increased, decreases) Less Less
Fix j, k

(I, m, increase) Less Greater|
(I increasesm decreases Less Less

11. CONCLUSION

We have found formulas for the intersection number of alldgazomposed of no more than four
blocks of letters and of words that are a power of a primitiegd\(given the intersection number
of the primitive word). We have proved the monotonicity 0bt® of words of the patteralbX
when addindy’'s anda’s. We have also used both algebraic and geometric methagsaans for
better understanding the patterns of geodesics of wordmple patterns, namelg b, albkalb™,
andalba'B™.

Although much work has been done on the intersection nundjengrves onT, there are still
open questions that remain. A study of the behavior of gecsle$ words of the formal bka b™
andalbkal B™ could be continued to better understand which changes teimtiersections. More
research could be done on words composed of simple pattasnene examplea/bkA'b™) to
better understand the intersection@inMoreover, it would clearly be advantageous to extend the
formulas found above to a general formula in order to cateulae number of intersections, given
simply a specific word. Some of the results of this paper mag bk able to be generalized to
other surfaces.
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APPENDIX A

I ntersect ByDrawi ng[word_String, order_List, max_] :=
Modul e[{na, nb, i, j, count, |1, rl, |2, r2},
For[na = 0; nb =0, na + nb < StringLength[word],
| f[ ToLower Case[ StringTake[word, {na + nb + 1}]] == "a", nat+, nb++]];
word2 = word <> StringTake[word, {1}];
order2 = Join[order, {order[[1]]}];
For[i = 1; count =0, i <= StringLength[word] - 1, i++,

For[j =i + 1, | <= StringLength[word], j++,
[ f[StringTake[word2, {i}] =="a", |1 =na - order2[[i]] + 1,
| f[StringTake[word2, {i}] == "b", 11 =na + order2[[i]],
[ f[StringTake[word2, {i}] =="A", |1 =na + nb + order2[[i]],
1 =2*na + 2*nb - order2[[i]] + 1]]];
[ f[StringTake[word2, {i + 1}] == "A", rl =na - order2[[i + 1]] + 1,
I f[StringTake[word2, {i + 1}] == "B", rl =na + order2[[i + 1]],
[ f[StringTake[word2, {i + 1}] == "a"

rl =na+ nb + order2[[i + 1]],
rl = 2*na + 2*nb - order2[[i + 1]] + 1]]];

[ f[StringTake[word2, {j}] =="a", 12 =na - order2[[j]] + 1,
| f[StringTake[word2, {j}] == "b", 12 = na + order2[[j]],
[ f[StringTake[word2, {j}] =="A", |2 =na + nb + order2[[j]],
|2 = 2*na + 2*nb - order2[[j]] + 1]]1];
[ f[StringTake[word2, {j + 1}] == "A", r2 = na - order2[[] + 1]] + 1,
[ f[StringTake[word2, {j + 1}] == "B", r2 = na + order2[[] + 1]],
[ f[StringTake[word2, {j + 1}] == "a"
r2 =na + nb + order2[[] + 1]],
r2 = 2*na + 2*nb - order2[[j + 1]] + 1]]1];
{I'1, r1} = Sort[{l1, rl}];
{12, r2} = Sort[{l2, r2}];

If[(11<12&& 12<r1rl1&&rl1<r2) || (I2<11&&11<7r128&8&r2<rl),
count ++] ;
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|f[max != -1 & count >= max, Return[max]]]];
count |

Drawi ngPer nut ati ons[word_String] : =
Modul e[{i, |, k, ik, jk, list, acount, bcount, lista, listh, Iistboth,

finallist, pa, pb},

list = Characters[word];

finallist = {};

acount = Count[list, "a"] + Count[list, "A"];

bcount = Count[list, "b"] + Count[list, "B'];

pa = Pernutations[Table[i, {i, 1, acount}

pb = Pernutations[Table[i, {i, 1, bcount}

For[i =1, i <= Length[pa], i++,
For[j =1, j <= Length[pb], |++,

11;
11;

lista = pa[[i]];

listh = pb[[j]];

listboth = {};

For[k = 1; ik =1, jk =1, k <= Length[list], k++,
[f[list[[k]] =="a" || list[[k]] == "A",

listboth = Join[listbhoth, {lista[[ik++]]}],
listboth = Join[listhoth, {listb[[jk++]]}]]];
finallist = Join[finallist, {listhoth}]]];

finallist]

M ni mal Pernut ations[word_String] := Mdule[{i, all, mnint, mnlist, int},
all = Draw ngPernutati ons[word];
mnint = IntersectByDrawi ng[word, all[[1]], -1];

mnlist = {all[[1]]};
For[i =2, i <= Length[all], i++,
int = IntersectByDrawi ng[word, all[[i]], mnint + 1];
[f[int < mnint,
mnint =int;
mnlist = {all[[i]]},
[f[int == mnint,
mnlist = Join[mnlist, {all[[i]]}]]]];
{mnint, mnlist}]
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