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ABSTRACT. The authors consider self-intersections of closed curveson the punctured torus. The
intersection numberof a homotopy class of curves is defined to be the minimum number of trans-
verse self-intersections among all curves in that class. Homotopy classes are denoted by words in the
free group on two generatorsF (a,b). Formulas for intersection number of some particular classes
of primitive words are proved, as well as a formula for intersection number of a power of a primitive
word given the intersection number of the primitive word. Geodesics of the hyperbolic plane that
project to closed curves on the torus are also considered in order to achieve some similar results.

1. INTRODUCTION

Let T be the torus with one puncture.π1(T) is the free group on two generators. Then ifw is
a word inF (a,b) ∼= π1(T), we would like to study the self-intersections of the closedcurves on
T that representw. We say that two closed curvesf andg on T are equivalent if there is some
homeomorphism ofT that mapsf to a curve that is freely homotopic tog. Then two wordsw1
andw2 in F (a,b) are equivalent if there is some automorphism ofF (a,b) that mapsw1 to w2.
Let the intersection numberof a free homotopy class of a closed curvef on T be the minimum
number of transverse self-intersections among all generalposition curves in that class. Then the
intersection number of a wordw in F (a,b) is the intersection number of the corresponding class
of curves. So given any wordw, it would be nice to be able to determine the intersection number
by just looking at the form ofw. In this paper, we prove formulas for some particular classes of
words. In sections 2 through 6 the first author employs some topological and geometric methods:
in section 2, a convention for drawing curves is introduced,in section 3, some characterizations of
minimal intersection are proved, in section 4, intersection numbers for some primitive classes of
words are proved, in section 5, the intersection number for powers of primitive words is proved,
and in section 6, some other related results are presented. In sections 7 through 10 the second
author employs geometric and algebraic methods, examininggeodesics in the hyperbolic plane,
the universal cover ofT: in section 7, the necessary hyperbolic geometry is introduced, in section
8, algebraic methods are used to investigate particular classes of geodesics, in section 9, geometric
methods are used, and in section 10, similar methods are applied to additional classes of words.
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2. A “CANONICAL FORM” FOR CLOSED CURVES

Throughout the next sections, we assume that every word is reduced (contains no subwords
equivalent to the identity word) and that every curve is in general position (passes through no point
more than twice). For a wordw in F (a,b), φ(w) denotes the intersection number ofw. We will
use intersection to mean transverse self-intersection. For a closed curvef : S1 → T, wf denotes
the word inF (a,b) that f represents. We consider all words to be “cyclic” words (i.e.that the
first letter follows the last letter, so that there is no real preferred first or last letter), since they
represent free homotopy classes of closed curves. We say that a general position curve hasexcess
intersectionif it is homotopic to a curve with fewer intersections.

The punctured torus is homeomorphic to a square with opposite edges identified and corners
removed. Let this square be in the Euclidean plane, centeredat the origin with side length 2. Call
this squareS. Let loopsa : S1 → T andb : S1→ T (whereS1 is defined as[0,1]/(0∼ 1)) be defined
as follows:

a(t) =

{
(2t,0) if t ≤ 1

2,
(2t −2,0) if t ≥ 1

2,

b(t) =

{
(0,2t) if t ≤ 1

2,
(0,2t−2) if t ≥ 1

2.

The fundamental group ofT is the free group on two generators. Products ofa andb (and their
inversesA andB) generate loops in all free homotopy classes and there is no relation betweena
andb, soπ1(T)∼= F (a,b).

In our search for minimal self-intersection, we would like to reduce the much too large free
homotopy classes to smaller, more manageable classes. We would like to be able to deform ev-
ery curve to a curve in some sort of “canonical form”, and we would like this to decrease self-
intersection as much as possible, or at least certainly not increase self-intersection. We will start
by examining curves onS.

Let f be any closed curve inT, projected ontoS. Define an arc to be a path inS joining two
edges of the boundary ofS. So f is composed of several arcs. We may continuously deform each
arc in f to a straight line segment, while fixing the endpoints (Figure 1.1 to 1.2). Call the resulting
curve f ′. So f ′ crosses the edges ofSat the same points and in the same order asf , but all paths
between consecutive edge crossings are straight line segments. I claim thatf ′ cannot have more
intersections thanf . Suppose that two arcs off ′, denoted by segmentsAB andCD, intersect each
other. Then they must intersect exactly once, and the pairs of points{A,B} and{C,D} must sepa-
rate each other on the boundary ofS. So any two arcs traveling from pointA to pointB and from
pointC to pointD, respectively, must intersect. Thus the two paths inf that were deformed into
segmentsAB andCD in f ′ must intersect at least once. Thus every intersection inf ′ corresponds
to a different intersection inf , so f ′ has no more intersections thanf .

However, f ′ still may have some unnecessary arcs iff has unnecessary edge crossings. The
necessary edge crossings off are those corresponding to the letters in the reduced wordwf (the
correspondence between edges and letters is: right↔ a, top↔ b, left ↔ A, bottom↔ B, which is
derived from the definitions of loopsa andb above). If there are any unnecessary edge crossings
in f , there must be an arc that starts and ends on the same edge ofS. This arc, inf ′, then becomes
a segment lying entirely on that edge ofS. Let B andC be the points where this segment starts
and ends, respectively. Then letA be the starting point of the arc with endpointB, and letD be
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the endpoint of the arc with starting pointC. Let f ′′ be the curve obtained fromf ′ by replacing
segmentsAB, BC, andCD with segmentAD (Figure 1.2 to 1.3). I claim thatf ′′ does not have
more intersections thanf ′. If some segment intersects segmentAD, then it must intersect at least
once any path from pointA to pointD that does not cross the boundary of the square. In particular,
it must intersect the path inf ′ composed of segmentsAB, BC, andCD at least once. Thus every
intersection inf ′′ corresponds to a different intersection inf ′, so has no more intersections than
f ′. This process can be applied repeatedly until we get a curve with no unnecessary edge crossings
and no segments lying entirely on an edge. Letg be this final curve.

Then we see thatg must cross the edges corresponding to each letter in the sameorder that they
occur inwf , and it crosses no additional edges. And if necessary, we mayalso deformg slightly
so that no intersections occur on the boundary of the square,without changing the number of in-
tersections. We summarize the previous discussion in the following lemma.

FIGURE 1

Lemma 2.1. Let f be a closed curve on T. Then f is freely homotopic to a closed curve g which
has no more intersections than f and satisfies the following properties:

(1) as g is traversed once on S, the letters corresponding to the edges crossed (right→ a, top
→ b, left→ A, bottom→ B) form wf ,

(2) all arcs between consecutive edge crossings are straight line segments,
(3) all intersections with edges of S are transverse, and
(4) no intersections occur on an edge of S.

We say that a closed curve satisfying these four properties is incanonical form.

3. METHODS FORPROVING M INIMALITY

It is easy to prove upper bounds for the intersection number of a word. If we draw any closed
curve representing a given word, the number of transverse self-intersections of that curve gives an
upper bound for the intersection number. It is more difficultto prove lower bounds or to prove
that a curve has no excess intersection. Fortunately, Joel Hass and Peter Scott have proved several
helpful theorems. The following definition and two theoremsare from [HS], slightly modified for
consistency of notation.

Definition 3.1. If f : S1 → F is a closed curve on a surface F, we say that f has a1-gonif there is
a subinterval I of S1 such that f identifies the endpoints of I and f|I defines a nullhomotopic loop
on F. We say that f has a2-gonif there are disjoint subintervals I and J of S1 such that f identifies
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the endpoints of I and J and f|I∪J defines a nullhomotopic loop on F. And f has aweak 2-gonif
there are distinct (but not necessarily disjoint) subintervals I and J of S1 such that f identifies the
endpoints of I and J and f|I∪J defines a nullhomotopic loop on F.

Theorem 3.2. [HS] Let f be a closed curve on an orientable surface F. If f has excess self-
intersection, then f has a 1-gon or 2-gon.

Remark 3.3. The converse of the above theorem is true, which is easy to see. For if f has a 1-gon,
it is a nullhomotopic loop and can be removed to decrease the number of intersections by one. And
if f has a 2-gon, its two edges form a nullhomotopic loop, and there is a homotopy that exchanges
the two edges, removing two transverse self-intersections(disjointness of I and J is required here).

Theorem 3.4. [HS] Let f be a closed curve on a surface F. If f has excess self-intersection, then
f has a 1-gon or a weak 2-gon.

Remark 3.5. The converse of the above theorem is not true in general: a curve for a2 must always
contain a weak 2-gon, even when drawn without excess self-intersection. I claim that the converse
is true if and only if wf is primitive (it can be seen that any closed curve representing a nonprimitive
word must have a weak 2-gon and any closed curve representinga primitive word that has a weak
2-gon must also have a 2-gon).

Wei will need to introduce some additional concepts and notation to give a useful characteriza-
tion of 1-gons and 2-gons. We already have a clear correspondence between closed curves onT
and words inF (a,b). We will define a similar correspondence between subcurves (a restriction of
a closed curvef to a subinterval ofS1) and subwords. Letf be a closed curve in canonical form
on S. If g is a subcurve off , let us form the subword ofwf corresponding tog by traversingg
on Sand reading off the letters corresponding to the edges crossed (just as in Lemma 2.1). If an
endpoint lies on an edge ofS, we will consider that to be an edge crossing. And ifv is a subword
of wf , we can find the corresponding subcurve off by restricting its domain fromS1 to an interval
such that its image starts at any point whose immediate next edge crossing corresponds to the first
letter ofv and ends at any point whose immediate previous edge crossingcorresponds to the last
letter ofv (and the edges crossed in between match up with the letters inbetween, of course). So
for a subcurveg of closed curvef , definewg to be the corresponding subword ofwf . Note that
subwords, unlike (cyclic) words, do have well-defined first and last letters, and that subcurves are
not necessarily closed. More generally, we can make the samecorrespondence from any (open)
curve to a (noncyclic) word. Then it is clear that iff is a curve traveling from pointA to pointB
(B on the interior ofS), g is a curve traveling from pointB to pointC, andh is the curve traveling
from pointA to pointC along f andg, wh = wf wg. An arc is a special case of a subcurve repre-
senting a two-letter word whose endpoints lie on the boundary of S, so we will label arcs by their
corresponding words.

Lemma 3.6. Let f be a closed curve in canonical form. Then f does not have any 1-gons. Also, if
f has a 2-gon and if g= f |I and h= f |J are the subcurves forming the edges of the 2-gon (I and
J defined as in Definition 3.1), then wg = (wh)

±1.

Proof. f cannot have any 1-gons since every arc is a straight line segment and all intersections
with edges ofSare transverse.

Suppose thatf has a 2-gon. Letg andh be the subcurves forming the edges of the 2-gon (as
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above). The union of the images ofg andh must be a null-homotopic loop, so depending on the
relative orientation of the two curves, eitherwgwh or wg (wh)

−1 must be equivalent to the identity
word. Also, sincef is in canonical form, subwordswg andwh are reduced. Thuswgwh = id implies
wg = (wh)

−1 andwg(wh)
−1 = id implieswg = wh. Moreover, since the words are reduced, this

equality is not simply that the two words represent the same element ofF (a,b), but that the two
words are identical strings of letters. �

In the case where the two subcurves have the same orientation(wg = wh), the first 2-gon vertex
must be an intersection of two arcs with the same second letter (which is the first letter ofwg),
the other 2-gon vertex must be an intersection of two arcs with the same first letter (which is the
last letter ofwg). And in the case where the two subcurves have the opposite orientation, the same
holds if we invert all the labels of arcs that are part ofh.

4. INTERSECTIONNUMBERS FORSOME PRIMITIVE CLASSES OFWORDS

Theorem 4.1.φ
(
aib j

)
= (i −1)( j −1).

Proof. First, we would like to show thatφ
(
aib j

)
≤ (i −1)( j −1). Figure 2 shows a method of

drawing a curvef representingaib j that has(i −1)( j −1) intersections. First,i copies ofa are
drawn with no intersections, moving upwards inS. Then j copies ofb are drawn, moving right-
wards inS. This makesj − 1 complete vertical arcs, each of which intersects each of the i −1
complete horizontal arcs. Then the curve can be closed. Thusthere are(i −1)( j −1) total in-
tersections forf , which representsaib j (by Lemma 2.1, since it crosses the correct edges in the
correct order). So(i −1)( j −1) is an upper bound for the minimum number of transverse self-
intersections over the entire free homotopy class ofaib j .

FIGURE 2

Now, if we show thatf has no 1-gons or 2-gons, then by Theorem 3.2f has no excess intersec-
tion, that is,f realizes the minimum number of intersections for its free homotopy class.f has no
1-gons by Lemma 3.6 (as drawn in the figure,f is not officially in canonical form, since some arcs
were not drawn as straight segments in favor of visual clarity; however it should be clear thatf is
homeomorphic to a curve in canonical form). Suppose thatf has a 2-gon, with edges formed by
subcurvesg andh. By Lemma 3.6,wg = wh (it cannot be thatwg = (wh)

−1 sincewf contains no
A or B). g andh must also start at a mutual intersection. However, the only intersections inf are
between anaa arc and abb arc, so no two subcurves starting at an intersection off can represent



Intersection Numbers of Closed Curves on the Punctured Torus 35

the same subword. Therefore,f has no 2-gons. So finally,φ
(
aib j

)
= (i −1)( j −1).

(We will see an alternate method of provingφ
(
aib j

)
≥ (i −1)( j −1) in section 6.) �

The next three proofs parallel the proof of Theorem 4.1.

Theorem 4.2.φ
(
aib jakbl

)
= (i +k−2)( j + l −2)+(i −k)+( j − l)−1, for i > k and j≥ l.

Proof. Figure 3 shows thatφ
(
aib jakbl

)
≤ (i +k−2)( j + l −2)+ (i −k)+ ( j − l)− 1. In (1), i

copies ofa are drawn for the first part off . In (2), j copies ofb are drawn. Each of the result-
ing j −1 complete vertical arcs intersects all of thei −1 complete horizontal arcs. So there are
(i −1)( j −1) intersections here. In (3), the nextk copies ofa are drawn, interlaced with the first
set ofas. This makesk− 1 complete horizontal arcs, each of which intersects all of the j − 1
complete vertical arcs. So there are( j −1)(k−1) additional intersections here. In (4), the first
of the next set ofbs is drawn. This intersects each of the complete horizontal segments above the
last a, of which there arei − k− 1. In (5), the remainingbs are drawn, makingl − 1 complete
vertical segments, each of which intersects all of thei −1+ k−1 complete horizontal segments.
So there are(i +k−2)(l −1) additional intersections here. In (6), the final segment to close the
curve is drawn. Ifl < j, this intersects each of thej − l −1 complete vertical segments to the right
of the lastb, and it also intersects the one diagonal segment. Otherwise(if j = l ), the final closing
segment intersects nothing. So in either case, there arej − l additonal intersections here.

Therefore, in total there are

(i −1)( j −1)+( j −1)(k−1)+(i −k−1)+(i +k−2)(l −1)+( j − l)

= (i −1)( j −1)+(k−1)( j −1)+(i +k−2)(l −1)+(i −k)+( j − l)−1

= (i +k−2)( j −1)+(i +k−2)(l −1)+(i −k)+( j − l)−1

= (i +k−2)( j + l −2)+(i −k)+( j − l)−1

intersections forf .

FIGURE 3

Now, we will show thatf has no 1-gons or 2-gons.f has no 1-gons by Lemma 3.6. Suppose
that f has a 2-gon, with edges formed by subcurvesg andh. By Lemma 3.6,wg = wh (it cannot be



36

thatwg = (wh)
−1 sincewf contains noA or B). Suppose thatwg andwh each start with ana. There

is only one pair of arcs ending ina (bothba) that could intersect (if and only ifl < j). Supposing
that they do intersect, if we follow the two subcurves leading away from the intersection, we find
that afterk−1 aa arcs, the two subcurves diverge:g onto anab arc,h onto anotheraa arc (or the
other way around), sincei > k (see Figure 4. So it cannot be thatwg andwh each start with an
a. But wg andwh cannot each start with ab since there is no intersecting pair of arcs ending inb.
Therefore,f has no 2-gons. So finally,φ

(
aib jakbl

)
= (i +k−2)( j + l −2)+(i −k)+( j − l)−1.

�

FIGURE 4

Theorem 4.3.φ
(
aib jakBl

)
= (i +k−1)( j + l −1).

Proof. Figure 5 shows thatφ
(
aib jakBl

)
≤ (i +k−1)( j + l −1). In (1), i copies ofa are drawn for

the first part off . In (2), j copies ofb are drawn. Each of the resultingj −1 complete vertical
segments intersects all of thei−1 complete horizontal segments. So there are(i −1)( j −1) inter-
sections here. In (3),k more copies ofa are drawn. Each of the resultingk−1 complete horizontal
segments intersects all of thej − 1 complete vertical segments, and one incomplete horizontal
segment intersects all of thej −1 complete vertical segments. So there are(k)( j −1) additional
intersections here. In (4), the remainingl copies ofb are drawn. One incomplete vertical segment
intersectsk−1 complete horizontal segments and one incomplete horizontal segment; each of the
l − 1 complete vertical segments intersectsi − 1+ k− 1 complete horizontal segments and one
incomplete horizontal segment; and one last incomplete vertical segment intersectsi −1 complete
horizontal segments. So there are(l)(i +k−1) additional intersections here.

Therefore, in total there are

(i −1)( j −1)+(k)( j −1)+(l)(i +k−1)

= (i +k−1)( j −1)+(i +k−1)(l)

= (i +k−1)( j + l −1)

intersections forf .

Now, we will show thatf has no 1-gons or 2-gons.f has no 1-gons by Lemma 3.6. Suppose
that f has a 2-gon, with edges formed by subcurvesg andh. Suppose thatwg = wh. Suppose that
wg andwh each start with ana. There is only one pair of arcs ending ina that intersect (oneaa
and theBa). If we follow the two subcurves leading away from the intersection, we find that they
overlap (see Figure 6) which means that the corresponding subintervalsI andJ are not disjoint, so
they cannot form the edges of a 2-gon. But it cannot be thatwg andwh start with ab or aB, either,
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FIGURE 5

since no two arcs ending inb or B intersect. Then we must assume thatwg = (wh)
−1. Thenwg

must start with ab or B, since starting with anA is impossible here and staring with ana would
imply thatwh ends with anA. Without loss of generality, we may assume thatwg starts with ab,
sowh ends with aB. But no arcs that end withb intersect arcs that begin withB, so suchg andh
cannot form a 2-gon. Therefore,f has no 2-gons. So finally,φ

(
aib jakBl

)
= (i +k−1)( j + l −1).

�

FIGURE 6

Theorem 4.4.φ
(
aib jAkBl

)
= (i +k−1)( j + l −1)−1.

Proof. Figure 7 shows thatφ
(
aib jAkBl

)
≤ (i +k−1)( j + l −1)−1. In (1),i copies ofa are drawn

for the first part off . In (2), j copies ofb are drawn. Each of the resultingj −1 complete vertical
segments intersects all of thei−1 complete horizontal segments. So there are(i −1)( j −1) inter-
sections here. In (3),k copies ofA are added. Now, one incomplete horizontal segment and each
of thek−1 complete horizontal segments intersect all of thej −1 complete vertical segments. So
there are(k)( j −1) additional intersections here. In (4),l copies ofB are drawn, closingf . One
incomplete vertical segment intersectsk−1 complete horizontal segments; each of thel −1 com-
plete vertical segments intersectsi −1+ k−1 complete horizontal segments and one incomplete
horizontal segment; and one last incomplete vertical segment intersectsi −1 complete horizontal
segments. So there are(k−1)+ (l −1)(i +k−1)+ (i −1) = (l)(i +k−1)−1 additional inter-
sections here.

Therefore, in total there are

(i −1)( j −1)+(k)( j −1)+(l)(i +k−1)−1

= (i +k−1)( j −1)+(i +k−1)(l)−1

= (i +k−1)( j + l −1)−1
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intersections forf .
Now we will show thatf has no 1-gons or 2-gons.f has no 1-gons by Lemma 3.6. Suppose

FIGURE 7

that f has a 2-gon, with edges formed by subcurvesg andh. Suppose thatwg = wh. Suppose that
wg andwh each start with ana. There is only one pair of arcs ending ina that intersect (oneaa
and theBa). If we follow the two subcurves leading away from the intersection, we find that they
overlap (see Figure 8) which means that the corresponding subintervalsI andJ are not disjoint.
But it cannot be thatwg andwh start withA, b, or B, either, since no two arcs ending inA, b, or B
intersect. Then we must assume thatwg = (wh)

−1. However, no arcs that end witha intersect arcs
that begin withA, no arcs that end withb intersect arcs that begin withB, no arcs that end withA
intersect arcs that begin witha, and no arcs that end withB intersect arcs that begin withb. Thus no
choice of initial letter forwg (and resulting final letter forwh) is consistent. So suchg andh cannot
form a 2-gon. Therefore,f has no 2-gons. So finally,φ

(
aib jAkBl

)
= (i +k−1)( j + l −1)−1.

�

FIGURE 8

Remark 4.5. The theorems proved in this section are enough to find the intersection number of
any any primitive word with four or fewer blocks of letters (ablock is a subword xn where x is a
single letter such that no other subword xm with m> n contains this subword xn).

Proof. A word with zero blocks is the identity word, which has intersection number 0. The only
primitive words with one block are those with only one letter, all of which have intersection num-
ber 0. It is clear that a reduced word with two blocks must be equivalent to a word of the form
aib j (i, j > 0) under a Whitehead Type I automorphism (a permutationSof {a,b,A,B} such that
S
(
x−1
)
= S(x)−1; see [CR] for more on automorphisms ofF (a,b)), whose intersection number is

given by 4.1. Words with more than one block must have an even number of blocks since blocks
must alternate betweenas orAs andbs orBs (no letter can be adjacent to its inverse) and the first
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and last block are adjacent. Thus there are no words with three blocks. It also follows that a word
with four blocks must be in one of the following forms:xiy jxkyl , xiy jx−kyl , xiy jxky−l , xiy jx−ky−l

(wherex 6= y±1, i, j,k, l > 0). xiy jxkyl is equivalent toaib jakbl under some Whitehead Type I auto-
morphism, which, if primitive, is equivalent to some word ofthe same form withi > k and j ≥ l by
the following Lemma (4.6), whose intersection number is given by 4.2.xiy jx−kyl is equivalent to
bia jBkal under some Whitehead Type I automorphism, which is in turn equivalent toalbia jBk un-
der a cycle (i.e. conjugation byAl ), whose intersection number is given by Theorem 4.3.xiy jxky−l

is equivalent toaib jakBl under some Whitehead Type I automorphism, whose intersection number
is given by Theorem 4.3. And finally,xiy jx−ky−l is equivalent toaib jAiB j under some Whitehead
Type I automorphism, whose intersection number is given by Theorem 4.4. �

Lemma 4.6. Every primitive word w of the form aib jakbl is equivalent to a word of the same form
with i > k and j≥ l.

Proof. Sincew is primitive, it cannot be thati = k and j = l . Then if it is not the case thati > k
and j ≥ l already, we have the following cases (∼ indicates equivalence under either a Whitehead
Type I automorphism or a cycle):

For i < k and j ≤ l : aib jakbl ∼ akbl aib j , so leti′ = k, j ′ = l , k′ = i, andl ′ = j.
For i ≤ k and j > l : aib jakbl ∼ bia jbkal ∼ a jbkal bi, so leti′ = j, j ′ = k, k′ = l , andl ′ = i.
For i ≥ k and j < l : aib jakbl ∼ bia jbkal ∼ albia jbk, so leti′ = l , j ′ = i, k′ = j, andl ′ = k.

Thenaib jakbl ∼ ai′b j ′ak′bl ′ andi′ > k′ and j ′ ≥ l ′. �

5. INTERSECTIONNUMBERS FORPOWERS OFWORDS

Theorem 5.1.For a primitive word w and a positive integer p,φ(wp) = p2φ(w)+ p−1.

Proof. First we will prove by induction onp thatφ(wp)≤ p2φ(w)+ p−1. We would like to find
a curvef for word wp with p2φ(w)+ p−1 intersections. We would also likef to be formed ofp
parallel subcurvesf1 to fp, wherewfi = w, such that each successivefi is drawn shifted by a small
distance to the right (from the direction of the curve) offi−1, an addition to a segment connecting
the end offp to the beginning off1 (see Figure 9). Whenp= 1, we can draw a curve forw without
any excess intersection, and all desired conditions will bemet (

(
p2φ(w)+ p−1

)
|p=1 = φ(w)). So

we assume thatf , with wf = wp, drawn as described above, hasp2φ(w)+ p−1 intersections for
somep ≥ 1. We would like to insert one more subcurve,fp+1, to get a drawing ofwp+1. First,
remove the final segment fromf that connectsfp to f1, crossing thep−1 curves between (Figure
9.2). Then add the subcurvefp+1 (representing subwordw) after fp, traveling parallel, just to the
right of fp (Figure 9.3). As we drawfp+1, the first time it crosses through a group of intersections
(all corresponding to one intersection in the original drawing of w), it intersects thep transverse
sections off1 through fp (Figure 10.2). The second time through such a group of intersections,
it intersects allp curves f1 through fp, plus itself, fp+1 (Figure 10.3). Then to connect the end
of fp+1 to the beginning off1, all p previous copies of must be intersected (Figure 9.4). Call
this new closed curvef ′. So we started withf , with p2φ(w) + p− 1 intersections, subtracted
p−1 intersections, added(2p+1)φ(w) intersections, and then addedp more intersections to get
f ′. wf ′ = wp, so we have a drawing ofwp with p2φ(w)+ (2p+1)φ(w)+ p = (p+1)2φ(w)+
(p+1)−1 intersections, drawn as we had desired. Therefore,φ(wp) ≤ p2φ(w)+ p−1 for all
p≥ 1.
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FIGURE 9

(1)

p

p+1

(2) (3)

FIGURE 10

Basically, in drawing a curvef for wp, we have replaced a curvee representingw (without
excess intersection) with a ribbon ofp parallel curves, reconnected properly at its ends so that itis
one closed curve. Now we can identify two types of intersections in f . Define Type I intersections
to be thep2φ(w) intersections within transverse self-intersections of the entire ribbon. Define
Type II intersections to be thep−1 intersections within the ribbon, where the rightmost subcurve
crosses over to become the leftmost subcurve. There is a natural bijective correspondence between
blocks of p2 Type I intersections inf and intersections ofe, which can be extended to ap-fold
covering mapγ : f → e (if the correct topology is chosen). Intuitively,γ contracts the ribbon ofp
parallel subcurves off down to the single curvee.

Now with this mapγ, we will prove that a closed curvef for whichwf =wp, drawn as above, has
no 1-gons or 2-gons. It is easy to see thatf can be drawn as above to be in canonical form. Thus
it will not contain any 1-gons. Now suppose thatf has a 2-gon, with edges formed by subcurves
g andh. Suppose that both 2-gon vertices are Type I intersections.Thenγ(g) andγ(h) are edges
of a weak 2-gon ine. But e is a primitive curve without excess intersection, which contains no
weak 2-gons by Remark 3.5. So at least one vertex of the 2-gon must be a Type II intersection. But
if we follow the two subcurves leaving any Type II intersection, we find that they overlap before
intersecting again (at a Type II intersection), which contradicts the disjointness assumption of the
intervalsI andJ in the definition of a 2-gon. Therefore,f has no 1-gons or 2-gons. Then by
Theorem 3.2,f has no excess intersection.

Thereforeφ(wp) = p2φ(w)+ p−1. �
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6. OTHER RESULTS

Theorem 6.1. Let w be a word in F(a,b). Let naa be the number of aa or AA subwords in w and
nbb be the number of bb or BB subwords in w. Thenφ(w)≥ naanbb.

Proof. Subwordsaa andAA correspond to arcs joining the left and right sides ofS. Subwords
bb andBB correspond to arcs joining the top and bottom sides ofS. Therefore, the endpoints of
eachaa andAA arc separate the endpoints of eachbb andBB arc on the boundary ofS. Therefore
each of thenaa horizontal arcs must intersect each of thenbb vertical arcs, so any closed curve
representingw must have at leastnaanbb transverse self-intersections. �

Remark 6.2. This lower bound gives an alternate proof thatφ
(
aib j

)
= (i −1)( j −1). It is easy to

see thatφ
(
aib j

)
≤ (i −1)( j −1), and since for w= aib j , naa = i −1 and nbb = j −1, φ

(
aib j

)
≥

(i −1)( j −1).

The following theorem is presented to give a possible alternate approach to finding intersection
numbers. Unfortunately, this technique became much more complex when applied to any larger
cases.

Theorem 6.3.φ
(
ai
)
= i −1.

Proof. Suppose thatf is a closed curve represengtingai in canonical form onS with k intersec-
tions. Sof intersects the vertical boundary ofSat i distinct points. LetQ be the uppermost of these
points. Then letP andR be the other points at which the segments leading to and leaving fromQ
intersect the boundary, respectively. SegmentsPQ andQR must intersect sincePQ starts below
Q on the left and ends atQ on the right whileQRstarts atQ on the left and ends belowQ on the
right. Let Sbe this point of intersection. So if we form a curvef ′ from f by removing segments
PQ andQR and replacing them with the path along segmentsPSandSR(see Figure 11), onea
loop is removed from thef , along with at least one intersection. Moreover, no intersections are
added since the set of points inf ′ is a subset of the set of points inf . Then f ′ representsai−1 with
with no more thank−1 self-intersections. In particular, iff has no excess intersection,k= φ

(
ai
)
,

soφ
(
ai−1

)
≤ φ

(
ai
)
−1.

FIGURE 11

Now suppose thatg is a closed curve representingai−1 in canonical form onSwith l intersec-
tions. Sog intersects the vertical boundary ofSat i −1 distinct points. LetR be the uppermost of
these points, and letP be the other point at which the segment leading toR intersects the boundary.
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Then letQ be any point on the boundary aboveR and letS be any point on segmentPR which
is not separated from the top of the square by any other segments (there is a neighborhood ofR
containing such a point). So if we form a curveg′ from g by removing segmentPRand replacing it
with the path composed of segmentsPS, SQ, QS, andSR(always traveling left to right) (see Figure
12), onea loop is added, and exactly one intersection is added. Theng′ representsai with l +1
intersections. In particular, ifg has no excess intersection,l = φ

(
ai−1

)
, soφ

(
ai
)
≤ φ

(
ai−1

)
+1.

Therefore,φ
(
ai
)
= φ

(
ai−1

)
+1. Then sinceφ(a) = 0, φ

(
ai
)
= i −1.

�

FIGURE 12

Here we describe an algorithm for determining intersectionnumber and minimal configurations.
In the canonical form, two arcs intersect if and only if the two pairs of endpoints separate on the
boundary ofS. Moreover, if two arcs intersect, they intersect exactly once. So all intersections of
a curve in canonical form are determined only by the orderingof edge crossings. Since there is
only a finite number of permutations of the edge crossings, a computer program can check them
all and tell us the minimum number of intersections in addition to the permutations that give us
that minimum. This algorithm is extremely inefficient (factorial time), but a Mathematica imple-
mentation still proved to be invaluable in the development of much of the results of this paper.
What follows is a more detailed explanation of how the algorithm is implemented. Given a word
w, with a or A in positionsi1 through ina andb or B in positions j1 through jnb, and a list of
integers{p1, p2, . . . , pna+nb}, where

{
pi1, pi2, . . . , pina

}
= {1,2, . . . ,na} and

{
p j1, p j2, . . . , p jna

}
=

{1,2, . . . ,nb} (setwise), we labelna points on the vertical boundary (1 throughna) andnb points
on the horizontal boundary (1 throughnb) and draw a curvef (wherewf = w) in the following
way. We may assume that the first letter ofw is a, so we start at the point labeled 1 on the vertical
boundary ofS. Then for each successive letter, we draw a straight segmentto the yet unvisited
point with the smallest label on the corresponding edge ofS. At the end, connect back to the
point labeled 1 on the right edge. Complete code for the following relevant Mathematica functions
can be found in the appendix.IntersectByDrawing[word_String, order_List, max_], if
max = −1, returns the number of intersections off , drawn as just described forw = word and
(p1, . . . , pna+nb) = order. Otherwise, it returns the minimum ofmax and the number of inter-
secitons.DrawingPermutations[word_String] returns a list of allna!nb! possible lists{p1, . . . , pna+nb}
for wordword. And finally,MinimalPermutations[word_String] returns the intersection num-
ber ofword with all lists (p1, . . . , pna+nb) that give the minimum.
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7. INTRODUCTION TO HYPERBOLIC GEOMETRY

In order to examine the intersections of geodesics representing closed curves on the torus, we
need to review some hyperbolic geometry. This background istaken directly from [DIW] and [C].
The upper half plane model of the hyperbolic plane,H, is defined on the set{x+ iy : y> 0}. Note
that in this plane, geodesics are represented by semicircles centered on the real axis or infinite ver-
tical lines. All geodesics inH that project to closed geodesics onT will have irrational endpoints,
and the geodesics on the torus are a projection of these geodesics. The pair of points on the real
axis that determines the position of the geodesic are calledthe feetof the geodesic. We use the
group

SL(2,Z) =

{(
a b
c d

)

: a,b,c,d ∈ Z,ad−bc= 1

}

to act uponH through the homomorphism defined by

T =

(
a b
c d

)

7−→ Tz= az+b
cz+d

This group of fractional linear transformations isΓ = PSL(2,Z), and we will denote the matrix in
SL(2,Z) and the transformation inΓ = PSL(2,Z) by the same symbol. LetΓ′ be the commutator
subgroup ofΓ. Γ′ is a free group on the two generatorsa andb, where

a=

(
1 1
1 2

)

andb=

(
1 −1
−1 2

)

Note thatΓ′ is isomorphic to the commutator subgroup ofSL(2,Z). We will denote the inverses
of a andb asA andB respectively. We can now consider the fundamental regionD of H. This

0 1-1 10

FIGURE 13. The fundamental regionD

region is enclosed between two infinite vertical lines at -1 and 1 and above two semicircles with
feet at -1 and 0 and at 0 and 1 (see Figure 13). The operationsa andb act onD by identifying
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opposite edges of the region. In this fashion, we can construct a torus. Note that the point which is
missing (namely, that at infinity) represents the “puncture” of the torus.

8. ALGEBRAIC APPROACHES TODETERMINING THE FEET OF GEODESICS

8.1. Monotonicity of roots. From the following tables, it appears that both roots of a word of the
form a jbk increase when addinga’s to the word, and decrease when addingb’s to the word. These
tables were created with the help of a program created by [B].We will prove this monotonicity in
two lemmas, using a nested induction.

Word Root
aabb 1.76759 .565741

a1aabb 1.781 .610308
a2aabb 1.7831 .616905
a3aabb 1.7834 .617869
a4aabb 1.78345 .61801
a5aabb 1.78346 .61803
a6aabb 1.78346 .618033

Word Roots
a4bb 1.7831 0.616905

a4bbb1 1.640685 0.6168
a4bbb2 1.62131 0.616785

Word Roots
a5bb 1.7834 0.617869

a5bbb1 1.640725 0.617855
a5bbb2 1.621315 0.61785
a6bbb3 1.61851 0.61785

Word Roots
a6bb 1.78345 .61801

a6bbb1 1.64073 .618008
a6bbb2 1.62132 .618007
a6bbb3 1.61851 .618007
a6bbb4 1.6181 .618007
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Word Roots
a7bb 1.78346 0.61803

a7bbb1 1.640735 0.61803
a7bbb2 1.621315 0.61803
a7bbb3 1.61851 0.61803
a7bbb4 1.618105 0.61803
a7bbb5 1.618045 0.61803

Word Roots
a8bb 1.78346 0.618035

a8bbb1 1.640735 0.618035
a8bbb2 1.621315 0.618035
a8bbb3 1.61851 0.618035
a8bbb4 1.618105 0.618035
a8bbb5 1.618045 0.618035
a8bbb6 1.618035 0.618035

To begin, we introduce some information essential to the following proofs.

Definition 8.1. Let Φ =
√

5+1
2 represent the golden ratio.

Remark 8.2. The Fibonacci numbers satisfy the recurrence equation Fn = Fn−2+Fn−1 for n≥ 3,
with the convention that F1 = 1 and F2 = 1.

Remark 8.3. The limn→∞
Fn+1
Fn

= Φ and the limn→∞
Fn−1
Fn

= 1
Φ = Φ−1.

Lemma 8.4. The matrix of an is

(
F2n−1 F2n
F2n F2n+1

)

and that of bn is

(
F2n−1 −F2n
−F2n F2n+1

)

, where

Fn represents the nth Fibonacci number.

Proof. We will prove this using an inductive argument. It is given that the matrix ofa is

(
1 1
1 2

)

.

Now assumean−1 =

(
F2n−3 F2n−2
F2n−2 F2n−1

)

. Then an = aan−1 =

(
1 1
1 2

)(
F2n−3 F2n−2
F2n−2 F2n−1

)

=
(

F2n−1 F2n
F2n F2n+1

)

. It is also given that the matrix ofb is

(
1 −1
−1 2

)

. Assumebn−1 =
(

F2n−3 −F2n−2
−F2n−2 F2n−1

)

. Thenbn=bbn−1=

(
1 −1
−1 2

)(
F2n−3 −F2n−2
−F2n−2 F2n−1

)

=

(
F2n−1 −F2n
−F2n F2n+1

)

.

�

Remark 8.5. We know that F2n
2−F2n−1

2−F2nF2n−1 =−1. To see this, note that for n= 1, that
is F2, 12−1∗1−12 =−1. Assume this is true for F2n, that is F2n

2−F2n−1
2−F2

2n =−1. Then for
F2n+2 = F2n+1+F2n = 2F2n+F2n−1 we have(2F2n+F2n−1)

2− (2F2n+F2n−1)− (F2n−1+F2n)
2 =

F2
2n−F2

2n−1−F2nF2n−1 =−1.
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Using this information, we can now begin the essential stepsof the proof of monotonicity. As
a warning to the reader, in these proofs we exclude some complicated algebraic steps in order to
clarify the arguments presented.

Lemma 8.6. The roots of a word increase monotonically when adding a’s toa word of the form
a jbk, where k is fixed.

Proof. Suppose we have a word of the formaabb(the smallest case we will consider). The roots
of this word are approximately (within .00001) 1.767590 and.565741. Now looking at the case
where we add onea to this word (aaabb), we find that the roots occur at approximately 1.781 and
.610308, both of which are greater than the corresponding roots ofaabb. Assume this monotonicity
holds when addingn a’s to the wordaabb, that is, the roots ofanbbare greater than those ofan+1bb
and so on. To show the monotonicity holds when addingn+1 a’s to aabb, we find the matrices of
the wordsanbb andan+1bb. These are equal to

(
F2n−1 F2n
F2n F2n+1

)(
2 −3
−3 5

)

=

(
−3F2n+2F2n−1 5F2n−3F2n−1
−F2n−3F2n−1 2F2n+5F2n−1

)

and
(

F2n F2n−1+F2n
F2n−1+F2n F2n−1+2F2n

)(
2 −3
−3 5

)

=

(
−F2n−3F2n−1 2F2n+5F2n−1
−4F2n−F2n−1 7F2n+2F2n−1

)

respectively. Then the respective roots are

1
2




5F2n+3F2n−1

F2n+3F2n−1
±

√
(

5F2n+3F2n−1

−F2n−3F2n−1

)2

+4
5F2n−3F2n−1

−F2n−3F2n−1





and

1
2




8F2n+5F2n−1

4F2n+F2n−1
±

√
(

8F2n+5F2n−1

−4F2n−F2n−1

)2

+4
2F2n+5F2n−1

−4F2n−F2n−1



.

To prove monotonicity, we must show for our roots of the forme±√
f andg±

√
h thate+

√
f <

g+
√

h ande−√
f < g−

√
h. To simplify these inequalities algebraically, we will then consider

the inequalitiese−g <
√

h−√
f ande−g <

√
f −

√
h. So, continuing to use this notation, we

find thate−g is equal to

(5F2n+3F2n−1)(4F2n+F2n−1)− (8F2n+5F2n−1)(F2n+3F2n−1)

(−4F2n−F2n−1)(−F2n−3F2n−1)

= 12
−F2n−1

2+F2n
2−F2nF2n−1

(−F2n−3F2n−1)(−4F2n−F2n−1)
=

−12
(−F2n−3F2n−1)(−4F2n−F2n−1)

By expanding and simplifying the expression
√

h−√
f , we find that

√
(

8F2n+5F2n−1

−4F2n−F2n−1

)2

+4
2F2n+5F2n−1

−4F2n−F2n−1
−

√
(

5F2n+3F2n−1

−F2n−3F2n−1

)2

+4
5F2n−3F2n−1

−F2n−3F2n−1

=
(−F2n−3F2n−1)

√

32F2n
2+5F2n−1

2−8F2nF2n−1+(4F2n+F2n−1)
√

5F2n
2+45F2n−1

2−18F2nF2n−1

(−4F2n−F2n−1) (−F2n−3F2n−1)
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Then our inequality ofe−g<
√

h−√
f is equivalent to

−12< (−F2n−3F2n−1)

√

32F2n
2+5F2n−1

2−8F2nF2n−1+(4F2n+F2n−1)

√

5F2n
2+45F2n−1

2−18F2nF2n−1.

As we knowF2n is at the least 1.618026F2n−1 and at the mostΦF2n−1 whenn≥ 7, we substitute
these into the above inequality. Note that for cases wheren < 7, the monotonicity of the roots
can easily be verified by performing the computations by hand. In doing so, to ensure that the
inequality holds true we will substitute the larger value,ΦF2n−1, wheneverF2n has a negative co-
efficient, and the smaller value, 1.618026F2n−1 wheneverF2n has a positive coefficient. After this
substitution, the inequality reduces to−33302< F2

2n−1. We know this is true asF2
2n−1 is always

positive.

Now we consider the inequalitye−g<
√

f −
√

h. After expanding and simplifying the expression√
f −

√
h, we find that it is equivalent to
√
(

5F2n+3F2n−1

−F2n−3F2n−1

)2

+4
5F2n−3F2n−1

−F2n−3F2n−1
−

√
(

8F2n+5F2n−1

−4F2n−F2n−1

)2

+4
2F2n+5F2n−1

−4F2n−F2n−1

=
(−4F2n−F2n−1)

√
5F2n

2+45F2n−1
2−18F2nF2n−1+(F2n+3F2n−1)

√
32F2n

2+5F2n−1
2−8F2nF2n−1

(−4F2n−F2n−1)(−F2n−3F2n−1)

Then the inequality ofe−g<
√

f −
√

h is equivalent to

−12< (−4F2n−F2n−1)

√

5F2n
2+45F2n−1

2−18F2nF2n−1+(F2n+3F2n−1)

√

32F2n
2+5F2n−1

2−8F2nF2n−1

Again we substitute the maximum and minimum values ofF2n as discussed above. Whenn ≥ 7
this inequality reduces to−.000017470< F2

2n−1. Again asF2
2n−1 is positive, this inequality is true.

Thus the proof is complete. �

Lemma 8.7. The roots of a word decrease monotonically when adding b’s toa word where the
number of a’s is fixed.

Proof. This proof is similar to that of Lemma 8.6. We will consider a word, saya4b2. Then we
know the roots of this word occur at approximately 1.783095 and .616905. Then, adding oneb to
this word,a4b3, we find that the roots occur at approximately 1.640685 and .6168, each of which
is smaller than the corresponding roots ofa4b2. Assume this monotonicity holds when addingn
b’s to a word of the forma jbk. The matrices ofa jbn anda jbn+1 are respectively

(
1 1
1 2

)4(
F2n−1 −F2n
−F2n F2n+F2n−1

)

=

(
−21F2n+13F2n−1 8F2n+21F2n−1
−34F2n+21F2n−1 13F2n+34F2n−1

)

and
(

1 1
1 2

)4(
F2n −F2n−F2n−1

−F2n−F2n−1 F2n−1+2F2n

)

=

(
−8F2n−21F2n−1 29F2n+8F2n−1
−13F2n−34F2n−1 47F2n+13F2n−1

)

Then the respective roots are

1
2




34F2n+21F2n−1

34F2n−21F2n−1
±

√
(

34F2n+21F2n−1

−34F2n+21F2n−1

)2

+4
8F2n+21F2n−1

−34F2n+21F2n−1




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and

1
2




55F2n+34F2n−1

13F2n+34F2n−1
±

√
(

55F2n+34F2n−1

−13F2n−34F2n−1

)2

+4
29F2n+8F2n−1

−13F2n−34F2n−1





Now, we wish to show that for our roots of the forme±√
f andg±

√
h, thate+

√
f > g+

√
h

and e−√
f > g−

√
h. Again for simplicity, we will then consider the equivalentinequalities

e−g >
√

h−√
f ande−g >

√
f −

√
h, using a method similar to that above. Using this same

notation, we finde−g equal to
(

34F2n+21F2n−1

34F2n−21F2n−1

)

−
(

55F2n+34F2n−1

13F2n+34F2n−1

)

=−1428
(

−F2n−1
2+F2n

2−F2nF2n−1
(13F2n+34F2n−1)(34F2n−21F2n−1)

)

= 1428
(−13F2n−34F2n−1)(−34F2n+21F2n−1)

Then after factoring and simplifying the expression
√

h−√
f , we have

√
(

34F2n+21F2n−1

−34F2n+21F2n−1

)2

+4
8F2n+21F2n−1

−34F2n+21F2n−1
−

√
(

55F2n+34F2n−1

−13F2n−34F2n−1

)2

+4
29F2n+8F2n−1

−13F2n−34F2n−1
=

(−34F2n+21F2n−1)
√

1517F2n
2+68F2n−1

2−620F2nF2n−1− (−13F2n−34F2n−1)
√

68F2n
2+2205F2n−1

2−756F2nF2n−1

(−13F2n−34F2n−1)(−34F2n+21F2n−1)

Then the inequalitye−g>
√

h−√
f simplifies to

1428> (−34F2n+21F2n−1)
√
(
1517F2

2n+68F2
2n−1−620F2nF2n−1

)
+(13F2n+34F2n−1)

√
(
68F2

2n+2205F2
2n−1−756F2nF2n−1

)

As above, we substitute the bounds ofF2n into this inequality, namely at the least 1.618026F2n−1
and at the mostΦF2n−1 (wheren ≥ 7). In this case, to ensure that the inequality is true we must
substitute the larger value,ΦF2n−1, when F2n has a positive coefficient and the smaller value,
1.618026F2n−1, whenF2n has a negative coefficient. Doing so, we find−.000018396< F2

2n−1.
This inequality is true asF2

2n−1 is always positive. Similarly, the inequality fore−g >
√

f −
√

h
simplifies to

−1428< (13F2n+34F2n−1)
√
(
68F2

2n+2205F2
2n−1−756F2nF2n−1

)
+(−34F2n+21F2n−1)

√
(
1517F2

2n+68F2
2n−1−620F2nF2n−1

)

Once again, we will substitute the values discussed above for F2n (note that because of the sign
change from the first inequality,ΦF2n−1 will replace F2n associated with negative coefficients
and 1.618026F2n−1 will replace those with positive coefficients). The inequality then reduces to
−61818< F2

2n−1. As F2
2n−1 > 0, the inequality is true. Thus we know by induction that bothroots

of a worda4bn are greater than the corresponding roots of the worda4bn+1. �

Theorem 8.8.Through this double induction in Lemma 8.6 and Lemma 8.7, we know that for any
word of the form ajbk, both roots increase monotonically when adding a’s and decrease monoton-
ically when adding b’s.

8.2. Calculating roots of words. We will calculate the roots of the permutations ofa jbk using
the matrices for the respective symbols and the resulting quadratic equation to demonstrate that the
word a jbk has( j −1)(k−1) intersections. In order to do so, we will introduce several lemmas.
Note that these results depend on the previous double induction proof of monotonicity. Moreover,
the intervals found below are approximate within 0.000001.We enclose below tables that initially
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motivated results that follow. All tables presenting approximate numerical roots of permutations
were created with the help of the program by [B].

Permutation Roots
aabb 1.76759 .565741

aaabb 1.781 .610308
aaaabb 1.7831 .616905
aaabbb 1.64039 .609612

aaaaabb 1.7834 .617869
aaaabbb 1.64068 .616801

Lemma 8.9. The roots of the permutation ajbk occur in the intervals (.381966, .618034) and
(1.618034, 2.618035).

Proof. Using the matrices defined fora andb, wherea=

(
1 1
1 2

)

andb=

(
1 −1
−1 2

)

then

the matrix forW is
(

F2 j−1F2k−1−F2 jF2k −F2 j−1F2k+F2 jF2k+F2 jF2k−1
F2 jF2k−1−F2 jF2k−F2 j−1F2k F2 jF2k−1+F2 j−1F2k+F2 j−1F2k−1

)

whereFn represents the nth Fibonacci number. Now we apply the transformation

T :

(
a b
c d

)

→ az+b
cz+d and solve the resulting quadratic equationT(z) = z for z. So, using this

notation we would havez2+
(d−a

c

)
z− b

c = 0. Thus, for the above matrix forW, we find that the
roots of its quadratic equation are

1
2



−F2 jF2k−1+F2 j−1F2k+F2 jF2k

F2 jF2k−1−F2 jF2k−F2 j−1F2k
±

√
(

F2 jF2k−1+F2 j−1F2k+F2 jF2k

F2 jF2k−1−F2 jF2k−F2 j−1F2k

)2

+4
−F2 j−1F2k+F2 jF2k+F2 jF2k−1

F2 jF2k−1−F2 jF2k−F2 j−1F2k





We take the limits of the roots asj and k approach∞. Dividing each term of the numerator
and denominator of these roots byF2 jF2k we find that asj andk approach∞, the roots of this

permutation approach2Φ−1±
√

(1−2Φ)2−4
2 = Φ,Φ−1≈1.618034, .618034, whereΦ represents the

golden ratio. Using the smallest word of the forma jbk, ab, to establish the bounds of the intervals
of the feet, we find that the roots ofab occur at .381966 and 2.618035. Thus the lower root is in
(.381966, .618034) and the upper root is in (1.618034, 2.618035). �

Definition 8.10. [M] A fixed pointof a function g(x) is a point p such that g(p) = p.

Definition 8.11. [M] The iteration pn = g(pn−1) for n= 0,1, . . . is calledfixed point iteration.

Lemma 8.12.Words of the form aj−mbkam follow the fixed point iteration of G= 2z−1
−z+1.
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Proof. The method of this proof is taken from Lemma 3.9 found in [B]. LetW represent the matrix

of a jbk, and without loss of generality supposeW =

(
t u
v w

)

. ThenW (z) = tz+u
uz+w. Suppose

the fixed points ofW are somep andq. For the worda j−1bka1 we must cyclically permuteW
by bringing onea from the front to the back. To do so, we considerAWa(x), and we find its
fixed pointsp1, q1. Now if we let x = A(p), we haveAWa(A(p)) = AW(aA(p)) = AW(p) =
A(p) = p1. Thus when movingm a’s to the back ofW, we havepm = Am(p). Then for each
successive image of the fixed points ofW, we need only consider the iterations of theA function.

As A=

(
2 −1
−1 1

)

, we knowA(x) = 2x−1
−x+1 (see Figure 14). �

52.50-2.5-5
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2
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-4

x

y

x

y

(F-1,F-1)

(-F,-F)

FIGURE 14. Graph ofA(x) = 2x−1
−x+1

The table below is an analysis of the behavior of the fixed point iteration of A(x) = 2x−1
−x+1 on

different intervals.
Interval Behavior

(−∞,−Φ) Increase monotonically to−Φ
(−Φ,Φ−1) Decrease monotonically to−Φ

(Φ−1,1) Flip once to (1,∞), flip to (-∞,-Φ), increase monotonically to−Φ
(1,∞) Flip to (-∞,-Φ), increase monotonically to−Φ

Lemma 8.13.Words of the form bk−na jbn follow the fixed point iteration of G= 2z+1
z+1 .

Proof. Using the same process as Lemma 8.12, we see that forbk−na jbn we consider cyclic per-
mutations ofbka j sendingb’s from the front to the back. Then we need only consider iterations of

theB function. AsB=

(
2 1
1 1

)

, we knowB(x) = 2x+1
x+1 (see Figure 15). �

The table below is an analysis of the behavior of the fixed point iteration ofA(x) = 2x−1
−x+1 on

different intervals.
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52.50-2.5-5
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(1-F,1-F)

FIGURE 15. Graph ofB(x) = 2x+1
x+1

Interval Behavior
(−∞,−1) Flip to (Φ, ∞), decrease monotonically toΦ

(−1,1−Φ) Flip once to (-∞, -1), flip to (Φ, ∞), decrease monotonically toΦ
(1−Φ,Φ) Increase monotonically toΦ

(Φ,∞) Decrease monotonically toΦ

Permutation Roots
abba -3.30278 0.302776

aabba -3.28042 0.56613
abbaa -1.76638 0.304839

aaabba -3.27698 0.610317
aabbaa -1.76619 0.56619
abbaaa -1.63849 0.305159

Lemma 8.14. The permutation aj−mbkam (where0 < m≤ j) creates a series of j concentric
semicircles with feet occuring in (−∞, -1.618034) and (-.618034, .618034).

Proof. This follows by applying Lemma 8.12 on the intervals found for the roots of the original
wordW (see Lemma 8.9). These iterations then create a series ofj concentric semicircles, none of
which intersect. �

Permutation Roots
bbaa -1.76759 -.565741

bbaaa -1.63852 -.561484
bbbaaa -1.64039 -.609612

bbbaaaa -1.62127 -0.609502
bbbbaaaa -1.62131 -0.616785

Lemma 8.15. The roots of the permutation bka j occur in (-2.618035, -1.618034) and (-.618034,
-.381966).



52

Proof. Using once again the matrices defined fora andb, we find that the matrix is
(

F2k−1F2 j−1−F2kF2 j F2k−1F2 j −F2kF2 j+1
−F2kF2 j−1+F2k+1F2 j −F2kF2 j +F2k+1F2 j+1

)

Taking the limit of the general equation for the roots ask and j approach∞ we have

1
2




−Φ2− (Φ−1)2

−(Φ−1)+Φ
±

√
√
√
√

(

Φ2− (Φ−1)2

−(Φ−1)+Φ

)2

+4
(Φ−1)−Φ
−(Φ−1)+Φ




≈−1.618034,−.618034

We will use the roots of the smallest word of this form,ba, to establish the bounds of the intervals.
We find that the roots occur at -2.618035 and -.381966. So the intervals for the feet of the geodesic
representingbka j are (-2.618035, -1.618034) and (-.618034, -.381966). Moreover, this geodesic is
the innermost of the nested geodesics for words of the forma j−mbkam. �

Permutation Roots
baab 3.30278 -.302776

baaab 3.56613 -.280416
bbaaab 3.56155 -.561553
baaabb 1.78078 -.280776

bbbaaaab 3.6095 -0.609502
bbaaaabb 1.78306 -0.560835
baaaabbb 1.64068 -0.277047

Lemma 8.16. The permutation bk−na jbn (where0 < n < k) creates a series of k−1 concentric
semicircles with feet occuring in (-.618034, .618034) and (1.618034,∞).

Proof. This follows by applying Lemma 8.13 to the intervals from Lemma 8.15. These form a
series ofk−1 nested geodesics that do not intersect with each other. �

Lemma 8.17. The geodesics of bk−na jbn intersect the geodesics of ambka j−m (with the exception
of bka j ).

Proof. We already know that these feet ofbk−na jbn are to the right of the the relevant foot ofbka j ,
as we applied the iteration Lemma 8.16 tobka j and found that the roots ofbk−na jbn are monoton-
ically increasing from this point. Now we must find an interval for the rightmost foot ofabka j−1.
We already know from Lemma 8.14 that this foot must be in the interval (-.618034, .618034) as it
follows the forma j−mbkam. Now, we find the matrix associated with the wordabkax and find the
limit of the upper root asx approaches∞ in the same fashion as above. We find this value to be
.2763932, and as the values of the roots ofa j−mbkam were monotonically decreasing from at most
.618034, we know that the right foot ofabka j−1 thus lies in the interval (.2763932, .618034).

Now we must only find an interval for the left foot ofbajbk−1. Similar to the method above,
we know this foot to be in the interval (-.618034, .618034) asit is of the formbk−na jbn. We find
the matrix associated with the wordbajby and find the limit of the upper root asy approaches∞.
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We compute this value to be -.276392, and as the values of the roots ofbk−na jbn were monoton-
ically increasing from -.618034, we know the left foot ofbajbk−1 lies in the interval (-.618034,
-.2763932). As this indicates that the leftmost feet ofbk−na jbn are between the rightmost feet of
bka j and that ofabka j−1, we know they intersect. �

Lemma 8.18. The intersections of the geodesics of the word ajbk occur within the fundamental
region.

Proof. Because the leftmost feet of the geodesics ofbk−na jbn are greater than -.618034 and the
rightmost feet of the geodesics ofabka j−1 are less than .618034, we know the right and left limiting
cases of intersections between these two groups of geodesics occur between -1 and 1. Futhermore,
because the geodesics ofabka j−1 andbajbk−1 have radii greater than .5, we know that the lower
limiting case of their intersection occurs within the fundamental region. �

The table below organizes the intervals discussed above in atable to facilitate clarity.

Permutation Lower Root Upper Root
a jbk (.381966, .618034)(1.618034, 2.618035)

a j−mbkam (-∞, -1.618034) (-.618034, .618034)
bka j (-2.618035, -1.618034) (-.618034, -.381966)

bk−na jbn (-.618034, .618034) (1.618034,∞)
abka j−1 (-∞, -1.618034) (.2763932, .618034)
bajbk−1 (-.618034, -.2763932) (1.618034,∞)

Theorem 8.19.A word W of the form ajbk (where j≥ k≥ 2) has( j −1)(k−1) intersections.

Proof. By Lemma 8.17, we know that thek−1 geodesics ofbk−na jbn intersect thej−1 geodesics
of a j−mbkam. Moreover, by Lemma 8.18, we know all these intersections occur within the funda-
mental region. Hence, the number of intersections within the fundamental region is
( j −1)(k−1). �

FIGURE 16. Intersections inD of aaaabb

Example 8.20.The word aaaabb has 3 intersections in the fundamental region (see Figure 16).



54

9. GEOMETRIC APPROACHES TODETERMINING THE FEET OF GEODESICS

9.1. Background Information. In this section we will use cutting sequences to examine once
again the monotonicity of roots proved above, as well as other simple patterns. This background
information is taken directly from [C]. Acutting sequence S(γ) of a geodesicγ is a doubly infinite
sequence composed of the symbolsa, b, A, andB. When listing these sequences we usually omit
the commas, e.g.

S(γ) = . . . . . .X−1X0X1 . . . . . .

where eachXi ∈ {a,b,A,B}. We also use the notation

Wn =

n
︷ ︸︸ ︷

W . . .W

wheren is a positive integer andW is a word composed of the generatorsa, b, A, andB. We will
let W−1 denote the word obtained by reversingW and replacing each symbol by its inverse. We

0 1/2 1 3/2 2-1/2-1-3/2-2

a A

B

aA

b

B A

b B

a

A b

a

Ba

b

B

A
b

FIGURE 17. The labelled gridΛ

will now describe a labelled grid of geodesics inH. This grid is obtained by taking images under
Γ′ of the sides ofD (see Figure 17). We can now label this grid using the cyclic ordering

. . . . . .a< B< A< a. . . . . .

We begin by labelling the vertical line between -1 and∞ within D asa, and then moving counter-
clockwise aroundD we label the semicircle with feet at -1 and 0 asB, that with feet at 0 and 1 as
A, and finally the vertical line between 1 and∞ asb. The labels of the other side of each gridline
correspond to the inverses of those discussed above. All labels can thus be obtained using this la-
belling inD . This grid is referred to as thelabelled grid induced byΓ and is denoted byΛ. Recall
that as all geodesics inH that project to closed geodesics onT have irrational endpoints, each foot
will cut the lines ofΛ infinitely often. Note that readingS(γ) from left to right corresponds to the
geodesicγ traversing a grid line, with the convention that only the label immediately after the line
is listed. [C] also notes that the sequence of grid lines crossed byγ is completely determined by the
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initial one, and that initial one belongs to some fan. That isto say, at some pointγ will entire a fan
of tiles never to leave again. This is important to the work weinclude in this section, particularly
in Case 1 below. From this idea arise the following definitionand theorem.

Definition 9.1. [C] Theboundary expansionS(ξ) of an irrational pointξ is the cutting sequence
of any geodesic which begins withinD and ends atξ. We write

S(ξ) = X0X1X2 . . . . . .

where each Xi ∈ {a,b,A,B}.

Theorem 9.2. [C] Let ξ andξ′ be distinct irrationals with boundary expansions

S(ξ) = X0X1X2 . . . . . . and S(ξ′) = X′
0X′

1X′
2 . . . . . .,

respectively. Thenξ < ξ′ if and only if X0X1X2 . . . < X′
0X′

1X′
2 . . ..

From this theorem, we see that when comparing two words, we need only look at the first place
the words differ to apply the cyclic ordering of the symbols to determine which foot is larger than
the other. This result leads to the method applied in Case 2 below.

9.2. Monotonicity of roots. Using the cutting pattern discussed in the previous section, it is not
difficult to prove the monotonicity of roots when addinga’s or b’s to a word of the forma jbk. To
do so then, we will make use of the following diagrams to provethe monotonicity once again by
double induction.

Case 1: We will first demonstrate that both roots ofa jbk increase monotonically when adding
a’s. We will consider the legs of the geodesic one at a time. First we see that for a word of the
form a jbk, one of the legs begins by cutting the right semicircle ofD . For simplicity, we will
denote the leftmost, centermost, and rightmost semicircles representing a particular reflection of
the fundamental region as left, center, and right respectively, unless noted otherwise.

0 1

A

a

B

A

bA

FIGURE 18

After this, the foot will cut the center a total ofj −1 times (see Figure 18). After cutting through
the j −1th center semicircle, (and thus accounting for all thea’s), the foot then will cut the left.
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aj

b

b

B
A b

FIGURE 19. Cutting sequence ofa jbk

aj

bB

b
aj+1

a

FIGURE 20. Cutting sequence ofa j+1bk

From this point on, the foot will cut the center a total ofk times (see Figure 19). This process
will continue, as it is cyclic and the roots of the geodesic are irrational. However, considering a
word of the forma j+1bk, we know this foot will follow the same path up to the point where it cuts
thekth center (see Figure 20). After this, the foot will cross once more the center before crossing
the left and eventually centers representing theb’s. By these figures then, we see that this foot is
monotonically larger fora j+1bk than the respective foot ofa jbk.

Now, for the other leg, we consider the wordBkA j . We see that it crosses to the horizontal

b

B

a

A

b B

B

FIGURE 21

translation ofD , of which it cuts the rightmost semicircle (see Figure 21. Once theB’s are ac-
counted for, the foot cuts the right and then proceeds to cut the centerj −1 times, until theA’s are
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all represented. Because of the cyclic nature of the cutting, the foot then cuts the left and repeats

Aj

b B

b

a

FIGURE 22. Cutting sequence ofBkA j

the pattern of above. (see Figure 22). For the wordBkA j+1, the foot follows the same pattern up

Aj

bB

bAj+1

a

FIGURE 23. Cutting sequence ofBkA j+1

to the point where it crosses thekth center. From here, it cuts once more the center before cutting
the left and repeating the previous pattern. Then, as seen inthe figures, this foot is monotonically
larger (see Figure 23).

Case 2:We will now show that both roots ofa jbk decrease monotonically when addingb’s, again
considering one foot as a time. We may do so using the same method as above, with a different
approach. Comparing the wordsa jbk anda jbk+1, we see that the words are identical to a certain
point, namely wherea jbk cycles back toa anda jbk+1 has one additionalb before cycling through
the word again (see Figure 24). As such, we knowa jbk cuts through anA at the same time as
a jbk+1 cuts aB. Using the cyclic ordering used in the cutting pattern of thefundamental region,
...a< B< A< b< ..., we see thatB< A. Hence, this foot ofa jbk+1 is smaller than that ofa jbk.
Similarly, to determine the monotonicity of the other foot we see thatBkA j andBk+1A j are iden-
tical until BkA j begins to cut the series ofa’s, while Bk+1A j cuts one additionalb. By the same
cyclic ordering, asb< a, we know this foot ofBk+1A j is smaller than that ofBkA j . Thus by simply
looking at a word and examining the first symbol at whichW andW1 are different, we know which
word has larger or smaller feet. This completes the proof of monotonicity.
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aa�ajbb�bk(a...)
aa�ajbb�bkbk+1(a...)

BB�BkA...Aj...
BB�BkBk+1A�Aj...

FIGURE 24

10. PATTERNS OFOTHER WORDS

In this section, we will briefly discuss the patterns of the feet of geodesics of two other simple
word forms,a jbkal bm anda jbkal Bm. We begin witha jbkal bm, where without loss of generality
we can assume thatj ≥ k. To do so, we use a method similar to that of Case 2 in the section above.
That is, we examine the first point of divergence between words, and using the cyclic ordering
of symbols mentioned above, we can say which word has larger roots. For a word of the form
a jbkal bm, we need only examine 16 possibilities of how roots can change when varying any of
j, k, l , or m. Although there are many more possibilities for howj, k, l , andm vary, note that
we are only concerned with the first location of divergence between words in our analysis, due to
Theorem 9.2. To see this, notice that the roots of wordsa j+1bkalbm+1 would change in the same
general fashion froma jbkal bm as would those ofa j+1bkal+1bm+1. In the table below, each entry
indicates a comparison of the position of feet between a particularW1 andW−1

1 with the original
W andW−1. An entry of “greater” is thus read as indicating that the foot of W1 or W−1

1 is greater
than that ofW or W−1. Note that when only one variable is changed, as in the first four lines, we
consider only the case where it increases (the other case is easily obtained).
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Change to word Change in foot Change in foot
a jbkalbm of W of W−1

Fix k, l , m ( j increases) Greater Greater
Fix j, l , m (k increases) Less Less
Fix j, k, m (l increases) Greater Greater
Fix j, k, l (m inceases) Less Less
Fix l , m
( j, k, increase) Greater Less
( j increases,k decreases) Greater Greater
Fix k, m
( j, l , increase) Greater Greater
( j increases,l decreases) Greater Less
Fix k, l
( j, m, increase) Greater Less
( j increases,mdecreases) Greater Greater
Fix j, l
(k, m, increase) Less Less
(k increases,m decreases) Less Greater
Fix j, m
(k, l , increase) Less Greater
(k increases,l decreases) Less Less
Fix j, k
(l , m, increase) Greater Less
(l increases,m decreases) Greater Greater

From this table then, we can understand the behavior of the geodesics of words of the form
a jbkal bm when changing the value ofj, k, l , andm, in relation to the original word. Using the
same method, we also present a table of the same type as above compiling the behavior of words
of the forma jbkalBm when changingj, k, l , andm. Although this is just a brief analysis of the
behavior of words of these forms, it could perhaps serve as a starting point for a further study of
this type. Certainly, as these tables only analyze one permutation of each of these forms, more
work could be done to consider the behavior of all cyclic permutations.
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Change to word Change in foot Change in foot
a jbkalBm of W of W−1

Fix k, l , m ( j increases) Greater Less
Fix j, l , m (k increases) Less Less
Fix j, k, m (l increases) Less Greater
Fix j, k, l (m inceases) Greater Greater
Fix l , m
( j, k, increase) Greater Less
( j increases,k decreases) Greater Greater
Fix k, m
( j, l , increase) Greater Greater
( j increases,l decreases) Greater Less
Fix k, l
( j, m, increase) Greater Greater
( j increases,mdecreases) Greater Less
Fix j, l
(k, m, increase) Less Greater
(k increases,m decreases) Less Less
Fix j, m
(k, l , increase) Less Greater
(k increases,l decreases) Less Less
Fix j, k
(l , m, increase) Less Greater
(l increases,m decreases) Less Less

11. CONCLUSION

We have found formulas for the intersection number of all words composed of no more than four
blocks of letters and of words that are a power of a primitive word (given the intersection number
of the primitive word). We have proved the monotonicity of roots of words of the patterna jbk

when addingb’s anda’s. We have also used both algebraic and geometric methods asa means for
better understanding the patterns of geodesics of words of simple patterns, namelya jbk, a jbkalbm,
anda jbkal Bm.

Although much work has been done on the intersection numbersof curves onT, there are still
open questions that remain. A study of the behavior of geodesics of words of the forma jbkalbm

anda jbkal Bm could be continued to better understand which changes lead to intersections. More
research could be done on words composed of simple patterns (as one example,a jbkAl bm) to
better understand the intersections inD . Moreover, it would clearly be advantageous to extend the
formulas found above to a general formula in order to calculate the number of intersections, given
simply a specific word. Some of the results of this paper may also be able to be generalized to
other surfaces.
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APPENDIX A

IntersectByDrawing[word_String, order_List, max_] :=
Module[{na, nb, i, j, count, l1, r1, l2, r2},
For[na = 0; nb = 0, na + nb < StringLength[word],

If[ToLowerCase[StringTake[word, {na + nb + 1}]] == "a", na++, nb++]];
word2 = word <> StringTake[word, {1}];
order2 = Join[order, {order[[1]]}];
For[i = 1; count = 0, i <= StringLength[word] - 1, i++,

For[j = i + 1, j <= StringLength[word], j++,
If[StringTake[word2, {i}] == "a", l1 = na - order2[[i]] + 1,

If[StringTake[word2, {i}] == "b", l1 = na + order2[[i]],
If[StringTake[word2, {i}] == "A", l1 = na + nb + order2[[i]],
l1 = 2*na + 2*nb - order2[[i]] + 1]]];

If[StringTake[word2, {i + 1}] == "A", r1 = na - order2[[i + 1]] + 1,
If[StringTake[word2, {i + 1}] == "B", r1 = na + order2[[i + 1]],

If[StringTake[word2, {i + 1}] == "a",
r1 = na + nb + order2[[i + 1]],
r1 = 2*na + 2*nb - order2[[i + 1]] + 1]]];

If[StringTake[word2, {j}] == "a", l2 = na - order2[[j]] + 1,
If[StringTake[word2, {j}] == "b", l2 = na + order2[[j]],

If[StringTake[word2, {j}] == "A", l2 = na + nb + order2[[j]],
l2 = 2*na + 2*nb - order2[[j]] + 1]]];

If[StringTake[word2, {j + 1}] == "A", r2 = na - order2[[j + 1]] + 1,
If[StringTake[word2, {j + 1}] == "B", r2 = na + order2[[j + 1]],

If[StringTake[word2, {j + 1}] == "a",
r2 = na + nb + order2[[j + 1]],
r2 = 2*na + 2*nb - order2[[j + 1]] + 1]]];

{l1, r1} = Sort[{l1, r1}];
{l2, r2} = Sort[{l2, r2}];
If[(l1 < l2 && l2 < r1 && r1 < r2) || (l2 < l1 && l1 < r2 && r2 < r1),

count++];
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If[max != -1 && count >= max, Return[max]]]];
count]

DrawingPermutations[word_String] :=
Module[{i, j, k, ik, jk, list, acount, bcount, lista, listb, listboth,

finallist, pa, pb},
list = Characters[word];
finallist = {};
acount = Count[list, "a"] + Count[list, "A"];
bcount = Count[list, "b"] + Count[list, "B"];
pa = Permutations[Table[i, {i, 1, acount}]];
pb = Permutations[Table[i, {i, 1, bcount}]];
For[i = 1, i <= Length[pa], i++,

For[j = 1, j <= Length[pb], j++,
lista = pa[[i]];
listb = pb[[j]];
listboth = {};
For[k = 1; ik = 1; jk = 1, k <= Length[list], k++,

If[list[[k]] == "a" || list[[k]] == "A",
listboth = Join[listboth, {lista[[ik++]]}],
listboth = Join[listboth, {listb[[jk++]]}]]];

finallist = Join[finallist, {listboth}]]];
finallist]

MinimalPermutations[word_String] := Module[{i, all, minint, minlist, int},
all = DrawingPermutations[word];
minint = IntersectByDrawing[word, all[[1]], -1];
minlist = {all[[1]]};
For[i = 2, i <= Length[all], i++,

int = IntersectByDrawing[word, all[[i]], minint + 1];
If[int < minint,
minint = int;
minlist = {all[[i]]},
If[int == minint,

minlist = Join[minlist, {all[[i]]}]]]];
{minint, minlist}]
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