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ABSTRACT. V.I. Arnold introduced axiomatic definitions for invarieSt andJ* of plane curves.
In addition, Arnold showed that under the ordinary connéctem of two planar curves these in-
variants are additive. Moreover, this result implies thefiedt is additive under the connected sum.
We use a notion of interjected sum to extend the idea of thimarglconnected sum, and show that
defect is additive under this operation as well. This ermhbketo show that loops, the connected
or interjected sum of a planar curve with a standard curveebéat zero i(e., Ko or Ky), can be
removed from a planar curve without changing defect. By ararg the signed Gauss word of a
planar curve, we give the construction of a Crossing graphuin, we are then able to show that
negativel® perestroikas, in conjunction with removing loops, are ejioio reduce any planar curve
to the trivial loop. Inductively, this then implies that thefect of any planar curve is nonnegative.

1. INTRODUCTION

A planar curve is a smooth mappinyy: St — R? of a circle into the plane whose derivative
vanishes nowhere [Arn94]. A generic immersion is one hawinlg finitely many transverse self-
intersections, or double pointsd,, crossings). Generic planar curvesnormalcurves, have no
points of self-tangency nor self-intersection points oftiplicity greater than 2.

FIGURE 1. A normal curve (left), a non-generic curve with a seliensection of

multiplicity 3, i.e. a triple point (center), and a non-generic curve with a pofnt
self-tangency (right).

The goal of this paper is the study of the defect of normal esinFoundational to this study is
the work of many authors which will be introduced here andioedl in more detail throughout
this paper. In 1937, H. Whitney [Whi37] gave a classificatidmormal curves by showing that
two curves with the same rotation numbee ( Whitney index) may be deformed into each other.
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More recently in [Arn94], V.I. Arnold axiomatically intrasted the invariant§t andJ* for nor-
mal curves by normalizing their values on standard curvesstwowing how they change under
different deformations of a curve. Several authors, such.&humakovitch [Shu96], F. Aicardi
[Aic94], and C. Luo [Luo97], then presented and refined expéixpressions for these invariants.
In particular, Aicardi showed that the defecS{2- J*) of any tree-like curve was zero. Then in
1998, M. Polyak gave a method for determining these invesiaia Gauss diagrams [Pol98].

This paper proposes the result that the defect of normaésuswalways nonnegative. Integral to
this result were the explicit expressions for normal curpemcipally those presented by Aicardi
and Polyak. Moreover, the work of G. Cairns and D. Elton [CHEAB35auss words motivated the
construction of the Crossing graph, a major tool in the padafur result. Additionally, we would
like to thank Scott Weaver, a fellow REU patrticipant, for msight into the proof of Proposition
10.3.

2. INVARIANTS

The Whitney index is an invariant that helps classify normales up to regular homotopies.
The Arnold invariants are defined via classes of elementarydard curves and are affected by
rules describing their change under deformations.

2.1. Whitney Index. Given a curvey with a prescribed orientation, the Whitney indexya$ the
total rotation number of the tangent vectoyas traversed once in the direction determined by the
orientation. The Whitney index gfis denoted bynd(y). Note that reversing the orientation yf
would change the sign afid(y). Hence, for a nonoriented curyenly|ind(y) | can be defined.

Theorem 2.1 (JWhi37]). Two curvesy; andy, may be deformed into each other if and only if
ind(y1) = ind(y2).
The standard representatives of curves with indiceslO+2, ... are shown in Figure 2.
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FIGURE 2. The standard curvé§ andKy, Ko, ... with different orientations have
indices Q£1,+2,....

Note that forn =0, 1, ..., K11 is the simplest curve withdouble points. Theorem 2.1 gives rise
to equivalence classes based on Whitney index. That is, @amygal curvey whereind(y) =i can
be deformed intd;.

2.2. The Arnold Invariants. The Arnold invariants, normalized on the standard cukge&1, Ko, .. .,
are intimately tied to deformations of planar curves. Thifermations, or perestroikas, take pla-
nar curves through intermediate points of self-tangendmmugh triple points.

Definition 2.2. A point of self-tangency of a curve is callddect if the velocity vectors of the
curve point in the same direction at the point of self-targyesnd it is callednverseif the velocity
vectors point in opposite directions.
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Definition 2.3. A perestroikas a deformation of a curve in which an intermediate curvesgsses
a point of self-tangency or a triple point. There are thremds of perestroikas: direct self-tangency,
inverse self-tangency, and triple-point.

Figure 3 shows two types of perestroikas. Note here thahtrezse self-tangency perestroika is
similar to the direct self-tangency perestroika.
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FIGURE 3. A direct self-tangency perestroika (above) and a trgaait perestroika (below).

Definition 2.4. A positive(resp. negative crossing of a self-tangency perestroika, or simply posi-
tive perestroika, increases (resp. decreases) the nunfliruble points (by 2).

The definition of a positive transversal crossing requiresage involved explanation. Here,
as presented in [Arn94], @anishing triangles the triangle formed by three branches of a curve
corresponding to three double points interconnected sy@netaining no other double points. The
sign of a vanishing triangles defined by the following construction. The orientatiornthad normal
curve defines a cyclic ordering of the sides of the vanishiiaggle {.e., the order of the visits of
the triple point by the three branches). In this way, thesafdhe triangle acquire orientations via
this ordering. However, each side also has its own diredfrmm the original orientation of the
curve) that may coincide, or not, with the orientation ginwnthe ordering. For each vanishing
triangle define a quantitgy which takes the value of 0, 1, 2, or 3 according to the numberd#s
equally oriented by the ordering and by their respectivediions. Then, the sign of a vanishing
triangle is(—1)9. Note thatg does not change under a change of orientation on the curbetlas
the cyclic order and the direction of the sides are reversed.

Definition 2.5 ([Arn94]). A transversal crossing of a triple point ositiveif the new-born van-
ishing triangle is positive.

Arnold defined the invariants Strangen&sndJ® of plane curves which correspond to these
perestroikas.

Theorem 2.6. ([Arn94]) There exist unique (up to additive constants) invariantsd$s, and J- of
generic immersions of fixed index where,

(1) St remains constant under self-tangency perestroikasraueéases by 1 after a positive
crossing of a triple-point perestroika.
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(2) J* remains constant under inverse self-tangency peressaika triple point perestroikas,
but increases by a constant number ander a positive crossing of a direct self-tangency
perestroika.

(3) J~ remains constant under direct self-tangency perestragkastriple point perestroikas,
butincreases by a constant numberander a positive crossing of the inverse self-tangency
perestroika.

The three invariants are normalized by the following caonds:

Stky) = 0. StKey) = .
JT(Kg) = O JT(Kiy1) = -2, fori=12,....
37 (Ko) = 1 I (Kip) = -3

In addition,a; =2 anda_ = —2.
The two invariantsStandJ™ give an expression for the defect of a normal curve.
Definition 2.7. Thedefectof a planar curvey, denoted(y), is given by the formula,
S(y) = 2St+JT.

In this way, the defect is also an invariant of normal curdessection 85, the idea of defect is
explored further.

3. THE SEIFERT DECOMPOSITION

A Seifert decomposition is a primary tool for the study ofrdacurves. For example, as any
planar curve is the projection of an alternating knot, ae&esurface of a knot is an orientable
surface with the knot as its boundary. Although Seifertaces will not be discussed in this paper,
the Seifert decomposition encodes useful information lier ¢alculation of certain invariants of
planar curves.

Definition 3.1. Lety be a normal curve. Given a double point dypfa Seifert splittingchanges
the direction ofy locally at d as shown in Figure 4.

—_— \/<
FIGURE 4. A Seifert splitting.

Remark.A Seifert splitting locally changes a double point from an@ersal self-intersection to

a tangential self-intersection. In other words, the crug$s eliminated by connecting each of the
incoming branches to the adjacent branch leaving the ecrgsBor visual clarity, the two branches
are typically pulled apart.
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When the Seifert splitting process is applied to every ¢ngss set of closed oriented cycles is
produced, calle@eifert cyclesSince only tangential self-intersections remain, ondecyaust lie
completely inside or outside every other cycle.

Definition 3.2. Let c and s be Seifert cycles of a plane curve. If c and s shaggi@mnior connection
(i.e,, c and s are tangent to each other and neither is containetieérother), then c is said to be
exteriorly adjacento s. If ¢ and s share an interior connection and c is contaiimes, then c is
said to beinteriorly adjacento s.

In addition, the Seifert cycles of a normal curve have a m@étarientation arising from the
prescribed orientation of the curve.

Definition 3.3. Given a Seifert cycle c of a normal curyethe index of ¢, denoted by ifd, is
defined to ber-1 (resp.—1) if ¢ is oriented counterclockwise (resp. clockwise).

4. EXPLICIT FORLUMAS FORINVARIANTS

Here, explicit expressions for normal curves are given fiar Whitney index as well as the
Arnold invariants. However, necessary definitions for teused in these expressions are presented
first.

4.1. Definitions. As described in [Shu96], any normal cunygives rise to the partition a2 into
the connected componentsRf —y, the arcs ofy between double points, and the double points
themselves. This is a stratification Bf. Denote byZ, the set of alk-dimensional strata. Then,
O-strata are calledertices 1-strata are calleddgesand 2-strata are calledgions Moreover, all
regions except thexteriorregion (which is homeomorphic to an annulus) are homeomotpla
disk.

For any stratum, we can define its index with respect to amtatenormal curve.

Definition 4.1. The index of aegiono € %, is the total rotation number of the radius-vector
connecting a point x in the interior @fto a point moving along in the direction of the orientation.
The index of aredgeo € Z; is the average of the indices of two regions adjacerd.tdhe index
of avertexo € % is the average of the indices of four regions adjacerd.to

Remark.The index of an arbitrary stratumis denoted bynd,(o).
The Seifert decomposition gives an alternative way to dateuhe index of a region.

Proposition 4.2 ([Luo97]). The index of a region is equal to the sum of the indices of tiferBe
cycles which contain the region.

Seifert cylces make the calculation of region index moraitive than the already simple Shu-
makovitch method.

4.2. Whitney Index. The Seifert decomposition of a normal cunyerovides a simple formula
for the Whitney index [BBO3]:

(1) ind(y) = Z ind(c)

over all Seifert cycles of y.
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4.3. Self-Tangency Invariants. The Seifert decomposition is also instumental in the catooh
of the self-tangency invariangs".

Definition 4.3. For any cycle ¢ of a normal curweg let
t(c) = ind(c)indy(Rc).
where R is the region exteriorly adjacent to c.
An alternative calculation of thiefunction is given by the following proposition.

Proposition 4.4([Luo97]). For any plane curvey, there exists one and only one function t on the
set of Seifert cycles, such that for cycleseys

0 if ¢ is a cycle with exterior boundary
t(c) =< t(s)+1 ifcisinteriorly adjacentto s
—t(s) if cis exteriorly adjacent to.s

The following theorem gives rise to explicit expressionsJo.

Theorem 4.5([Luo97]). For a curve of n crossings and s Seifert cycles,
Jt = 1+n-s-2Yt(c),
2

3 = 1-5-25t(0),

where c is over all Seifert cycles and t is the function definderoposition 4.4.
Note that the expressions fdt andJ~ differ only by the number of double points in the curve.

4.4. Strangeness.Again as presented in [Shu96], consider an oriented noramaey with a fixed
initial point x € y, such that for all vertices € y, x # v. Enumerate all the edges pffrom 1 to
2n, wheren is the number of vertices of advancing in the direction imposed by the prescribed
orientation. Note that the label 1 is assigned to the edggasungx.

Then, consider a vertexc y. There are two edges adjacenviand directed towardsaccording
to the given orientation. This couple of edges are ordereth (i, j)) by the condition that the
tangent vectors to the edgesnd j determine the positive orientation of the plane. Then the
weightof v, denoted byw(v), is defined to begn(i — j). This structure gives rise to the following
expression for Strangeness.

Theorem 4.6([Shu96]) Letybe a normal curve with a fixed initial point x. Then,

1
Sty)= $ w(o)indy(o) +8— =,
06%0 4
whered is the index of the edge containing x.
Remark.The strangeness of a normal cugs always an integer.

Here, we will point out that combining this expression 8iwith that of J* presented in §4.3
do not give rise to an expression for defect that is espgcsathple. Alternative expressions for
defect are given in 85 and §6.
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5. TREE-LIKE CURVES

A normal curve idree-likeif the removal of any double point is the union of two branchs
no common points. More formally,

Definition 5.1 ([Luo97]). A double point d of a normal curweis calledreducibleif the removal
of this point, ory— {d}, is the union of two disjoint branches. A normal curve iseatree-likeif
each of its crossings is reducible (See Figure 5).

@ ©

FIGURE 5. A tree-like curve (left) and a nontree-like curve (right)

Aicardi proved the following theorem concerning tree-ldeves:

Theorem 5.2([Aic94]). Arnold’s invariants of a tree-like curve with n ordinary dale points and
with Seifert cycles c are given by

St=$ t(c), Jt=-2St J =-2St—n
C

Theorem 5.2 admits the following Corollary.
Corollary 5.3 ([Aic94]). Every tree-like curve has defect zero.

Here, notice that defect can be thought of as a measure of lo®& a curve is to being tree-
like. An almosttree-like curve has defect zero, but is not tree-like adogrdo Definition 5.1.
The nontree-like curve in Figure 5 is an example of an alnrestlike curve. Notice that onk
perestroika (a defect preserving operation) would defdrisdlmost tree-like curve into one that
was tree-like. In general, it seems that any almost trezdikve could be continuously deformed
into one that was tree-like via a sequencdofperestroikas or defect preserving combinations of
J™ andSt

6. GAUSS DIAGRAMS

Gauss diagrams provide a way to classify normal curves simarg/ planar curves share a com-
mon Gauss diagram. Similarly, however, there are more Gdiagsams than there are curves. A
chord diagram is a generalized form of a Gauss diagram.

Definition 6.1 (JAic94],[Pol98]). A chord diagramis a finite set of chords of the standard circle
having distinct endpoints. Basedchord diagram includes a base point and an orientation on the
circle.

Definition 6.2 ([Pol98]). TheGauss diagram of a curve the standard circle with the preimages
of each double point connected with a chord.



20 Biermann and Dent

TheGauss diagranof a normal curvey with n double points is formed in the following manner.
Let x be an arbitrary point oy distinct from the double points of Given an orientation o,
traversey in the direction of the chosen orientation, startingcaEnumerate each instance of a
double point ofy with the integers in sequence, from 1 to, 2n the order in which each crossing
occurs. Next, order the integers. 1 ,2n around the edge of a standard circle. Fomgflairs of
numbers that are identified with a single double poiny,ofonnect each pair with a chord (See

Figure 6).
6
I .v 2
5 3
‘ 3 ‘
4

FIGURE 6. A planar curve and the corresponding Gauss diagram.

Definition 6.3 (JAic94]). A Gauss diagram is calleglanarif the chords do not intersect.
This property of Gauss diagrams was shown by Aicardi to bsetyorelated to tree-like curves.

Theorem 6.4([Aic94]). The Gauss diagram of a normal curve is planar if and only if¢heve is
tree-like.

It is sometimes convenient to consideEsedGauss diagrams which assign to each of the chords
of the Gauss diagram either a positive or negative sign. rGaveorientation oy and a base point
x distinct from the double points of follow the convention described in 84.4. As each chord
represents a double poidof y, each chord is labeled with-al, denoted byign(c), according to
whetherw(d) = +1.

Remark.Notice that the signs prescribed to the chords depend umoaortbntation ofy and the
choice ofx. If the orientation is reversed, the signs of the chords ghhnge. Similarly, ifx is
moved through a double point, the sign of that chord changes.

As introduced in [Pol98], aepresentationp: A — G of a chord diagram\ in a Gauss diagram
G, is an embedding oA to G mapping the circle oA to the circle ofG (preserving orientation),
each of the chords & to a chord ofG and a basepoint to a basepoint. For such a representation
@: A— Gdefine

sign(@) = [] sign(@(c))™
by taking the product over all chora@f A of signs of the chordg(c) in G with the multiplicity
m(c) of c. Denote by(A, G) the sum

(AG) = > signg)
@.A—G
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over all representationg: A — G.
Consider the chord diagraBy, which is shown in Figure 7.

FIGURE 7. The chord diagrarB,

This chord diagram is instrumental in calculating the defé@ curve via its Gauss diagram.

Theorem 6.5([Pol98]). Lety be a normal curve with Gauss diagrany.G he defect of is given
by,
d(y) = —2(B4, Gy).

Compared to the expression for defect given in 84, the methodlculating defect in Theorem
6.5 is less computationally intensive. Also, note from #pression that defect depends only on
how signed chords cross in a Gauss diagram.

7. SUMMATIONS

This section presents two forms of summations: ordinaryeoted sums and interjected sums.
In [Arn94], Arnold showed that defect is additive under tidinary connected sum. We will show
that defect is additive under the interjected sum.

7.1. Ordinary Connected Sums. Arnold introduced both an ordinary and a strange connected
sum in [Arn94]. However, for the purposes of this paper, amnginary connected sums need be
considered.

Definition 7.1 (JArn94]). Let$1 and, be two immersions of a circle into the right and left half-
planesH, andH, respectively. Théordinary) connected suf ¢1 and ¢ is the new immersion
shown in Figure 8.

(- &L

FIGURE 8. The ordinary connected sum of the trefoil dtd

Based on Arnold’s work, the relationship between ordinamrected sums and defect is clear.
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Proposition 7.2([Arn94]). Given normal curvey, andys, the invariants StJ* are additive under
the ordinary connected sum pf andys:

St(y1+Y2) = St(y1) + St(y2),

(1 t+y2) = 35 (v2) + 35 (v2).
Corollary 7.3. Defect is additive under the ordinary connected sum.

Proof. The Corollary follows from Theorem 7.2. U

7.2. Interjected Sums. Unlike the ordinary connected sum defined by Arnold, in theeoaf the
interjected sum the immersiopg and¢, do not reside in the right and left halfplanes. Ratlper,
is immersed into a bounded regiondof.

Definition 7.4. Let ¢1 and ¢, be two immersions of a circle such that forc 2, of ¢4, ¢» € ©.
Theinterjected sunof ¢, into ¢4 is the new immersion shown in Figure 9.

FIGURE 9. The interjected sum of the trefoil into a nonstandard radcuarve.

Similar to the ordinary connected sum, defect is also addithder the interjected sum.
Theorem 7.5. Defect is additive under the interjected sum.

Proof. Letn andv be normal curves, and Ilgtbe the interjected sum ofinto n. Further, letGy,
Gy, andG, be the Gauss diagrams of these respective curvesa betthe arc oh) where the
bridge fromv is connected, and let be the section of the perimeter@f, which corresponds ta
inn. ThenGy is formed by inserting the chords &, into &’

Since the defect of a curve depends only on the crossingeahtbrds of the Gauss diagram of
the curve and sinc&, contains exactly the crossings®f; andG,, thend(y) = &(n) + (V).

Note that it might be necessary to reverse the orientatianba&ffore performing the interjected
sum. However, since reversing the orientatiorvathanges the sign of every chord @&, the
defect ofv remains unchanged. O
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FIGURE 10. The effect of interjected sum on Gauss diagrams.

8. GAUSSWORDS

An unsigned Gauss word is a word in some finite alphdlagtay,...,ax} where each letter
occurs exactly twice. A signed Gauss word is an unsigned €3aiasd where each letter is given a
superscript+1 or —1, such that the two occurrencesapfare given indices of opposite sign.

We can describe the construction of a Gauss word as followgenG normal curve, label
the intersection points with the lettess, ..., ax. Letx be an arbitrary point oy. Choosing an
orientation fory, traversey beginning ai.

Remark.Recall that a crossing is positive (resp. negative) if whideersing through the double
point the arc that one crosses is oriented left to right (regght to left). Alternatively, the first
occurence o is assigned the superscripta; ), while the second occurence is defaulted to the
index of opposite sign.

At each crossingy, record the symbai‘,-+1 if the crossing is of positive nature; else record the

symbolai’l. The list that is constructed in this manner is called®@siss wordf y. In practice,
the positive indices are omitted.
Letw be a signed Gauss word. Note tiaatan be written in the form

Lo . 2k

_aliql2alk In

W_ailaiz a12k - rllaln
Nn=

wherej, = +1. Define a functiorp: w — w by the mapping

% 2k
alr— [ &,
=
In this way,@(w) admits the unsigned equivalentvaf

Definition 8.1 (JCE93]). A signed Gauss word is callgdanarif it is the intersection sequence of
a normal closed curve. (An unsigned Gauss word is planarctit be given a signing for which it
is planar.)

Given a set of the forr®= {ay, . . ., a, aIl, ey alzl}, one can consider abstractGauss word.

Definition 8.2 (JCE93]). AnabstracGauss word is a permutation of the setS$ay, . .., &, ail, o ,agl}
(i.e., aword in the elements of S where each element occurs exacd).
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Definition 8.3. A Gauss word w is callechinimalif all possible cancellations.g. aiai‘1 or ai‘lai)
are made. If a minimal Gauss word w is the identity, then w id &&abe trivial; else, it is called
non-trivial.

Abstract Gauss words motivate the following question: giga abstract Gauss wovg when
is w planar? Although this question will not be explored in dejsitihis paper, Gauss gives a
necessary (but not sufficient) condition that will be of uges found in [CE93], Gauss showed
that for an abstract Gauss wondto be the Gauss word of a normal curve, then for every letter
a; € w, an even number of letters must occumirbetweerg; anda(l. According to the notation
in [CE93], consider an abstract wondwith lettersay, ..., ax and leti € {1,... ,k}. By cyclically
permutingw, it can be assumed thatoccurs inw beforeai‘l. Under this assumption,

(1) letS denote substring of letters between, but excludang,ndai‘l, and
(2) letaj(w) denote the sum of the indices of the element§ of

Theorem 8.4(|[CE93]). If an abstract Gauss word w with k crossings is the Gauss wbactctosed
normal planar curve, thea;(w) = 0 (mod 2), for all i€ {1,...,k}.

9. CROSSINGGRAPH

Given a planar Gauss worg, a crossing graph is a way to reconstruct the normal curve tha
w represents. The construction is as follows. Without losgesferality, cyclically permutes so
thata; is the first letter. Then, for the first occurance of each tedte. .., ax in w, associate an
arrow oriented up or down according to the sign of each lettet a downward (resp. upward)
arrow represent a positive (resp. negative) superscrignAhe arrows in a row from left to right,
preserving the order that the associated letters first app&a(See Figure 11).

FIGURE 11. The arrow placements (left) and the crossing graph trifgr
ab~lcd'balecldel. Notice that crossing begins a second partition of the
axis ofC.

Next, horizontally cross each arrow from left to right asfing occurance of each letter appears
inw. This horizontal line is called thexis In this way, each crossing has a horizontal and a vertical
component. It is often the case that for two lettaranda;, bothg; anda;* occur inw beforea;.

In this case, draw an arc (either clockwise or counterclos&pback to the arrow corresponding
to @ such that the arrow will be traversed in the appropriatectima. Note that when this occurs,
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the axis is partitioned into sections, as the crossipgvill be in a different section of the axis
thang;. According tow continue the process of either crossing arrows along the(&xi the first
occurance of a letter) or drawing an arc back to an arrow {fersecond occurance of a letter).
Throughout this process, no additional crossings other the originalk are permitted.

FIGURE 12. The crossing graph fab1c—1dbatd—1c

Remark.A natural extension of the axis of a crossing gr&ptetermines two halfplané$; and
H>. In general, a halfplane & is denoted byH.

Definition 9.1. Let C be a crossing graph of a planar Gauss word w, l&taw, and let A, ..., Ay
be partitions of the axis of C. First, any crossings.c.,ck that occur between a and b in Are
said to beintermediatecrossings with respect to a and b. Second, if
(1) a,be A, and
(2) the vertical component of a is joined to the vertical compuioé b with an arax such that
o € He,
then a and b are said to kerc-joined

In a crossing graple, aloop is formed when an arc connects the horizontal component of a
crossing directly to the vertical component of the samesings

10. JADJACENCY

The property of J-adjacency relates a possibleperestroika of a normal curve to the corre-
sponding Gauss word or Crossing graph.

Definition 10.1. Let w be a Gauss word. For some letterb & w, consider the setsS- {a,b!}
and S = {a~1,b}. Iffor S; and S the respective elements appear adjacent to each other imen, t
a and b are said to bd-adjacentAlternatively, a and b are called-adjacenif they are arc-joined
with no intermediate crossings.

Lemma 10.2. Given a non-trivial Gauss word w of a planar curyget C be a crossing graph of
w. Then, at least two crossings in C must be arc-joined.

Proof. Let w be a non-trivial Gauss word of a planar cugvand letC be a crossing graph .
Suppose thah,...,An are partitions of the axis df, labelled from left to right. Consider the
partitionA;. First, we show thaf; must contain three or more crossings.

If Aq contains only one crossing the crossing must represent a substi@agn @(w). This
contradicts the hypothesis thatis minimal. Suppose thak; contains two crossinga andb,
wherea preceed®. There are two cases:
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(1) A substring of the fornabbaoccurs in@(w), or

(2) aa(w) =1.
In the first case, two trivial loops are formed which againtcaaicts the fact thaw is minimal. In
the second case, the non-zerdunction contradicts the hypothesis thats a planar Gauss word.
Hence A1 must have three or more crossings.

Now, again considef; and suppose it has crossirggs. . . ,ax. Assume without loss of general-
ity thata, preceedssinw, for 1 <r < s<k(else relabel). Note thata; . . . ax must be a substring
of @(w). Furthermore, the horizontal componentagfmust connect to the vertical component of
aj, where(k— j)mod2 = 0, elsea,; (W) = 1. Given this restriction on, it follows thata, ..., a
present an even number of crossings. Notice that thg gwming a, to a; together with the axis
of A1 bound a regiomw € 2, of C.

Suppose, is intermediate t@; andax and without loss of generality assume that the vertical
component ofy is directed into the regioa. Then, an arc must connegtto another crossingn
that is also intermediate @ anday, else an additional double point would be necessary some-
where along to ensure the closure §f Note that the vertical component af, is directed out of
0. Since the arc connectirgg to a;, necessarily lies in the interior af € Hc, it follows thata, and
am are arc-joined. O

Proposition 10.3. Given a non-trivial Gauss word w of a planar curydet C be a crossing graph
of w. Then for some,& € w, a and b are J-adjacent in C.

Proof. Let w be a non-trivial Gauss word of a planar cugvand letC be a crossing graph .
Suppose that no two letters of are J-adjacent. Consider two letterd € w of a segmenty;,
wherea andb are arc-joined in such a way that no other pair of lettersiis arc-joined with
fewer intermediate crossings. By Lemma 10.2 this arc-pipa&ir exists inC. Sincea andb are
not J-adjacent, there must be a crossirigtermediate ta andb. Furthermore, without loss of
generality it can be assumed that the vertical componentigfdirected into the region € %,
bounded by the arc connectiagandb and the axis of\,. In order fory to be closed, the part gf
that entered via c must also exit. This necessitates a second crossig; intermediate t@ and
b such that the vertical component is directed ouboSince crossings,d € A are arc-joineda
andb cannot be arc-joined with the fewest number of intermediadssings and we have arrived
at a contradiction. O

11. THE EFFECT OF REMOVINGJ-ADJACENT DOUBLE POINTS

Just as J-adjacent double points represent posdibleerestroikas, the removal of a pair of
J-adjacent double points corresponds to the deformatiarcafve via a negativé™ perestroika.

Lemma 11.1. Given a non-trivial Gauss word w of a normal curydet C be the crossing graph
of w. Then, for a J-adjacent pair of double points a and b, reimga and b from C is equivalent
to a negative J perestroika.

Proof. Let w be a non-trivial Gauss word of a normal curyeand leta andb be a pair of J-
adjacent double points in the crossing graphbf y. Then, the elements df,b~'} and{a~1,b}
are pairwise adjacent iw anda andb are arc-joined irC. If in @(w) it happens that and b
have the structure.ab...ba..., then the arc joining andb has opposite direction from that of the
axis ofC. In this case, the arc connectiagandb can be pulled across the axis in a negafive
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perestroika. Similarly, i andb have the structure.ab...ab... in @(w), then the arc connectirg
andb shares the same direction as the axis. In this case, themtzegaulled across the axis in a
negativelt perestroika.

\

> b a !b /\
\ * >
L\ _
|

FIGURE 13. Right:...ab~1...a 'b... Left: ...ab~1...ba L.

Hence, the proof is complete. O

According to Lemma 11.1, the relationship between the rahaiJ-adjacent double points and
J* perestroikas is clear. The correllation between negdtivperestroikas and the curve itself is
also obvious.

Definition 11.2. Lety be a normal curve and let a and b be a J-adjacent pair of doubletp ofy.
Then,yis reducedo if y is the result of performing a negative perestroika ory via removing
aandb.

Remark.Note that ify is the reduction of;, theny is also a normal curve, as performingla
perestroika does not map a normal curve to one that is noerigen

A natural question that then arises is, how mdfyperestroikas can be performed on a given
normal curve?

Definition 11.3. Thereduction numbeof a normal curvey is the minimum number of negative
J* perestroikas needed to redugeéo the trivial curve, where the corresponding Gauss word is
minimized before and after each deformation.

Though there may be multiple sequences-ofperestroikas that reduce a curve to the identity,
there clearly exists a sequence with a minimum number ofrdeftions.

12. NONNEGATIVE DEFECT

The following Lemma utilizes the fact that defect is additinder connected and interjected
sums.

Lemma 12.1. Let w be the Gauss word of a normal cureeMinimizing w preserves the defect of
Y.

Proof. Letw be the Gauss word of a normal curxdn order to minimizew, obvious cancellations
of the formaa! or a~1a are made, whera € w. Iny, these types of substrings correspond to
loops. Any loop can be thought of as either the connectedterjegtted sum of the curdey with
another curvey. SinceKg has defect zero, the it follows thaty) = &(y) under the sum, since
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defect is additive in both cases (Corollary 7.3 and Theorésh 1n the same way, reversing the
sum will preserve the defect gf U

The ability to remove loops without altering defect is essgim arriving at a reduction number.
This is true because if loops could not be removed, there dvoat necessarily exist a sequence
of J* perestroikas that would reduce a given curve to the identitaddition, if removing loops
altered defect, the invaria®t would have to be considered in order to reduce curves to ithaltr
loop.

Theorem 12.2.Every normal curve has nonnegative defect.

Proof. Let y be a normal curve. Suppogéas reduction number 0. Thgrcan be reduced to a
circle simply by removing some number of loops. Siyade tree-like, by Corollary 5.3(y) = 0.
Assume that every curve with reduction numkéras nonnegative defect. Suppose tiad a
curve with reduction numbde—+ 1. By Proposition 10.3, after removing any loops frgithere is
at least one pair of double pointsipfwhich are J-adjacent. By Lemma 11rflcan be reduced to
n’ by a negativad™® perestroika, wherg’ has reduction numbérby definition. Note that removing
loops fromn preserves defect (Lemma 12.1) and negativperestroikas preserve defect (evident
from the defect formula). Thus, since a negaflveperestroika reduces defectpby 2, it follows
thatd(n) > d(n’). By assumptiond(n’) > 0. Hence by induction, the proof is complete. [

In addition, Theorem 12.2 yields an algorithm for the cadtioin of defect of a normal curwe
Given the reduction number gf record the number af perestroikasp, that occur. The defect
of yis then given byd(y) = 2p. However, though this calculation is straight forward edetining
the reduction number of a curve becomes more difficult as tneter of double points increases.
Given a Gauss word of such a curve, there may be several ifiitiperestroikas that could be per-
formed. However, removing different pairs of double poigitges rise to different loops that may
be cancelled and differedt perestroikas that may be performed following the reducti®imce
each reduction often depends on the previous reductios itériative process becomes increas-
ingly complex with each additional double point, and hene&mining the reduction number
may prove to be quite tedious.

13. CONCLUSION

In this paper, we have shown that defect is never negativadomal curves. To do this we
built upon the idea of a connected sum, introducing the je¢ézd sum. By showing that under
both operations defect is additive, we were able to remowpddrom curves without changing
defect. Then, via Crossing graphs and the structure of gporeling Gauss words, we were able
to show that along with removing loop¥: perestroikas could be sequentially performed in order
to reduce a normal curve to the trivial loop. This allowedaptove the main result that defect is
nonnnegative.

Through this study, two ideas for future investigation baecevident. One persuit is the clas-
sification of almost tree-like curves, or more generallyyves with defect 8. Based on Polyak’s
formula for the defect of curves (derived from their repreéaive Gauss diagrams), curves can be
classified according to how many crossings occur betweerdstad the same sign and chords of
opposite sign in the Gauss diagram.
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A second investigation stems from the work of Cairns andrEJ©@E93]. Along with thea-
funtion that was defined in 88, in [CE93] an additiofiduntion was defined. Work could be done
relating thisp-function to Gauss diagrams (recall that there are more $diagrams than there
are curves). The hope would be to define a complete set ofiariteat would determine whether
a Gauss diagram actually corresponds to a curve.
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