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Abstract. Whitney’s Theorem provides a natural classification of regular closed curves
in the plane. There is an intuitive analog of this theorem for regular closed curves on the
torus T 2, which states that homotopy class and rotation index are sufficient to classify these
curves. We present a proof of this fact, as well as a number of attempts to construct the
homotopy between curves in the same class.

1. Introduction

One of the most common themes in all of mathematics is the desire to classify objects into
groups of like entities. We classify group elements according to their orbits under actions
on the group, orientable 2-surfaces according to their genus, loops in topological spaces
according to the elements of the fundamental group. In this paper we seek to find methods
of classifying regular closed curves.

Definition 1. Let C : S1 → M denote an immersion of the circle S1 into the manifold M .
We call such an immersion a regular closed curve in M .

By the definition of an immersion, this means that the tangent vector of C is always
defined and non-zero.

Definition 2. Let C0 and C1 be curves in a manifold M . C0 and C1 are said to be regularly
deformable to one another if there exists a function H(s, t) mapping [0, 1]× [0, 1] into M

such that H(0, t) = C0, H(1, t) = C1, and Ht(s, t) is defined and nonzero for all s, t. (Here
Ht denotes the derivative with respect to t.) We also require that H(s, t) be continuous for
all s, t. We call such a function a regular deformation.

Recall that Whitney’s classical theorem classifies regular closed curves in the plane. It
depends on a number associated with the curve which, it is easy to check, is invariant under
regular deformations; this number is called the rotation index.

Definition 3. Let C(t) be a parametrized regular closed curve in R
2. The rotation index

γ(C) of this curve is defined to be either the total angle through which the tangent vector
C ′(t) passes as t traverses the interval [0, 1], or this total angle divided by 2π. It can be

calculated by finding the degree of the map t → C′(t)
|C′(t)|

(multiplied by 2π or not as desired).
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Since either definition of the rotation index is acceptable for our methods, we will use the
latter, which results in an integer rotation index.

Now that we have the above definitions, we can present a theorem that classifies regular
closed curves according to their rotation indices, as originally presented by Whitney in [Wh].

Theorem 4 (Whitney). Let C0 and C1 be regular closed curves in R
2. Then C0 is regularly

deformable to C1 if and only if γ(C0) = γ(C1).

Whitney’s theorem also implies that the path components of the space of regular closed
curves are enumerated by the rotation indices of the curves in each component.

In the torus, we cannot calculate the rotation index quite as easily as we can in the plane.
While we could devise a method of calculation intrinsic to the torus by using the natural
frame field on T 2, it is equally easy to take advantage of covering spaces and perform the
calculations in the plane itself.

The basic properties of lifts and covering spaces are discussed in most introductory alge-
braic topology texts; see for instance [Ma]. Here we introduce only the following notation
and recall a few relevant facts.

Definition 5. Let C(t) be a regular closed curve in the torus T 2. We denote the (unique)

lift of this curve to the R
2 beginning at the origin by Ĉ(t).

Three properties about lifts of regular closed curves are worth noting. First, the lift Ĉ

of a curve C in T 2 has endpoint (p, q), where (p, q) denotes the homotopy class of C. This
is a product of the construction of the covering space which I have implicitly assumed;
we could as easily define the covering map from R

2 to T 2 so that the endpoint would be
(2πp, 2πq), counting radians of rotation rather than integer numbers of rotations. Second,

the lift has the property that Ĉ ′(0) = Ĉ ′(1), because of the regularity condition on C and the
process of creating the lift. Finally, the rotation index of C can be calculated from the lift
by direct integration, just as in the original definition of rotation indices for closed curves.
Note, however, that the double point formula presented by Whitney in [Wh] will not work
calculating the index of a lift, as is shown by Fig. 1.

Note that the two curves in the above diagram have the same rotation index, but certainly
do not have the same number of double points. The problem here seems to be that the
curves in question are not closed in R

2; considering the following diagram of the two curves
projected back onto the torus, it is clear that when they are closed they do in fact have the
same number of double points.

Although Whitney’s double point formula fails, Burman and Polyak have in [BP] devised
a method of calculating the rotation index from the number of double points in some cases.
The mathematics involved is related to homology and somewhat beyond the scope of this
paper, but it is worth noting that there is in fact a local method for calculating the rotation
index of curves on the torus.

Now we have the necessary equipment to proceed with the main thrust of the paper.

2. Prior Work: Curves on the Sphere

For comparison, we briefly recall a few basic properties of regular curves on the sphere
S2. In prior research for the Oregon State REU, Biringer and Barker discovered (see [BB])
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Figure 1. Two curves with the same rotation index but different numbers of
double points

Figure 2. The curves from Fig. 1 projected onto T 2.

that classification of regular curves in S2 is remarkably simple, and in fact that the space of
regular curves on the sphere only contains two equivalence classes.

Lemma 6. Every spherical curve is (regularly) homotopic to either the circle or the figure
eight.

This is primarily a product of the topology of S2. The sphere is the one-point compactifi-
cation of R2, which implies that it is closed, compact, and simply connected (i.e. has trivial
fundamental group). As a result, we can, in essence, “pull” loops of curves over the north
pole of the sphere, which corresponds to allowing homotopies in R

2 to pass through the point
at infinity.
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Biringer and Barker construct a planar representative of each curve on the sphere by
placing the curve on the sphere so that it does not pass through the north pole; then the
curve can be placed on the plane as it is guaranteed not to pass through infinity. From
these representatives they calculate rotation indices for the spherical curves in the manner
described in the introduction.

They demonstrate that each time a loop is pulled over the point at infinity, the index of
the planar representative decreases by 2. This means that by successive pulls, every curve
eventually has index either 0 or 1, which correspond to the figure eight and the circle.

The sphere, however, is an excessively simple case because of its trivial topology and
its compactness. We would prefer to consider surfaces with somewhat more interesting
topological properties.

3. Main Theorem: Curves on the Torus

Unlike the plane and the sphere, the torus has nontrivial first homology (fundamental)
group, namely the free abelian group on two elements. It is this characteristic that makes
the study of curves on the torus more intriguing than the study of curves on the plane.

In surfaces with nontrivial fundamental group, we can begin to see the effect of topology on
this problem. Topologically speaking, we classify curves according to their homotopy classes;
geometrically speaking, Whitney’s theorem shows us that we may classify them according to
an associated geometric invariant. To classify curves on surfaces with nontrivial fundamental
group – i.e. on surfaces where the rotation index is not sufficient – we must take advantage
of both topological and geometric methods, which leads us to the following result.

Theorem 7 (Whitney Analog). Let C1 and C2 be regular closed curves in T 2. Then C1 is
regularly homotopic to C2 if and only if they are in the same homotopy class and their lifts
Ĉ1 and Ĉ2 have the same rotation index γ.

First we define a term which we will use in the proof of this result.

Definition 8. The tangent k-frame bundle of a manifold M of dimension k is the
collection of orthonormal frames on M , i.e., the collection of possible orthonormal collections
of k vectors of the tangent space to M at each point p ∈ M . We denote this collection by
Tk(M). This is also referred to as a type of bundle.

To prove Theorem 7, we will need the following theorem, which is due to Morris Hirsch
and noted in [Hi].

Lemma 9 (Hirsch). Given a manifold N and a positive integer k such that k < dim N ,
the regular homotopy classes of immersions Sk → N are in one-to-one correspondence with
the elements of πk(Tk(N)), where Tk is the tangent k-frame bundle of N and πk is the k-th
homotopy group.

This exciting lemma speaks directly to the subject at hand, and gives rise naturally to the
following proof.

Proof. (Whitney Analog) Set k = 1 and N = T 2 in Lemma 9 above. Then we know that
there is a one-to-one correspondence between the regular homotopy classes of the regular
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closed curves in the torus and the elements of the fundamental group of the bundle T1(T
2),

which has two-dimensional fibre R
2 − (0, 0) (as we shall show).

First we calculate π1(T1(T
2)).

T1(T2) is the bundle of nonzero vectors on T 2, which can be viewed as the plane R
2 with

the origin removed. By means of a function that projects every point along a radial ray
to the point where the ray intersects the unit circle, this is equivalent to the circle S1. So
at any given point of T 2, the set of nonzero vectors is topologically simply S1, and we
must consider this set for each of the S1 × S1 points of the torus. Thus it follows that
T1(T

2) = S1 × S1 × S1. The underlying reason that we can simply form the direct product
here is that T 2 is parallelizable – that is, there is a single frame (namely ( ∂

∂θ
, ∂
∂φ
)) that is

valid for all points of T 2.
Then since T1(T

2) = S1 × S1 × S1, we conclude that π1(T1(T
2)) = Z× Z× Z

Intuitively, we can interpret π1(T1(T
2)) = Z×Z×Z by understanding the first two terms

Z to correspond to the torus and its homotopy classes, and the last term Z to correspond
to the rotation index of a curve, since it effectively measures the rotations of the tangent
vector.

So by Lemma 9, there is a one-to-one map that takes a curve C → [(C,C ′)] ∈ S1×S1×S1 =
T 2 × S1, which from our intuitive interpretation of π1(T1(T

2)) means that two curves are
mapped to the same element of the fundamental group precisely when they have the same
homotopy class in T 2 and the same rotation index γ as measured by the degree of C ′ in
S1. �

Although the preceding proof was a remarkable breakthrough for us, it is nevertheless
a nonconstructive proof. We had initially hoped for a constructive proof that produced a
homotopy between two given curves, in the spirit of Whitney’s original proof.

4. Alternate Methods

Intially we had hoped to find a constructive proof of Theorem 7 similar to Whitney’s
constructive proof of his original theorem. We made a number of attempts, each of which
fell short of a complete proof.

4.1. Attempt to Apply Whitney’s Theorem. Originally we had hoped to convert the
lifts, which are in general not closed, into closed curves so that Whitney’s theorem would be
applicable. Therefore we introduce the following lemma.

Lemma 10. It is always possible to construct a closed curve, call it C̄, from a lift Ĉ by
pasting a smooth curve onto both endpoints of Ĉ in such a way that the new curve C̄ is
regular and has the same number of double points as Ĉ.

As a result of the pasting, γ(C̄) = γ(Ĉ) + 1, a result which is fairly obvious if one draws
a few examples.

We also need the following definition for much of the rest of the paper.

Definition 11. Let C0 and C1 be curves in a space M . A function F : [0, 1]× [0, 1] → M is
said to be a path homotopy between C0 and C1 if it satisfies the following conditions:

(1) F (0, t) = C0(t)
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(2) F (1, t) = C1(t)
(3) F (s, t) is continuous ∀s, t ∈ [0, 1]
(4) F (s, 0) = C0(0) = C1(0)
(5) F (s, 1) = C0(1) = C1(1)

Additionally, such a function is said to be a regular path homotopy if it also fulfills the
condition that Ft(s, t) 6= 0 for any s, t ∈ [0, 1], where Ft denotes the first derivative with
respect to t.

This gave rise to the following first form of Theorem 7.

Conjecture 12. Let C0 and C1 be curves in T 2, Ĉ0 and Ĉ1 be their lifts, and C̄0 and C̄1 be
the closed curves constructed from them. Then the following three statements are equivalent.

(1) C0 is regularly homotopic to C1 in T 2.

(2) Ĉ1 is regularly path homotopic to Ĉ2 in R
2.

(3) γ(C̄1) = γ(C̄2) and Ĉ1 and Ĉ2 share the same endpoint.

Note that C0 is only regularly homotopic to C1 if they share the same homotopy class,
and that the specification that the homotopy in statement (2) is a path homotopy ensures

that the endpoints of Ĉ0 and Ĉ1 are equivalent and fixed by the homotopy. We need not
explicitly state as a hypothesis of the conjecture that C0 and C1 share the same homotopy
class; if they do not, none of the statements can be true, and thus it is moot whether they
are equivalent to each other or not.

Below I present the proof attempt in four sections, adding comments after each section.
This attempted proof should not be construed as completely valid; I present it in its original
form for instructive purposes, with the accompanying commentary illustrating the flaws in
the arguments as motivation for later parts of the paper. All apparent assumptions and
generalizations should be taken with a grain of salt.

Proof. (1 ⇒ 2) Let the regular homotopy between C0 and C1 be denoted by F . We can also
lift homotopies to the covering space and have them remain homotopies between the lifts
of their endpoints (since F (s, t) is a path between F (0, t) and F (1, t) for each fixed t). Let

the lift of F be denoted F̂ . So at the least we know that a regular homotopy between C0

and C0 implies a homotopy between Ĉ0 and Ĉ1. We must then argue that this homotopy is
regular. �

The regularity argument essentially amounts to the fact that R2 and T 2 are locally diffeo-
morphic (i.e., that the torus is locally Euclidean).

Proof. (2 ⇒ 1) Let the regular path homotopy between Ĉ0 and Ĉ1 be denoted by F̂ :

[0, 1] × [0, 1] → R
2. Since the projection map p : R2 → T 2 is a local diffeomorphism, p(F̂ )

is a continuous deformation between C0 and C1 in T 2 since p(F̂ (s, 0)) = p(Ĉ0) = C0 and

p(F̂ (s, 1)) = p(Ĉ1) = C1. (We know from topology that if f is a map and f̂ its lift, then

p(f̂) = f .) So we again know that a regular path homotopy between Ĉ0 and Ĉ1 implies a
regular homotopy between C0 and C1. �
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At first glance it appears that although we know the beginning and end of the projected
homotopy p(F̂ ) are closed curves, the intermediate curves might not be. However, by spec-

ifying F̂ as a path homotopy, we ensure that the endpoints of F̂ (s, t) remain fixed at the

endpoints of Ĉ0 and Ĉ1, and therefore any intermediate curve p(F̂ (s, t)) will also be closed.
The same comments about regularity discussed after (1 ⇒ 2) also apply here, and this

section too is essentially sound.

Proof. (2 ⇒ 3) Let F̂ : [0, 1] × [0, 1] → R
2 be a regular path homotopy between Ĉ0 and

Ĉ1 and let Ĝ be a regular homotopy between their extensions, so that together F̂ and Ĝ

are a regular homotopy between C̄0 and C̄1. We know that Ĝ exists by construction of the
extension as a smooth curve with no self-intersections – in short, a path in R

2. Since R
2 is

simply connected, we can construct a homotopy between any two paths in the plane, and
the additional smoothness specification on the extensions makes it possible to make this
homotopy regular.

If Ĉ0 and Ĉ1 are regularly path homotopic, then by the definition of a path homotopy,
they share the same endpoint. Furthermore, since F̂ is a homotopy, it is continuous; and
since γ(F̂ (s, t) ⋆ Ĝ(s, t)) is also continuous, γ(F̂ (s, t) ⋆ Ĝ(s, t)) (where ⋆ denotes pasting of
paths) is continuous for all t ∈ [0, 1]. Since the rotation index is always an integer, and
the only continuous functions with integer output are constants, the rotation index must be
constant, and thus C̄0 and C̄1 have the same rotation index. �

This section has the problem that while F̂ and Ĝ may be regular in themselves, there is no
guarantee that together they will form a regular homotopy. The trouble, of course, is at the
endpoints of the curves C0 and C1. Regularity of F̂ (s, t) and of Ĝ(s, t) does not guarantee
that together they will deform the curves at the endpoint in such a way that the tangent
vector will remain the same for both curves at the endpoint. The remaining portion of the
argument concerning the constancy of the rotation index, however, remains valid; we merely
lack an appropriate homotopy on which to invoke this argument.

Proof. (3 ⇒ 2) Since C̄0 and C̄1 are closed curves with the same rotation index, we know they
can be deformed into one another by the result of [Wh]. Furthermore, since the extensions

of Ĉ0 and Ĉ1 used to make C̄0 and C̄1 have no double points, we can scale the deformation
so that all deformations involving loops and double points take place on one side of the
endpoint of Ĉ0. Thus we can then scale the deformation taking place near the endpoint such
that the endpoint stays fixed as well. Then if we restrict the deformation to that of the
original curve Ĉ0, the deformation turns out to be a path homotopy between Ĉ0 and Ĉ1. �

While this argument may appear good from an intuitive standpoint, many of its claims
turn out to be largely unfounded when a critical eye is turned to them. Primarily, there
is nothing to suggest that the deformation in [Wh] can be modified according to the above
ideas. If we simply apply Whitney’s deformation to C̄0 and C̄1, we must consider that it
may move the endpoints of the intermediate curves of the deformation restricted to Ĉ0, so
that these intermediate curves are no longer closed. This certainly would not create a path
homotopy between Ĉ0 and Ĉ1.
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Since the difficulty with the above proof was that it made too many broad assumptions
that, when subjected to careful scrutiny, were revealed as invalid, the next logical step was
to attempt a direct computation, in the style of Whitney.

Note, however, that since the portions of the proof that (1 ⇒ 2) and (2 ⇒ 1) were valid,
we shall henceforth deal only with the regular homotopies of the lifts in the plane, since
we know that once we have these we can project them to the torus and maintain them as
regular homotopies.

4.2. Direct Computation. Next we attempt to directly mimic Whitney’s proof, construct-
ing a homotopy between two lifts without modifying them at all. We take as an assumption
that a regular homotopy in R

2 remains a regular homotopy when projected back into T 2.
Consider the following:

Proof. Suppose we have two lifts Ĉ0(t) and Ĉ1(t), which are maps from the interval I into R
2.

Because they are lifts of regular curves in T 2, these lifts have the following characteristics:

(1) Ĉ0(0) = Ĉ1(0) = (0, 0)

(2) Ĉ0(1) = Ĉ1(1) = (p, q)

(3) Ĉ ′
0(0) = Ĉ ′

0(1)

(4) Ĉ ′
1(0) = Ĉ ′

1(1)

(5) γ(Ĉ0) = γ(Ĉ1) = γ ∈ Z.

We want to construct a function F (s, t) : I × I → R
2 which is a regular path homotopy

between Ĉ0 and Ĉ1, as given in Definition 11.
We followWhitney’s argument in our attempt to construct such an F . First we reparametrize

the curves Ĉ0(t) and Ĉ1(t) so that |Ĉ ′
0(t)| = |Ĉ ′

1(t)| = L, where L is some positive constant.
Then we can express the tangent vectors as

Ĉ ′
0(t) = Leiθ0(t)

Ĉ ′
1(t) = Leiθ1(t)

for appropriate functions θ0 and θ1 with the properties that θ0(0) = θ1(0) = 0 and θ0(1) =
θ1(1) = 2πγ. These functions eiθ(t) are simply complex or polar-coordinate representations
of the tangent vector in R

2. Note that we can define θ0(0) = 0 because we can always deform
the curve so that the initial tangent vector points along the x-axis, and then by regularity
the tangent vector at the endpoint must be an integer multiple of 2π – in this case γ, as
illustrated in Fig. 3.

Then, just as Whitney does, we create a linear homotopy θs between these two angle
functions, of the form θs(t) = (1 − s)θ0(t) + sθ1(t). This homotopy also has the properties
that θs(0) = 0 and θs(1) = 2πγ.

Then define a new function

F̂t(s, t) = Leiθs(t) − L

∫ 1

0

eiθs(u)du,



Regular Homotopy Classes of Curves on the Torus 9

Figure 3. Deformation of a curve to one with a horizontal initial tangent vector

where again F̂t denotes a derivative with respect to t. Note that at s = 0, 1 we have

F̂t(0, t) = Leiθ0(t) − L

∫ 1

0

eiθ0(u)du

= Leiθ0(t) − (p, q)

and

F̂t(1, t) = Leiθ1(t) − (p, q),

which is equivalent to saying that

F̂t(0, t) = Ĉ ′
0(t)− (p, q)

and

F̂t(1, t) = Ĉ ′
1(t)− (p, q)

by the definition of Ĉ0 and Ĉ1. Finally, it is also easy to check that

∫ 1

0

F̂t(s, t)dt = 0.

Then we note, still following Whitney’s methods, that

Ft(s, t) = F̂t(s, t) + (p, q)
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(where F is the function we orignally intended to construct) and also, therefore, that

F (s, t) = F (s, 0) +

∫ t

0

Fu(s, u)du

=

∫ t

0

F̂u(s, u)du+ t(p, q).

It is easy to check that F (0, t) = Ĉ0(t) and F (1, t) = Ĉ1(t) and that F (s, 1) = (p, q) and

F (s, 0) = (0, 0). We can also see that since Ft(s, t) = F̂t(s, t) + (p, q), Ft(s, 1) − Ft(s, 0) =

F̂t(s, 1)− F̂t(s, 0) = 0, so that F satisfies most of the conditions we specified for it earlier.
We need now only check for its regularity, and it is here that the adaptation of Whitney’s

proof breaks down.
Since we know that Ft(s, t) = F̂ ′

s(t)+(p, q), proving that the homotopy is regular amounts

to proving that F̂ ′
s(t) + (p, q) 6= 0. This is equivalent to showing that

Leiθs(t) − L

∫ 1

0

eiθs(u)du+ (p, q) 6= (0, 0).(1)

Note that the first term is always a point on the circle of radius L centered at the origin

because it is the tangent vector at a given point (s, t). Similarly,
∫ 1

0
eiθs(u)du is the aver-

age value of all these tangent vectors, and therefore lies inside the circle of radius 1; thus
L
∫ 1

0
eiθs(u)du lies inside the circle of radius L.

Here Whitney takes advantage of these facts and notes that the two vectors can never sum
to (0, 0) because of the difference in magnitudes. However, since the curves we are dealing
with are not closed, we must also consider the addition of (p, q), which renders Whitney’s
argument invalid here.

By definition, L is the arclength of the lift, and since arclength is at a minimum when
the lift of the curve is a straight line between (0, 0) and (p, q), we know that L2 ≥ p2 + q2

and that (p, q) is therefore also somewhere inside or on the boundary of the circle. This is
the point that causes the proof to break down; the first point will, as we traverse the curve,
traverse the entire circle, and there are inevitably configurations of the three points which
we cannot guarantee to have a nonzero sum, but which we cannot conclusively show to sum
to zero, either. �

Consider Fig. 4 as an example of such a configuration.
Here (a, b) corresponds to the first term of the sum (1), (c, d) to the second term. In order

to assure regularity of the homotopy in all possible cases, we must be able to show that the
following configuration never sums to the zero vector; that is, that

a− c+ p 6= 0

b− d+ q 6= 0 ⇔ b+ |d| − |q| 6= 0

It is evident that we cannot guarantee this for all values of (a, b), (c, d), and (p, q). We cannot,
however, conclusively guarantee that one of the above statements will fail either. Still, the
potential for nonregularity is enough for us to at least partially discard this argument.
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Figure 4. A configuration of points which cannot be guaranteed to be regular

4.3. Representative Elements.

Definition 13. If C is a curve in T 2 with homotopy class (p, q), let a representative element
of this homotopy class be denoted h(p,q).

Since many of the problems with earlier proofs stemmed from the lift not being a closed
curve, we made another attempt to turn the lift into a closed curve so that we could apply
Whitney’s original theorem. This time, we had the idea of pasting a representative element
of h(p,q) of the curve C’s homotopy class onto the curve, with an opposite orientation. This
results in a new curve, either h(p,q) ⋆ C or C ⋆ h(p,q) (where ⋆ denotes the standard “mul-
tiplication” of paths by pasting one onto the other). We know that we can make small
deformations in the area of the base point of C such that when we paste the representative
element onto C the new curve remains regular at the point of pasting.

This new curve is in the (0, 0) homotopy class, so when it is lifted to the plane, it is a
closed curve. If we lift two such curves, we can then apply Whitney’s theorem to them.
However, this multiplication by a representative element is in essence a formalized way of
constructing the “extensions” of section 4.1, and is subject to many of the same difficulties.

If we are attempting to create a regular homotopy between two curves, we first know that
we can, through a series of rotations on the torus and minor deformations in the area of the
base point, place both curves on the torus so that their starting points and initial tangent
vectors are the same. Then we paste representative elements to each curve.

The idea here is to lift these new curves into the plane and then apply Whitney’s deforma-
tion to them. Since they are in the (0, 0) homotopy class already, we need not be concerned
with endpoints moving and resulting in non-closed curves when projected back into the torus.
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Then once they are projected back onto the torus we can paste another element of the (p, q)
homotopy class onto them, this time with the appropriate orientation to cancel the previous
pasting and restore the curve itself to the (p, q) homotopy class.

The problem with this method lies in the fact that Ĉ0 ⋆ h(p,q) ⋆ h
−1
(p,q) and Ĉ1 ⋆ h(p,q) ⋆ h

−1
(p,q)

must be deformed back to Ĉ0 and Ĉ1, and it is not clear how this affects the intermediate
curves.

5. Conclusion

We would still like to come up with a constructive proof for Theorem 7 that mimics
Whitney’s. At the very least, we would like to investigate the deeper reasons why the proofs
we have attempted have all failed. It appears that Whitney was extremely lucky with the
qualities of closed curves that helped him to prove his theorem in the first place, and it is
not as easy to come up with similar fortunate qualities for closed curves on other surfaces.

One possible method to pursue is using a nonlinear homotopy in the direct computation,
rather than the linear addition of t(p, q) we used. We have not investigated this approach
yet to any degree.

The most obvious next step is to extend this theorem to two-manifolds other than the
torus. Although the torus is more interesting than the plane and the sphere because it has
a nontrivial fundamental group, it does have the simplifying property that its fundamental
group is abelian. It is thus expected that classification of regular closed curves for other
two-surfaces may not follow the same lines of proof as we have outlined above. However, we
present the following conjecture.

Conjecture 14. Let M be a smooth compact 2-manifold, and let C0 and C1 be regular closed
curves in M . Then C0 is regularly homotopic to C1 if and only if their rotation indices are
the same and they share the same homotopy class.

Clearly for the purposes of this conjecture we would also need to construct a notion of the
rotation index that is valid for all 2-manifolds. Since all two-manifolds can be represented
with an identification diagram, perhaps one could devise some method of calculating rotation
index from curves on the identification diagram. For instance, in this context it might be
reasonable to use Whitney’s double-point formula; since the lack of closure of the curve
seems to be what caused it to break down, and since the curves on an identification diagram
would remain closed, the formula might once again apply. Alternately one might find a way
to modify the formula in Section 2 of [BP] to be applicable to surfaces other than the torus.

Since a proof of Conjecture 14 was the original intent of this project, it might be advanta-
geous to consider any future work in finding a constructive proof of Theorem 7 with an eye
to being able to generalize the result later to other surfaces.

Also, it seems likely that Conjecture 14 is a consequence of Hirsch’s Theorem (Lemma 9
above) with appropriate definitions and interpretation, so that is another avenue of approach
should direct construction remain unsuccessful.
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