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Abstract

Just as the connected sum is used to combine plane curves, it can
be used to de�ne decompositions of composite plane curves. We do just
that, applying this idea to equivalent compositions of the A-structures of
tree-like curves as well. Following this trail yields a proof of uniqueness
of prime decomposition for tree-like curves, as well as some interesting re-
sults on spherical tree-like curves (with corresponding S-structures). We
then examine the restrictions on index through the connected sum and
conclude with a discussion of well-de�ned connected sums, including re-
lated symmetry conditions.

0 Introduction

The theory of plane curves dates back at least to Gauss, as far back as the
beginnings of its cousin, knot theory. Recent fundamental work by Arnold [4, 5]
attracted new attention to this �eld, introducing tools for analysis via the local
invariants J� and St. However, the question of full classi�cation up to ambient
di�eomorphisms of the plane and the curve remains open.

The �rst modern treatment of plane curves was given by Whitney in [7], who
examined the question of classi�cation up to isotopy (i.e. deformations of the
curve without vanishing tangent vector on intermediate curves). This problem
was completely solved by his introduction of the index of a curve, the rotation
number of the tangent vector. He introduced local as well as integral formulas
for this value.

More recent progress has been made by Aicardi [3], who presented a full
classi�cation of curves with the property that every double point divides it into
two disjoint loops (tree-like curves). This was achieved by way of A-structures,
combinatorial structures associated with tree-like curves that prove useful in

�This project completed as part of a NSF-funded REU program at Oregon State University.
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Figure 1: The connected sum of two curves

many applications. Similar structures (S-structures) were introduced for im-
mersions of the circle into the sphere. Much of this was rooted in a treatment
of plane curves in terms of their associated Gauss diagrams.

While plane curves have been the study of many other investigations as well,
none thus far has focused on the composition (and, naturally, decomposition)
of curves. From Arnold, we have at least one method of composition | the
connected sum. The connected sum is especially interesting as Arnold's invari-
ants are additive through it. Thus, the following is a preliminary survey of the
connected sum, working under the scope of the work described above.

Within the paper itself, the terms plane curve and curve are generally used
to denote a di�eomorphism class of immersions of the circle into the plane,
with spherical curve used for immersions onto the sphere. By immersion, we
mean generic immersions, those with only natural double points (i.e. no triple
points or self-tangencies). Di�eomorphism means ambient di�eomorphisms of
the plane and curve, while classi�cation refers to classi�cation up to these dif-
feomorphisms. The use of these terms and others will be made clear by the
context.

1 De�nitions

We begin by laying the necessary groundwork, starting with the following de�-
nition from [5]:

De�nition 1 The connected sum of two immersions, the �rst (�1) into the left
half-plane, the second (�2) into the right half-plane, is de�ned as in Figure 1 by
an embedding of a connecting bridge into the complement to the images of the
two original immersions. We write �1#�2.

This naturally leads to:

De�nition 2 A decomposition is the separation of a curve into two disjoint,
well-de�ned curves such that there exists a connected sum between the two curves
which yields the original curve.

A few of the implications of these two de�nitions arise immediately. Notice
that the connected sum is not an operation on the classes of immersions, since
the bridges might be di�erent (though �1#�2 and �2#�1 denote the same
collection). However, the basic invariants are additive under any choice of the
bridge. Also, the number of double points is additive under the connected sum.
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Figure 2: Curve decomposition

This guarantees that the trivial curve (i.e. the circle) cannot be expressed as
the connected sum of two non-trivial curves, and leads towards seeing that the
connected sum of a trivial curve and a non-trivial curve yields the non-trivial
curve. Furthermore, the connected sum of two tree-like curves yields a tree-like
curve, whereas the connected sum of a non-tree-like curve with any other curve
is non-tree-like. Finally, the embedded connecting bridge of the connected sum
demands that each of the discs joined by the bridge must be an exterior disc.

De�ning decomposition in terms of the connected sum holds some interesting
implications as well. A decomposition amounts to a detachment of the curve at
two points lying on the boundary of the same external disc, attaching the new
endpoints in such a manner that two curves are created. Neither of these two
detachment points may lie at a double point. No discs other than the disc in
question are a�ected by a decomposition { for instance, external discs remain
external, and adjacent discs remain adjacent. See Figure 2 for an example of a
decomposition.

Of course, if curves can be composed and decomposed in some manner, it
makes sense to consider such ideas as prime curves, composite curves, and factor
curves. We de�ne these in the expected manner:

De�nition 3 A prime curve is a well-de�ned curve that cannot be expressed as
the connected sum of two well-de�ned curves.

De�nition 4 A composite curve is a well-de�ned curve that can be expressed
as the connected sum of two or more well-de�ned curves.

De�nition 5 A factor curve of a composite curve is a well-de�ned curve that
can be combined with some other well-de�ned curve or curves by means of the
connected sum to yield the composite curve.

Thus, a curve with n double points is composed of, at most, n factor curves,
due to the additive nature of double points. Also, every factor curve of a com-
posite curve with n double points must have less than n double points. And, of
course, every curve is either composite or prime.

More importantly, these de�nitions beg the question of how to determine
whether a curve is prime or composite. We begin with a de�nition:

De�nition 6 A decomposition line of a generic curve is a line, up to di�eo-
morphism, that can be drawn such that it intersects the curve at exactly two
points, neither of them double points, with one or more double points lying on
either side of the line.
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Figure 3: A decomposition line on a curve

Figure 4: A decomposition line guarantees a composite curve

Proposition 1.1 A curve is composite i� it has a decomposition line.

proof ) We show that the act of a connected sum creates a decomposi-
tion line. Perform a connected sum, and assume that there does not exist a
decomposition line. Clearly, there exist many lines intersecting the embedded
connecting bridge twice, once through each of the two arcs. If every one of these
lines intersects the curve at least one other time, then removing the connecting
bridge does not result in two curves { these curves are connected at some other
point, and therefore actually comprise only one curve. Thus, there exists at least
one line intersecting the embedded connecting bridge twice, and intersecting the
curve nowhere else. We know at least one double point lies on either side of the
connecting bridge in a well-de�ned connected sum, and thus, at least one double
point lies on either side of the line in question. Thus, the act of a connected sum
creates a decomposition line, as in Figure 3. Since this line bisects the plane, it
remains a decomposition line under ambient di�eomorphisms.

( If a curve has a decomposition line, it intersects the curve in exactly
two points. Disconnect the curve at these two points. This leaves two disjoint
immersions of the line segment into the plane, each with at least one double
point. Attach the four endpoints in pairs such that the two resultant nontrivial
immersions of the circle remain disjoint, with every disc (and only those discs)
external on the original curve external on the resultant curves, including the
two discs created by this endpoint attachment. Then, an embedded bridge
connecting these two discs is a connected sum yielding the original curve (see
Figure 4). 2

Thus, the prime or composite nature of a curve is a global invariant. Adding
this consideration to the curve characteristics previously discussed yields a more
robust classi�cation scheme. What's more, including this characteristic creates
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a number of relatively minor implications. We prove one of the more interesting
ones:

Proposition 1.2 Every curve with St >
n(n�1)

2 + 1 is prime.

proof Assume this curve is composite. Then, it can be expressed as �1#�2,
where the number of double points in �1 is k and the number in �2 is n�k. We
know that Arnold's invariants are additive through the connected sum. From

[4], we know that the maximum value for St on a curve is n(n+1)
2 , where n is

the number of double points. Thus, the maximum value for St on �1#�2 is
k(k+1)

2 + (n�k)(n�k+1)
2 . This function has a minimum at k = n

2 and a maximum
on the boundaries (i.e. k = 1 or n � k = 1). For these boundary values,
k(k+1)

2 + (n�k)(n�k+1)
2 = n(n�1)

2 + 1. This is a contradiction, and therefore the
curve in question must be prime. 2

2 Decomposition and the connected sum on tree-

like curves

Having considered the preliminary questions of connected sums and decompo-
sitions, we turn to tree-like curves, and consider the same questions on their
A-structures, as de�ned in [3]. Much of this requires the use of Gauss diagrams,
also found in [3]. Thus, more speci�c treatments of these ideas will clarify the
subsequent examination:

De�nition 7 The Gauss diagram of a curve with n ordinary double points is
the class of chord diagrams formed by n chords connecting the preimages of each
self-intersection point of the immersed curve in the standard disc bounded by the
standard circle.

De�nition 8 The planar tree of a tree-like curve is the tree of its Gauss di-
agram formed by n nonintersecting chords in the standard oriented disc, con-
sisting of n+ 1 vertices (one point inside each of the n+ 1 domains into which
the disc is cut by the chords) and of n edges (straight segments connecting the
points into neighboring domains across the chords).

De�nition 9 The associated disc of a vertex of the tree of a tree-like curve is
the disc bounded by the images of the boundary arcs of the convex Gauss diagram
domain containing this vertex.

De�nition 10 The last vertex on the path from the subtree F to a vertex v not
belonging to F is called the father of v and is denoted by f(v).

De�nition 11 The A-structure of a tree-like curve is the following collection:

� T | the tree of the curve
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� F | the subtree of the exterior associated discs

� c | the character function, de�ned as follows:

1. c(v) = �1 if v 2 F is an exterior vertex

2. c(v) = +1 if the associated disc of v lies inside the associated disc of
its father

3. c(v) = �1 if the associated disc of v lies outside the associated disc
of its father

Naturally, we begin the examination itself by de�ning a connected sum be-
tween A-structures:

Proposition 2.1 A connected sum between two tree-like curves is equivalent
to combining their two A-structures by means of an identi�cation of the two
vertices, one from each tree, whose associated discs are joined by the embedded
connecting bridge of the connected sum, in such a way that the resultant A-
structure is the A-structure of the resultant curve.

proof First, examine the tree T . We draw the associated Gauss diagrams
of the two curves joined by the connected sum. From [3], we know each arc of
the curve is associated with an arc on the Gauss diagram. The connected sum
joins two of these arcs, one from each curve, by the connecting bridge. Notice
this is a local action (i.e. no other sections of the curve are a�ected). Thus, we
can do the same for the Gauss diagrams (join associated arcs by a connecting
bridge), yielding the Gauss diagram of the resultant curve.

From the Gauss diagrams, we �nd the trees directly, associating a vertex
to every region and connecting edges between points associated to neighboring
domains. Since the Gauss diagrams can be connected as described above, the
trees can be added in the same way, identifying the vertices associated with the
two regions of the Gauss diagram joined by the connected sum.

Next, examine the subtree F . Again, we note that a connected sum is a
local action connecting two exterior discs. Thus, the two discs connected by the
connecting bridge form an exterior disc, since the bridge itself is exterior. Also,
all other discs remain una�ected by this local action, and, therefore, all exterior
discs remain exterior, and no others are newly exterior. Thus, those vertices
in the subtree F (i.e. those vertices with exterior associated discs) remain the
only members of F.

Finally, examine the character function. The value of the character function
at a vertex is dependent on two things:

1. the father of the vertex in question

2. whether the associated disc of the vertex in question is interior or exterior
to the associated disc of its father
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Figure 5: A connected sum of two A-structures. Reading the equation from
right to left expresses a decomposition.

Since the tree and subtree F hold as shown above, the father of a vertex remains
unchanged through a connected sum. Also, as above, since the connected sum
is local, the interior/exterior value of a disc in relation to another disc remains
unchanged. Thus, the character function holds through the connected sum. 2

Corollary A decomposition of a tree-like curve is equivalent to the separa-
tion of the A-structure into two well-de�ned A-structures such that a connected
sum between the two yields the orginal A-structure.

We de�ne prime, composite, and factor A-structures in the expected manner.
Just as a connected sum is the identi�cation of two vertices, a decomposition

is the opposite | the splitting of one vertex into two, as seen in Figure 5. Other
properties of the connected sum have implications for decomposition as well. For
example, combining Lemma 2.2 in [3] with the proposition just proved demands
that the vertices involved in a connected sum be vertices of the subtree F (i.e.
vertices with exterior associated discs). Thus, a decomposition can only be
performed at a vertex in the subtree F . To ensure that the factor A-structures
are both well-de�ned, a decomposition can only be performed at a vertex v if
there are at least two vertices adjacent to v. Finally, in order that the connected
sum of two factor A-structures yields the original, we have:

Note 1 A decomposition must retain the character function of the original A-
structure.

Even while taking into account all of the above properties, compositions
and decompositions can sometimes be done in di�erent ways, even at the same
vertex, as in Figure 6. Thus, as before, these are not operations on A-structures.

Applying these properties tells us much about the A-structures of prime and
composite tree-like curves. The A-structure of a prime tree-like curve cannot
have a vertex in the subtree F with two adjacent vertices. Thus, the only prime
tree-like curve with two vertices in the subtree F is shown in Figure 7 and is
denotedK0. Its A-structure is comprised only of those two vertices. Every other
prime tree-like curve has exactly one vertex in the subtree F , with exactly one
adjacent vertex, also shown in Figure 7. All tree-like curves not having these
structures are composite.

Using A-structures to examine the constructions found in [3] of curves with
extremal values of Arnold's invariants creates yet another set of minor implica-
tions. For example, it is easy to see, from examination of the A-structure, that
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Figure 6: The di�erent connected sums of two A-structures
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Figure 7: The prime curve K0, and the A-structure of all other prime curves.

every tree-like curve with n double points on which St is a maximum is prime.
More examples of implications of this type abound.

3 Prime decomposition of tree-like curves

It is quite natural to next pursue the question of prime decomposition. The
structure lent by tree-like curves yields a quite useful environment for this in-
vestigation:

Proposition 3.1 Let a vertex v 2 F . Let xv be the number of vertices adjacent
to v. Then, a decomposition can be performed xv � 1 times at v, resulting in xv
A-structures.

proof By examination, if xv = 2, a decomposition can be performed once at
v, resulting in two A-structures (see Figure 8).

We proceed inductively. Let xv = n, and assume the proposition holds for
all values of xv up to n � 1. Perform one decomposition at v. The result is
two A-structures, one with y vertices adjacent to v, the other with z adjacent
vertices, with y+ z = n. Since y and z are less than n, we know we can perform
decompositions at v on our new A-structures y�1 and z�1 times, resulting in y

and z A-structures, respectively. Therefore, the total number of decompositions
we can perform at v is 1 + (y � 1) + (z � 1) = n � 1, resulting in y + z = n

A-structures. 2

��
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vw w1 2

= . . . # . . .
v v ww1 2

Figure 8: Decomposition for xv = 2
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v wi

. . .

Figure 9: A resultant A-structure after xv � 1 decompositions

Proposition 3.2 The total decomposition at a vertex v (i.e. the end result of
performing xv � 1 decompositions) is unique.

proof From Proposition 3.1, we know the total decomposition at v consist
of xv well-de�ned A-structures. Thus, each of these has the form shown in
Figure 9, where wi is one of the xv vertices adjacent to v. Since the collection
of A-structures of this form is unique, the total decomposition is unique. 2

Proposition 3.3 A decomposition performed at one vertex does not a�ect pos-
sible decompositions at other vertices.

proof Vertices at which decompositions can be performed must be in F, and
by Note 1, decomposition does not a�ect which vertices are in F . By Proposi-
tion 3.1, decomposition at a vertex depends only on the vertices adjacent to the
vertex in question. Decomposition at any other vertex leaves this una�ected, as
the decomposition action is performed only at that vertex. 2

Note 2 The total number of decompositions that can be performed on an A-

structure is
X
F

(xv � 1), resulting in
X
F

(xv � 1) + 1 A-structures.

Follows from Propositions 3.1 and 3.3.

Lemma 3.1 There exists a natural bijection between the sets of nonplanar A-
structures having n edges and of classes of nonoriented tree-like curves in the
nonoriented plane having n double points.

proof From [3] Theorem 2.1, we have a bijection between planar A-structures
and oriented tree-like curves in the nonoriented plane. Also, from [3] Remark
2.3, we know that the reversal of the orientation of the curve acts on the planar
structures as a re
ection (reversing the cyclic order at every vertex). Thus,
ignoring orientation on the curve is equivalent to ignoring planar orientation on
the A-structure. 2

De�ning prime decomposition in the usual manner, we have the following:

Theorem 3.1 The prime decomposition of a tree-like curve is unique.
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proof Combining Propositions 3.2 and 3.3 above yields the conclusion that
prime decomposition of an A-structure is unique. Combining this result with
Lemma 3.1 yields the same for the associated tree-like curve. 2

A unique prime decomposition on the tree-like curve yields yet another
method of classi�cation, as well as a useful method for determining Arnold's
invariants and other properties. Furthermore, it allows tabulation by primes
alone, similar to the standard practice for knots.

Since the connected sum is not an operation, we already know that two
tree-like curves that share the same prime decomposition need not be identical.
However, we can say that these two curves share the same values for Arnold's
invariants, their Gauss diagrams share the same number of chords, and their
A-structures have the same number of vertices, the same number of vertices for
each character value, and the same number of vertices in the subtree F .

4 Spherical curves

Since the S-structures on spherical tree-like curves are closely related to A-
structures on plane curves, it seems appropriate to examine these in the same
light. We �rst need to understand these S-structures:

De�nition 12 If a vertex v is the father of the father of another vertex w,
then it is called the grandfather of w and is denoted v = ff(w). If v and w

have a common father, then they are called brothers and we write v = b(w) or
w = b(v).

De�nition 13 The S-structure of a tree-like spherical curve is the following
collection:

� T | the tree of the curve

� � | the function \rebro" de�ned by the following:

1. �(g(v; w)) = 0 if v and w are brothers with the same value of the
character function or if v = ff(w) and c(w) = �1

2. �(g(v; w)) = 1 if v and w are brothers with di�erent values of the
character function or if v = ff(w) and c(w) = +1

Since the sphere does not lend itself towards an easy de�nition of a connected
sum, we examine instead the associated plane curves of a spherical curve (i.e.
those plane curves which result from placing the point at in�nity in one of the
regions de�ned by the spherical curve). A quick examination of the tables of
spherical curves gives rise to the following:

Theorem 4.1 Every tree-like spherical curve (n � 3) can be associated with at
least one composite plane curve.
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proof Since every spherical curve can be associated to at least one plane
curve, it suÆces to show that the A-structure of a prime plane curve yields an
S-structure which can also be associated to the A-structure of a composite plane
curve.

From the discussion of tree-like curves, the A-structure of a prime plane
curve has the following properties (recall Figure 7):

1. the number of vertices in the subtree F is one

2. the number of vertices connected to the subtree F at distance one is one

We construct the A-structure of a composite plane curve having the same S-
structure. Let v0 denote the vertex comprising the subtree F . Then the vertex
v1 denotes the unique vertex connected to v0 at distance one. Thus, v1 has no
brothers. Therefore, all vertices w for which �(g(v1; w)) is de�ned must be a
grandfather or grandson of v1. Since v1 has no grandfather, v1 = ff(w). Then,
from [3], the value of �(g(v1; w)) is dependent only on the value of the character
function at w. Thus, the value of the character function at v1 has no bearing
on the function �.

Since v1 is connected to the subtree F at distance one, the value of the
character function at v1 must be +1. However, as shown above, the value of
the character function at v1 has no bearing on the function �. Thus, utilizing
the same planar tree, we let c(v1) = �1, and leave the value of the character
function unchanged at every other vertex. The resultant A-structure denotes a
composite plane curve for n � 3, and has the same S-structure as the original
A-structure. 2

The method used in this proof lends suspicions that it could be altered to
prove the apparent opposite, a corrolation with prime plane curves, as well.
Indeed, this turns out to be the case:

Theorem 4.2 Every tree-like spherical curve (n � 2) can be associated with at
least one prime plane curve.

proof As before, it suÆces to show that the A-structure of a composite plane
curve yields an S-structure which can also be associated to the A-structure of a
prime plane curve.

Given the A-structure of a composite plane curve, we construct the A-
structure of a prime plane curve having the same S-structure. Let v0 be a
terminal vertex of the original tree. Let v0 2 F in our new A-structure.
Then, c(v0) = �1. Since v0 was a terminal vertex, only one vertex is con-
nected to v0 at distance one. Let v1 denote this vertex, and let c(v1) = +1.
Let v2; :::; vn be the remaining vertices of the tree. Then, for i � 2, ff(vi)
is de�ned. For all vertices vk such that v0 = ff(vk), de�ne c(vk) so that
�(g(vk; v0) has the same value as on the S-structure of the original A-structure.
Repeat the same operation for all grandsons of v1; :::; vn so that the charac-
ter function is de�ned for all vertices. Then, for all vertices v and w such
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Figure 10: Producing the A-structure of a prime curve from that of a composite
curve while preserving the S-structure.

that v = ff(w), the function � is de�ned and is equal to � on the S-structure
of the original A-structure. All that remains is to consider all vertices y and
z such that y = b(z). Since y and z are brothers, f(y) = f(z) and, thus,
ff(y) = ff(z). From [3], we know �(g(y; a))+�(g(z; a))+�(g(y; z)) = 0 mod 2.
Letting a = ff(y) = ff(z), �(g(y; a)) and �(g(z; a)) are already de�ned, which
uniquely determines �(g(y; z)). Thus, the function � (and, therefore, the S-
structure) of our new A-structure is identical to that of the original A-structure.
Furthermore, the properties of v0 and v1 as de�ned above demand that the plane
curve associated with this new A-structure be prime (see Figure 10). 2

While the combination of these two theorems seems to erase any possible
results of interest, they do, in fact, yield some noteworthy points. Combining
them with a result from [6], that the Gauss diagram is a complete invariant for
spherical curves, produces the following:

Note 3 Every tree-like Gauss diagram (n � 3) can be associated with at least
one composite curve and at least one prime curve.

Note 4 The number of spherical plane curves with n double points is less than
the number of composite plane curves with n double points as well as the number
of prime plane curves with n double points.

Examination of the tables of curves with n double points for n � 5 con�rms
this second note in a convincing manner (e.g. the number of spherical curves
with n = 5 is 76; the composite and prime curves each number over 200). In
any event, these provide some clues toward relating spherical curves with their
associated plane curves without appealing to the direct method of placing the
point at in�nity inside one of the regions the curve de�nes on the sphere.

Turning to non-tree-like curves on the sphere, we would hope to �nd a similar
correlation. Some non-tree-like curves can indeed be associated with both a
composite and a prime plane curve, but in general, this is not true, and there
does not seem to be a simple method for determining which can or can't (see
Figure 11).

5 Index and the connected sum

Unlike Arnold's invariants, the index is not necessarily additive through the
connected sum. However, we know from other cases that the index is restricted.
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Figure 11: A spherical non-tree-like curve with only prime associated plane
curves and one with both prime and composite associated plane curves.

orient: = +1 orient: = �1
"1 = �1 "1 = +1
"2 = +1 "2 = +1
"3 = +1 "3 = �1

2
1

3

j
P
j = 2 2

1

3

j
P
j = 2

orient: = +1 orient: = �1
"1 = �1 "1 = +1
"2 = �1 "2 = +1
"3 = �1 "3 = +1

2
1

3

j
P
j = 2 2

1

3

j
P
j = 2

Figure 12: While index is constant, the values of "i vary with choice of base
point and orientation

For example, a curve with n double points must have ind � n+1, with ind�n

an odd integer. Likewise, the index is restricted by the connected sum. From
[7], we know:

ind =
X

"i � 1 (1)

where the summation is over the set of n double points, "i is a sign associated
to each double point, and the term �1 depends on the orientations of the curve
and of the plane.

Since we are considering the nonoriented curves immersed in the nonoriented
plane, we instead use:

ind =
���
X

"i � 1
��� (2)

This expression is independent of choice of orientation of the curve and of the
plane. However, as seen in Figure 12, the values of "i depend on the orientation
on the curve and plane as well as the choice of base point.

Applying this equation to the curves in a connected sum yields the restric-
tions on the index:

Theorem 5.1 ind(�1#�2) = jind(�1)� ind(�2)� 1j

proof Pick a base point on �1#�2 previously on �1, and orient the curve
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positively with respect to the plane. Then, from Equation 2:

ind(�1#�2) =
���
X

"i + 1
���

We can examine the double points formerly in �1 and �2 separately. Thus:

ind(�1#�2) =

�����
X
�1

"i +
X
�2

"i + 1

�����

Because our base point was on �1 and the curve is oriented positively, we know:

ind(�1) =

�����
X
�1

"i + 1

�����

�ind(�1)� 1 =
X
�1

"i

Since the connected sum induces a base point and orientation on �2 dependent
on which connecting bridge is chosen, all we can say is:

ind(�2) =

�����
X

�2

"i � 1

�����

�ind(�2)� 1 =
X
�2

"i

Thus:

ind(�1#�2) = j(�ind(�1)� 1) + (�ind(�2)� 1) + 1j

= j�ind(�1)� ind(�2)� 1j

= jind(�1)� ind(�2)� 1j

2

An alternate expression, for the index of tree-like curves (with corresponding
A-structures), can be found in [3]:

ind =
���
X

s(vi)
���

where vi are the A-structure vertices, s(v0) = �1, and s(vi) = c(vi)s(f(vi)).
Thus, we can substitute this expression into Theorem 5.1:

Corollary Let �1 and �2 be tree-like curves, and let the vertices of their
corresponding A-structures be denoted vi and wi, respectively. Then:

ind(�1#�2) =
���
X

s(vi)�
X

s(wi)� 1
���

Notice that Theorem 5.1 implies that, for some curves �1 and �2, �1#�2
will yield at least four distinct curves. Intuitively, this cannot be true for all
curves. It is to this question that we next turn.
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6 Some `nice' compositions

As it turns out, determining the possible products of two curves is, in general, a
very diÆcult problem. We take the speci�c case of determining which products
are well-de�ned, and restrict ourselves to tree-like curves. The reader may
already know that, in the case of knots, the idea of `invertibility' on a knot
(i.e. the invariance of the knot through changes of orientation) is integral to
determining whether or not the product of two knots is well-de�ned (see [1,
pp. 10{12]). Similarly, symmetry conditions are necessary in solving the same
problem for tree-like curves. We begin with a look at those conditions.

6.1 Symmetry conditions

It would be quite useful to be able to relate symmetry on the curve to symmetry
on its A-structure. We begin with this task. Let � and � denote the standard
orientation reversal of the plane and circle, respectively, and let T and � denote
the standard antipodal involution of the same. Then, the three symmetric
involutions are (T; �), (�; �), and (�; �).

Note that in all of the explicit curve constructions found in proofs below,
the method found in [3] may be substituted without a�ecting the results. Recall
that all curves discussed in this section are tree-like.

De�nition 14 A symmetric representative is a curve which is exactly invariant
under one of the symmetry involutions. Every symmetric representative has a
�xed point.

Proposition 6.1 A tree-like curve has symmetry of type [��] = [�] i� its A-
structure can be drawn such that there exists a line, not containing a vertex,
across which the A-structure has perfect re
ective symmetry.

proof ) From [4], given a curve with symmetry of type [��] = [�], it has a
symmetric representative. Also from [4], we know a curve with this symmetry
type must have ind = 0. Thus, the curve has an odd number of double points,
and the �xed point must be one of these double points.

We draw the Gauss diagram, using our �xed double point as a base point.
We scale the length of the curve linearly such that the entire length of the
curve scales to the circumference of the Gauss diagram. Thus, the symmetry
of the curve about the �xed double point implies that the chord corresponding
to that double point bisects the Gauss diagram. Beginning at the �xed double
point, we follow the curve until we reach the next double point, and denote
it on the Gauss diagram as a, at the appropriately scaled distance along the
circumference. Because the curve is symmetric under �, change of orientation,
following the curve in the opposite direction (i.e. reversing the orientation) must
yield a double point at the same distance, which we denote a0. We continue in
this manner, noting all double points and their symmetric counterparts, until we
return to the �xed double point. Constructing the chords of the diagram from
these double points, then, yields a Gauss diagram perfectly symmetric across
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Figure 13: A curve with symmetry of type [��] = [�] and its Gauss diagram.

x

y

Figure 14: Redrawing half of the curve shown in Figure 13 or 15.

the line corresponding to the chord associated with the �xed double point, as
in Figure 13. Since the Gauss diagram is symmetric, we can easily construct a
perfectly symmetric tree corresponding to this Gauss diagram, with the line of
symmetry not passing through a vertex.

We then turn to investigate the subtree F and the character function on the
tree. We need only examine the interior/exterior value of the associated discs
of vertices in relation to their neighbors. Returning to the Gauss diagram and
starting again at the �xed double point, the orientation symmetry on the curve
demands that this interior/exterior value be symmetric. Thus, the A-structure
is perfectly symmetric across a line not passing through a vertex.

( From an A-structure that is perfectly symmetric across a line not passing
through a vertex, we can easily build the associated Gauss diagram, perfectly
symmetric about a line corresponding to one chord. Being careful to keep track
of the character function values, we construct the associated curve. Let the
double point corresponding to the chord about which the diagram is symmetric
lie at (0; 0) on the plane. Follow the circumference of the Gauss diagram in one
direction and construct half the curve, with interior/exterior values from the
character function, utilizing only quadrants one and four and stopping on return
to (0; 0), as in Figure 14. Because of the symmetry on the Gauss diagram, we
can complete our construction with another copy of this half-curve, constructing
a point (�x;�y) for every (x; y) already constructed. The resultant curve has
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Figure 15: A curve with symmetry of type [��] = [�] and its Gauss diagram.

symmetry of type [��] = [�] and corresponds to the A-structure and Gauss
diagram in question. 2

Proposition 6.2 A tree-like curve has symmetry of type [��] = [�] i� its A-
structure can be drawn such that there exists a point, not at a vertex, about
which the A-structure has perfect 180Æ rotational symmetry.

proof ) As before, given a curve with symmetry of type [��] = [�], there
exists a symmetric representative, with �xed point at a double point.

The action ��� is equivalent to a re
ection. Thus, a curve symmetric under
this involution has a line of re
ective symmetry passing through the �xed double
point.

Let the �xed double point be at the origin, and let the line of symmetry
be the y-axis. As in the proof of Proposition 6.1, we draw the Gauss diagram.
We scale the length of the curve to the circumference of the Gauss diagram as
before. Again, the chord corresponding to the �xed double point bisects the
Gauss diagram. Using this point as a base point, we draw half of the Gauss
diagram, stopping upon return to our base point.

We know that, for every point (x; y) on the curve, there is a point (�x; y).
Thus, following the second half of the curve and completing the Gauss diagram,
we �nd an exact replica of the �rst half, yielding perfect 180Æ rotational symme-
try on the Gauss diagram, even while keeping track of the interior/exterior value
of discs in relation to their neighbors (see Figure 15. Thus, the A-structure as-
sociated to this Gauss diagram can be constructed with 180Æ symmetry. Since
the point about which the A-structure is symmetric must be associated with
the bisecting chord on the Gauss diagram, it cannot be at a vertex of the A-
structure.

( Given a 180Æ symmetric A-structure with �xed point not at a vertex, we
can easily build the associated 180Æ symmetric Gauss diagram with bisecting
chord. Keeping careful track of the character function values as before, we con-
struct a curve, starting with one half. Let the double point corresponding to
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the bisecting chord lie at (0; 0). Follow the circumference of the Gauss diagram
in one direction and, just as before, construct one half of the curve, utilizing
quadrants one and four and stopping on return to the origin, again as in Fig-
ure 14. Because of the symmetry on the Gauss diagram, we can complete our
construction with another copy of this half-curve, constructing a point (�x; y)
for every point (x; y) already constructed. The resultant curve has symmetry
of type [��] = [�] and corresponds to the A-structure and Gauss diagram in
question. 2

Proposition 6.3 A tree-like curve has symmetry of type [���] = [�] i� its A-
structure can be drawn such that there exists a line not passing through a vertex
and a point not at a vertex, with re
ection about the line identical to rotation
by 180Æ about the point.

proof Propositions 6.1 and 6.2 give us the correspondence between curves of
symmetric type [��] = [�] and [��] = [�], respectively, and their A-structures.
We know that the trivial involution (i.e. � alone) corresponds to no action on
the A-structures. Thus, Propositions 6.1 and 6.2 yield corresponding actions on
A-structures for the involutions �� and ��. Since ��� is their composition, it
follows that the corresponding action on A-structures is the composition of the
actions corresponding to �� and ��. 2

Combining Propositions 6.1, 6.2, and 6.3 allows us to relate all types of
symmetry on curves. If two symmetry conditions hold, then all do, and the curve
is supersymmetric. If none of them do, then the curve is asymmetric. This puts
restrictions on the symmetry of prime curves | K0 is the only supersymmetric
prime curve, and all others are either asymmetric or have symmetry of type
[���] = [�].

An interesting byproduct of these propositions is that they imply that there
exist �ve supersymmetric tree-like curves with the number of double points
n = 5. Examination of the chart for n = 5 found in [2] reveals only one tree-like
curve designated as supersymmetric. Personal communication with F. Aicardi
has con�rmed that the other four curves are indeed supersymmetric. These
curves are shown in Figure 16.

6.2 Well-de�ned compositions

Utilizing the symmetry conditions on prime tree-like curves, we �nd a set of
well-de�ned compositions. While the list appears to be exhaustive, there is no
proof of this. Furthermore, none of the compositions listed below can be directly
generalized to non-tree-like curves. Each of the compositions has an index equal
to ind(�1) + ind(�2)� 1.

We prove the �rst composition is well-de�ned, simply listing the rest. We
begin with a lemma:
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Figure 16: The four supersymmetric curves with n = 5 not marked so in [2].

Lemma 6.1 Let � be a prime curve that is not asymmetric. Let A1 and A2

denote two immersions of the A-structure of � into the plane such that all
vertices of A1 and A2 not in F lie in an open disc. Let their F subtrees be
identi�ed and lie in the closure of the open disc. Then, there exists a plane
orientation-preserving ambient di�eomorphism (i.e. not involving a re
ection)
of the open disc taking A1 to A2.

proof Since this curve must be supersymmetric or have symmetry of type
[���] = [�], there exists a plane orientation-preserving ambient di�eomorphism
of the plane taking A1 to A2. All we need to show is that this di�eomorphism
can be restricted to the open disc in question. For K0, this is evident. For
the rest, we construct this di�eomorphism vertex by vertex. The vertex in
the subtree F is already in place, so start with the one adjacent vertex (with
character function value of +1), and denote it v1. Since we are operating in
the open disc, there exists a path taking this vertex to its corresponding vertex
on A2, taking the edge connecting v1 and f(v1) to its corresponding edge as
well, as in Figure 17. Next, examine the vertices whose father is v1. We repeat
the action as with v1. The symmetry on the curve combined with openness on
the set guarantees the correct planar orientation on the A-structure. Continue
in this manner, examining successive son-vertices, until all vertices have been
considered. The composition of these di�eomorphisms, then, takes all of A1 to
A2 in the manner in which we desired. 2

Composition 1 �1#�2 is well-de�ned if �1 and �2 are prime, and �1 is not
asymmetric.

proof Assume �1#�2 yields two distinct curves, and denote them �� and
��. We show there exists an ambient di�eomorphism between the A-structures
of �� and �� , denoted A� and A� , respectively. Since any two immersions of the
same A-structure are identical, there exists an ambient di�eomorphism taking
all those vertices of A� formerly in A2 to their counterparts in A� . Thus, all we
need to show is that, from this position, their exists a di�eormophism taking
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Figure 17: The �rst di�eomorphism described in Lemma 6.1. A1 is represented
by the solid lines, A2 by the dashed lines.

# = or

Figure 18: Two di�erent compositions of the same prime asymmetric curve.

the remaining vertices of A� to those in A� while preserving the position of all
vertices formerly in A2. Because A1 has only one vertex adjacent to F , we can
construct a closed curve passing through the vertex of the subtree F such that
the interior of the curve is contained in R2 n A2 and those vertices of A� and
A� formerly in A2 are found in this interior. There is a di�eomorphism taking
this region to an open disc, and thus we can apply Lemma 6.1 to the remaining
vertices (all formerly in A1), completing the proof. 2

It is necessary that �1 or �2 not be asymmetric, as seen in Figure 18. This
condition is analogous to invertability on knots.

Composition 2 �1#�2 is well-de�ned if:

�1 = ��#��# � � �#��

with �2 and �� prime and �� not asymmetric or supersymmetric.

Composition 3 �1#�2 is well-de�ned if:

�1 = ��#��# � � �#�� and �2 = ��#��# � � �#��

with �� and �� prime and not asymmetric or supersymmetric.
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. . .

Figure 19: A curve �#�# � � �#� with an orientation on the curve inducing the
same orientation on every representative of �.

Composition 4 �1#�2 is well-de�ned if:

�1 = ��#��

with �2, ��, and �� prime, none of them asymmetric, and �� and �� not
supersymmetric.

Composition 5 �1#�2 is well-de�ned if:

�1 = ��#��# � � �#��#�� and �2 = ��#��# � � �#��

with �� prime and not asymmetric or supersymmetric.

Composition 6 �1#�2 is well-de�ned if:

�1 = ��#��# � � �#�� or �1 = K0 and �2 = ��#��# � � �#��

with �� and �� both prime, �� not asymetric or supersymmetric, but with ��
asymmetric and an orientation on �2 inducing the same orientation on every
representative of �� (see Figure 19).

The next three compositions involve K0, and each requires supersymmetry.
Thus, the index of each reduces to ind(�2) � 1. Recall the restrictions on the
A-structure of supersymmetric curves.

Composition 7 �1#�2 is well-de�ned if:

�1 = ��#K0#�� and �2 = ��#��# � � �#��

with �� and �� both prime, not asymmetric or supersymmetric, and with �1
supersymmetric.

Composition 8 �1#�2 is well-de�ned if:

�1 = ��# � � �#��| {z }
n

#K0#��# � � �#��| {z }
n

and �2 = ��#��# � � �#��

with �� prime and not asymmetric or supersymmetric, and with �1 supersym-
metric.
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Composition 9 �1#�2 is well-de�ned if:

�1 = ��# � � �#��| {z }
2n

#��#K0#��#��# � � �#��| {z }
2n

and �2 = ��#��# � � �#��

with �� and �� prime, not asymmetric or supersymmetric, and with �1 super-
symmetric.

7 Conclusion

While the results described above provide a solid introduction to the connected
sum and decomposition of plane curves, it raise a number of questions and
leaves much open for further research. Most conspicuously, the conjecture that
all plane curves (not just tree-like curves) have a unique prime decomposition is
left unproven. This would provide a key tool for a more complete classi�cation
of curves. Another topic worthy of examination is the results of composition |
what curves result, how many are there, and how can one determine whether
two curves have the same factor curves. Along with this comes the problem
of proving that the list of well-de�ned compositions above is complete (or, if
not, to complete it). Finally, a further investigation into the relation between
spherical curves and their associated plane curves is warranted, as well as curves
on other surfaces. In any event, this topic is wide open for further research.
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