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A graph G = (V, E) is a set of vertices and edges such that if a,b € V, (a,b) € E
then the vertices a and b share an edge. The distance between two vertices is
the fewest number of edges that can be traversed to move from one vertex to
the other. A perfect dominating set on a graph is a subset D C V such that, for
every v € V, either v € D or 3 exactly one w € D such that (v,w) € E. Note
that this requires each vertex v € D be a distance of 3 or greater from each other
[1]. Previous research on perfect dominating sets has shown that determining
whether a tree has a perfect dominating set can be solved in O(log|V]) time

Perfect Domination in Kneser Graphs

Michael Cenzer Sarah Lobser
New College Smith College
Sarasota, FL Northampton, MA

reznec@hotmail.com slobser@smith.edu

Ellen Veomett
University of Nebraska
Lincoln, NE
eveomett@math.unl.edu

January 26, 2001

Abstract

Given a graph, a perfect dominating set, D, is a subset of the vertices
such that no two vertices in D are adjacent, and every other vertex is
adjacent to exactly one vertex in D. We examine the family of graphs
called Kneser graphs to determine which ones have a perfect dominating
set. A Kneser graph K(Z) has as its vertices the k element subsets of an n
element set. Two vertices are adjacent exactly when their corresponding
sets are disjoint. We show that a Kneser graph has a perfect dominating
set only if it is of the form (2’“;'1) where k + 2 is prime. We define a
“perfect set” as a subset of vertices from a Kneser graph such that all
k — m tuples appear the same number of times and show that any perfect
dominating set on a Kneser graph is also a perfect set, and vice versa.
An algorithm to find a perfect dominating set, as well as different perfect
dominating sets on the same graph, are discussed. Given any vertex, we
give a method to find the nearest member of the dominating set.
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with O(]V]) processors in the CREW PRAM model of parallel computation and
in O(|V]) time sequentially[5].

Perfect dominating sets can also be called perfect one-error correcting codes.
Both sets have the same properties; perfect one-error correcting codes are used
in message transmission. If an error in transmitting a code vertex occurs, an
adjacent vertex is recieved. Since it is adjacent to exactly one code vertex, it
can be corrected back to the desired code vertex.

A dominating set of a graph G = (V,E) is a subset of the vertices such
that each vertex in the graph is either in the subset or adjacent to a vertex in
the subset. Note that, every perfect dominating set is a dominating set, but
not every dominating set is a perfect dominating set. In particular, dominating
vertices can be adjacent, and a vertex not in the dominating set can be adjacent
to more than one vertex in the dominating set. Domination numbers of ¢-
analogues of Kneser graphs have been previously studied[3]. Also, it has been
found that the domination number of Kneser graphs of the form (%), n > 3, is
equal to 3[8].

We study here a family of graphs called Kneser graphs. The vertices of a
(Z) Kneser graph correspond to the sets obtained by choosing & of n elements.
Two vertices are adjacent if their corresponding sets are disjoint. The most
well known example is the Petersen graph, which is the (3) Kneser graph. The
vertices are the following: {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4},
{3,5}, {4,5}. This graph is well known for presenting counterexamples to many
conjectures about graphs[7].

{12}

{4,5} {3,4}

{13} {2,5}

Figure 1: Petersen Graph
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We determine which Kneser graphs can have a perfect dominating set. We
also discuss an algorithm to find a perfect dominating set, the possibility of
more than one perfect dominating set for a graph, and techniques to decode a
vertex to the vertex which dominates it. In general, deciding whether or not a
graph has a perfect one-error correcting code [and hence a perfect dominating
set] is NP-complete[4]. Other families of graphs have been discovered to have
perfect one-error correcting codes on them, such as the graph formed from the
Towers of Hanoi puzzle[4]. One example of a Kneser graph that we know has a
perfect dominating set is the ([) graph. The (7) Kneser graph can be found in
Appendix A. The following table has a list of the elements in the dominating
set, D, as well as the vertices which are adjacent to each element of D. We also
found a perfect dominating set on the (151) Kneser graph, which is in Appendix

B.

vertex in D adjacent vertices
123 456 | 457 | 467 | 567
145 236 | 237 | 267 | 367
167 234 | 235 | 245 | 345
246 135 | 137 | 157 | 357
257 134 | 136 | 146 | 346
347 125 | 126 | 156 | 256
356 124 | 127 | 147 | 247

2 Preliminaries

Kneser graphs have some special properties. First of all, an (Z) Kneser graph
is (",*) regular. Second, Kneser graphs are vertex transitive[9, 6]; each pair of
vertices is equivalent under graph automorphism. We focus on Kneser graphs
where n and k have certain relationships. We require that n = 2k + r where
1 <r <k —1 because otherwise the graphs will be disconnected or have graph
diameter of at most 2. (In requiring that our graph have a diameter of at least
three, we also limit ourselves to graphs that have a perfect dominating set D

where |D| > 1. Hence the (’1‘) graph, which has a perfect dominating set, is

missed). Since each vertex has a neighborhood of size (", *), we know if D is
our perfect dominating set,

(x)

# of vertices in D = ——*——
("M +1

(1)

Suppose we wanted to calculate the number of vertices in D with the number
1 in its corresponding set. Let

a; = F of elements of D with ‘1’ in them

b1 =  # of elements of D without ‘1’ in them
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Then we know that the following equations are true.

_ @)
ap+b = (n;kls 1 (2)

e (5 = G5 ®

Let A = the set of vertices in D with a ‘1’ in them, and B = the set of vertices
in D without a ‘1’ in them. Equation (2) simply says that the elements in A,
added to the elements of in B, equals the total number of elements in D. We
also know that vertices in B are adjacent to some vertices with a ‘1’ in them.
Specifically, a vertex in B is adjacent to (", * ") vertices with a ‘1’ in them.
Hence, equation (3) states that the number of vertices in B, added to (";f;l)
multiplied by the number of vertices in B gives the total number of vertices in
the graph that have a ‘1’ in them.

This is a very useful idea. First of all, if we had wanted to write equations
concerning the number of elements of D with and without a ‘2’ in them, then
the same equations would have been formed. We know that we can solve for
the two variables a; and by, since our two equations are independent.! Hence,
we can conclude that the number of ‘1’s in the elements of D is equal to the
number of ‘2’s; is equal to ...is equal to the number of ‘n’s.

Second, it may be noted that this idea can be extended. Let

ais..s = # of elements of D with ‘12...s" in them

bia..s = # of elements of D with neither ‘1’, nor ‘2’, nor..., nor ‘s’ in them

Then we know that the following equations are true.

(—1)2 G) a +(-1)° <;> ayy+- -+ (—1)* (j) 1. s +b12. s = GOES! (4)

k

n—k—s n—s
s b s =
ap2... +< b s ) 12... (k—s) (5)

Equation (4) is an extension of equation (2). It uses the fact that the number of
‘1’s is equal to the number of ‘2’s, the number of ‘12’s is equal to the number of
‘13’s, etc. Equation (4) uses inclusion/exclusion to obtain the right number of
vertices in D that include any combination of the numbers 1 through s. Then it
adds on all the vertices in D that do not contain any of the numbers 1 through
s so that it equals the total number of vertices in D.

Equation (5) is an extension of equation (3). Like equation (3), it counts
all the vertices with ‘12...s” in them. It should be noted here that the above
equations only make sense if s < k. If s = k then a12._s and by»._ s may (if s is
odd) both have a coefficient of 1 in equations (4) and (5). Hence, the equations

IThis is assuming n # 2k, which we already excluded from study, and that k # 1, which
we have also excluded from study.
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may not be able to be solved for either variable. Since k is the number of
elements in each vertex, if s > k, then there can be no vertex with the numbers
1 through s in its set. But regardless of whether s is odd or even, the equations
are valid and independent so long as s < k.

3 The Special Case of n =2k + 1

Using these equations, we set up matrices so that we could solve for the various
a; and b; in our equations. We then plugged in various combinations of n and
k. We knew that having part of a vertex in a perfect dominating set or negative
of a vertex in a perfect dominating set is impossible. Hence, if any of the a;’s or
b;’s came out to be anything other than a natural number, then that particular
(1) Kneser graph could not have a perfect dominating set.

We noticed that the graphs that were not eliminated had the form (Qk,j' 1).
Hence, we set out to prove that only graphs of this form could have a perfect
dominating set.

Theorem 1 Suppose a Kneser graph of the form (2]“,:”) where 1 <r <k-1
has a perfect dominating set. Then r must equal 1.

proof 1: Suppose a (**") Kneser graph, where 1 < r < k — 1, has a perfect
dominating set, D. It is easy to see that there can be no more than 1 of each
k —r tuple among the elements of D, otherwise two of them would be a distance
of 2 apart. Hence, the maximum number of vertices, such that no 2 vertices
have a distance of less than 3, includes one of each k — r tuple. Note that (kfr)
k — r tuples are combined into each vertex. Hence, the maximum number of
vgkriices that can be chosen such that there is only one of each k — r tuple is
%. We need this to be equal to the required number of elements in D, if

k—r

the (**7") Kneser graph is to have a perfect domination set. Hence, we need:

G) e

EARNGOET

Note that this is true for r = 1. What we want to show is that, for r > 1,

G) e

(5 () +1

This would show that the maximum number of vertices that can be chosen
such that there is only one of each k£ — r tuple is not enough to make a perfect
dominating set [if 1 < r < k—1]. Hence, if 1 < r < k—1 then the (214:]:—7") Kneser
graph cannot have a perfect dominating set. Note that the above equation is

equivalent to saying

(2k 4+ r)tr! (2k + r)tr!
k+ 20k S e+ 0k + )l 1 k)
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which, when reduced some, reads

(k4 2r)'k! — ((k +7)1)?
(k +r)lk!r!

>1 (6)

(k+2r) k! = ((k+r))?

(I also

Suppose that, when r goes up by one, then the equation

gets larger. Since (k+22;_]f_;!(,§ﬁn!+r)!)2 = 1 for r = 1, this would show that equation

(6) is true for 1 < r < k—1. Hence, all we need to do is show that the following
equation is true.

(k+27) k! —((k+7))2
(k+r) k!
(k+2r+2) k! —((k+r+1))2
(k+r+0) k! (r+1)!

The following series of equations shows exactly what we want to prove.

(k +2r)k! — ((k +1)1)* (k+7r+ 1)K!(r+1)!
(k +r)'k!r! (k+2r +2)k! — (k+7r+1))2
(k+2r)kl(k+r+D)(r+1) —((k+r))2(k+r+1)(r+1) <
(k+2r + 2! — (k+7r+ DIk +7r+1)!
(k+2r+ 2! = (k+r+ DIk+r+ DI
(k+2r+2)k!— (k+r+DI(k+r+1)!

<1

O
While that was a lengthy proof, it was also very straightforward and assumed
very little. The following proof is much more concise and conceptual.
proof 2: Suppose a Kneser graph of the form (%Ij' 7") has a perfect dominating
set, D. From equations (2) and (3), we know that the number of n tuples within
the elements of D must all be the same, where 1 < n < k. (The number of
vertices in D with ‘12...n’ in them is equal to the number of vertices in D with,
for example, ‘23...n + 1’ in them). Hence, each k — 1 tuple must appear the
same number of times within the elements of D. However, as explained in proof
1 of Theorem (1), a perfect dominating set on a (Qk]j' r) Kneser graph cannot
have more than one of each of the k — r tuples, otherwise two vertices in D will
have a distance of 2 between them. Therefore, if # > 1, then not every k£ — 1
tuple can be used, since that would cause each k — r tuple to appear more than
once. However, we already stated that each k — 1 tuple must appear the same
number of times within the elements of D. Hence, r = 1 is the only option
for which the graph can have a perfect dominating set. Therefore, if a Kneser
graph is to be connected and have a perfect dominating set, then it must be of

the form (2’“:1). O

4 Requiring that £+ 2 be Prime

Proof 2 of Theorem 1 shows us that we must have 1 of each k£ — 1 tuple within
the elements of a perfect dominating set. Hence, we need to combine all of the
k — 1 tuples into groups of k sets, such that the union of the sets in each group
has k elements. In requiring this, we have the following theorem.

26



Theorem 2 If Kneser graph of the form (Qk]j'l) where k > 1 has a perfect
dominating set, then k + 2 is a prime number.

proof: Let p be a prime less than k. Consider any k—p tuple in a (**") Kneser

graph. We know that, within any particular vertex, there are (,*,) =p k —1
tuples that contain a particular £ — p tuple. Therefore, the number of £ — 1
tuples that contain k& — p must be divisible by p in order to be able to place all
of the k — 1 tuples into vertices. In equation form, this says

<2k+1—(k:—p)> _ (k+p+1)t
p—1 C(p=D(k+2)!

(k+3)(k+4)...(k+(p+1))
MR)...(p—1)

In looking at equation (7), notice it is true as long as k+3 # 1(modp). Therefore,
we know that a (%Ij'l) Kneser graph where k = (p — 2)(modp) where p < k, is
unable to have a perfect dominating set. In other words, if k£ + 2 has a prime
factorization consisting of primes that are smaller than &, then the (**') Kneser
graph is unable to have a perfect dominating set. Hence, every k is eliminated

except for k such that k£ + 2 is prime. |

= pt wheret € Z (7)

5 “Perfect Sets” as Perfect Dominating Sets

From the equations above, we seem to have discovered a fundamental property

Ci) ()

of our dominating sets; they have e of each m tuple. These sets are

a special case of a more general object.

Definition 1 A Perfect Set is a subset of vertices from a (Zk,jl) Kneser graph

such that all k — m tuples appear the same number of times, 0 < m < k.2

m

For a perfect set of size p, there are p- % of each m tuple. The following

m

are some laws for perfect sets on the same graph.

1. If A, B are perfect sets where A C B, then B\ A is also a perfect set.

2. If AN B =0, then AU B is a perfect set.

Examples of perfect sets include: the entire graph, the graph minus the
dominating set, the union of two disjoint dominating sets. The smallest perfect
set must have one of each k — 1 tuple. Since perfect dominating sets have one
of each k — 1 tuple, they are the smallest perfect set. After defining a perfect
set, we created equations that would help explain how to construct one using 1
of each k — 1 tuple.

2Note that, from proof 2 of Theorem 1 we know that a perfect dominating set must be a
perfect set using 1 of each k£ — 1 tuple.
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Suppose we want to create a perfect set [using 1 of each k — 1 tuple] from
the (Qk,;H) Kneser graph where &k = 3. Note that, as previously stated, a Kneser
graph is vertex transitive. Hence, we know that we can pick any particular
vertex to be the first vertex in our Perfect Set. Choose the vertex {1,2,...,k}
to be in the perfect set. [At this point, we will try to keep things in terms of
k, as we would like to generalize the equation.] From this vertex, we can count
the number of k£ — 1 tuples that share a certain number of elements with it:

k
<k > =k = # of k — 1 tuples using k — 1 elements from{1,2,...,k}

-1
k+1 k k(k—1)
= 17:
(1)1 e) e
# of k — 1 tuples using k — 2 elements from{1,2,...,k}

kE+1 k _(k+DEEE-1)(k-2)
2 k-3) 2 2-3 B
# of k — 1 tuples using k — 3 elements from{1,2,... k}

Suppose we want to start creating vertices using our left over k —1 tuples. Since
the k& — 1 tuples using only elements from {1,2,...,k} are all already used up
in our first vertex we created, we know that we cannot use them again. Hence,
each of the k¥ — 1 tuples that share k — 2 elements with the vertex {1,2,...,k}
must be used with one other tuple from the same set, and k — 2 of the £k — 1
tuples that share k — 3 elements with the vertex{1,2,...,k}. This may sound
very confusing, but it all results from two facts:

1. This perfect set contains exactly 1 of each k — 1 tuple.

2. In order to combine k£ k£ — 1 tuples into a vertex, they must each share
exactly k — 2 elements with each other £ — 1 tuple.

Hence, we can even expand the last comment in the preceeding paragraph.
Suppose we have already used up all of the k£ — 1 tuples containing k — (n — 1)
elements from the set {1,2,...,k}. Then the remaining k£ — 1 tuples containing
k — n elements from the set {1,2,...,k} must be joined such that n of them,
along with k — n of the k£ — 1 tuples containing k — (n + 1) elements from the
set {1,2,...,k}, form one vertex.® Again, this comes from the two facts above.

Suppose we want to count the number of vertices that we are creating. We
would then create the following equation when k = 3. [We will keep k as k,
though, because we would still like to generalize this].

(k—1)k k(k—1)(k—2)  (k+D)k(k—1)(k—2)
k (k+1)k(k-1) N 2 2-3 - 2:2
k 2-2 k

3This is assuming, of course, that k > n.
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1+

(k+Dk(k—1) (k+1)(k-1)(k—-2) [k
2.2 * 2-2 {5_1] ®

To make explanation of this equation less confusing, we will create the following
labelings:

A = setof k—1 tuples sharing k — 1 elements from the set{1,2,...,k}
B
C

set of k — 1 tuples sharing k — 2 elements from the set{1,2,...,k}

set of k — 1 tuples sharing k — 3 elements from the set{1,2,...,k}

The first term of equation (8) accounts for the first vertex we picked for our
perfect set: {1,2,...,k}. There were k elements in A and we used k of them in
creating the first vertex. The next term accounts for the vertices we made using
the elements from B. We used 2 of elements from B per vertex, so we divided
the total number of them by two to get the total number of vertices using those
elements. The third term subtracts the number of elements of C that were used
with elements from 5. The remaining elements of C are combined into vertices,
and we can count the number of vertices that are made by dividing the number
of elements remaining in C by k.

Note that in the last term, we have something multiplied by % — 1. When
k = 3, we know that that term is equal to 0. Since that term corresponds to
the number of vertices containing k — 1 tuples that have no numbers in common
with the first vertex, we then know that no vertices in a perfect set created with
k = 3 are disjoint. In fact, we will soon show that, if we want to make a perfect
set from a (Qk,j' 1) Kneser graph, there will always be no disjoint vertices when
k is odd.

Lemma 1 Suppose we create the equation that counts the number of words in a
perfect set [using 1 of each k — 1 tuple] on the (%Ij'l) Kneser graph as we did in
equation (8). Assume k > 3, k =n. Then the last term will be of the following

form:*

n—2 terms n—3 terms
E+DE-1D! |kk-1)...3) | kk-1...(4) _<..._(E_1
2-2-3-...(n—-1) ?(”_1)(3), Sn—l)(n—2)...(32 3
n—2 terms n—3 terms

proof: We will prove this using induction. From viewing equation (8), you can
see that this is true when k£ = 3. Now assume that this is true when &k = n. In
the equation for k& = n the last term rounds up all the remaining k& — 1 tuples
that shared no elements with the vertex {1,2,...,k} and makes vertices out of
them. Therefore, if we multiply it by k, we will get the total number of k£ — 1
tuples that were remaining. Therefore, there are a total of

4The reason this was written with both n’s and k’s is to show which is the variable. Since
the construction for the equations is the same regardless of the k, k is the variable. However,
the n’s in that equation stay the same if we move to a different k.
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n—2 terms n—3 terms

——fN— —N—
(k+1)! k(k-1)...(3) k(k—1)...(4) _<.-._<E_1
2-2-3-...(n—-1) ZL(n—l)(?))J Sn—l)(n—2)...(32 3

~~ ~~

n—2 terms n—3 terms

of the k — 1 tuples containing k — n of the set {1,2,...,k} left. However, when
k =n + 1, we know that these must be grouped into groups of n, along with 1
of the k — 1 tuples containing none of the set {1,2,...,k}. Hence, if we divide
that number by n, we will obtain the number of vertices including those k — 1
tuples. Now we just need to figure out how many k — 1 tuples we have left, and
make them into vertices. [From this point on, we will use the term n + 1 instead
of k, since that is the particular case we are discussing).

We know that the number of (n + 1) — 1 tuples that contain none of the
set {1,2,...,n+ 1} is ((""'TIL)H) ("3‘1). Therefore, in subtracting the number of
them that we had to use with the (n + 1) — 1 tuples containing 1 element in the
vertex {1,2,...,n + 1}, there are

n—2 terms
((n+1)+1> <n+1> 1 (D +)! ) () =1)...(3)
n 0 n2-2-3-...(n—1) n(n—1)...(3)
—_——
n—2 terms

n—3 terms

a - 12(3;(;})2;.1_). = @ ( L <<" ) 1))

~

~~

n—3 terms

(n+1)+D(n+n...4-3(n+1)n...

nn—1)Mn-2)...3-2 (n+1)n...
n—2£erms

((n+1)+1)! m+1)((n+1)-1)...(3)

2:2:3-...(n—1)n nn—1)...(3)

~—_——

n—2 terms

3-2
3-2

n—3 terms

A

U s (- (52-0))

~

-~

n—3 terms
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(n+1)—2 terms

(n+1D)+1)(n+1)...3-2 | (n+1)n...(3)
2-3-...-n (n+1)n...(3)
—_——

(n+1)—2 terms

(n+1)-3 terms
4D+ )-D...(4) (_ <(n+1) _1>> }

nn—1)...(3) 3
—_—

(n+1)-3 terms

(n + 1) — 1 tuples including none from the set {1,2,...,n + 1}. Hence, that
number divided by n 4+ 1 should be the last term in the case where k =n + 1
(since n + 1 of them go together to make a vertex). This is exactly what we set
out to show. |

Lemma 2 Suppose we can and do create a perfect set [using 1 of each k — 1
tuple] on the (Qkk“) Kneser graph, where k is odd.> Then the set contains no
disjoint vertices.

proofl: Pick a vertex from the perfect set. In the equations from Lemma (1),
the last term gives the number of vertices that are created using only k—1 tuples
sharing nothing with the original picked vertex. In other words, the last term
gives the number of vertices created that are disjoint from our original vertex.
From Theorem 5, we know that, when k = n, the last term is something finite
multiplied by

n—2 terms n—3 terms
k(k—l)...(i’))_ k(k—1)...(4) _(____(E_1>>_“
ZL(n—l)...(?))J Sn—l)(n—?)...(?))l 3
n—2 terms n—3 terms
When £k is odd, this reduces to
M oDk

Hence, the last term is equal to zero. Therefore, there are no vertices disjoint
from the vertex in the perfect set that we picked. Since the particular vertex
we picked had no bearing on the equations, we can conclude that there are no
disjoint vertices in the perfect set. O

The following proof is less computational and does not require the use of
Lemma 1.

5Requiring that k£ be odd is not actually a limitation, since we know that k will be odd
already from Theorem 2.
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proof2: Let A be all the vertices in a perfect set [using 1 of each k — 1 tuple]
from a (21@,:-1) Kneser graph. Let B be all the vertices from the same graph that
are not in A. We know that any vertex in A cannot have more than one vertex
in A to which it is adjacent, otherwise two vertices would be of distance 2 apart.
If every vertex in A is not adjacent to any other vertex in A [all vertices are
disjoint], we are done.

Suppose a vertex in A is adjacent to another vertex in A. Since each k — 1
tuple appears once within all the vertices in A, we know that each vertex in A
must be adjacent to the same number of vertices in A. Therefore, if one vertex
in A is adjacent to another vertex in A, every vertex in A must be adjacent to
exactly 1 other vertex in A.

Now note that B is also a perfect set; each k — 1 tuple appears k+1 times
within the vertices of B. Therefore, as in A, each vertex in B must be adjacent
to the same number of vertices within B.

From equation (1) we know that a perfect dominating set on this graph
must have (2’”; 1)%_‘_2 vertices. This is equal to (Zkkjll)%, which is the number
of vertices in A. Hence, if all the vertices in A were disjoint, every vertex in B
would be adjacent to a vertex in A. But since we’re assuming that each vertex
in A is adjacent to another vertex in A, not every vertex in B is adjacent to a
vertex in A. We know that A U B is the set of all vertices in the graph, and
AN B = ). We also know that the graph is k& + 1 regular. This means that
some vertices in B are adjacent to k + 1 vertices in B, and some vertices in
B are adjacent to less than k + 1 vertices in B. This contradicts the fact that
each vertex in B must be adjacent to the same number of vertices within B.
Therefore, no vertices can be adjacent. Since no vertices can ever be disjoint,
they certainly can never be disjoint when k is odd. |

Lemma 3 If there exists a perfect set on a (Qk,;H) Kneser graph (k odd), then
that perfect set is a perfect dominating set.

proof: In order for two vertices to be a distance of 2 apart in a (21@,:-1) Kneser
graph, they must share exactly k — 1 elements. However, since each k — 1 tuple
is used exactly once in a perfect set, we know that no 2 vertices can share
k — 1 elements. Therefore we know that no two vertices in the perfect set are a
distance of 2 apart.

In order for two vertices to be adjacent in a perfect set, they must be disjoint.
However, in Lemma(2) we showed that no two elements in a perfect set are
disjoint when k is odd.

Since no vertices in a perfect set with k£ odd are a distance of 1 or 2 apart,
they all must be a distance of 3 or greater from each other. Hence, if we can

show that there are ("_(:;+1 vertices in the perfect set, then we know that it is

k
a perfect dominating set on the (2’”; 1) Kneser graph.

The perfect set is made by combining all the & — 1 tuples into vertices.
Therefore, the total number of vertices it creates is the number of £ — 1 tuples
divided by k. (k is the number of k£ — 1 tuples in each vertex). Therefore, the
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total number of vertices created in a perfect set is:

(3 @k+Dl 1 (2k+1)!
E (k=D(k+2) 'k Kl(k+2)

From above, we know that, for the perfect set to be a perfect dominating set,

n

this number must equal % When n = 2k + 1, this number is equal to:
k

C%h e+ 1 2k + 1)!

Iy +1 KE+DIE+D+1 K(k+2)!

Hence, we have the right number of vertices and our perfect set is a perfect
dominating set. a

6 Creating a Perfect Set With 1 of each £ — 1
tuple

We now know that we have a perfect dominating set on a (***) Kneser graph
iff we have a perfect set on that graph. We also know that we can only have a
perfect dominating set if k& + 2 is prime. So now we want to show that we can
make a perfect set on a (**1') Kneser graph where k + 2 is prime. We have
been unable to do this thus far, so we will state our prediction as a conjecture.
Conjecture 1 Fach Kneser graph of the form (Qk,;H)
set.

, k+2 prime, has a perfect

If this conjecture is proven, then from Theorem 3 we know that any (%Ij' 1)

Kneser graph, k+2 prime, has a perfect dominating set. The following describes
an algorithm that can be used to create a perfect set, assuming that one exists.
Since our perfect set includes 1 of each k£ — 1 tuple, we know that each k —m

tuple (1 < m < k) appears (2kkf11:((kk:7;”))) L times. We also know that there will

be a total of (2’““)% vertices in the perfect set, each having & numbers.

k-1
Begin with an empty (2k,:'1)k+r2 x k matrix. We will contruct the perfect
dominating set by filling the matrix. Consider the digit ‘1’. As stated above, in

our perfect set, each k& — m tuple appears (Qkkjll__((kk__r%))% times. So we know

that ‘1’ will be in (,2%,) 7L vertices. For ease, each row in the matrix will have

the digits placed in ascending order. Hence, all (lﬁz)ﬁ 1’s will be in the

first column. Next, consider the digit ‘2. Place (3'7") 715 of the 2’s next to
the 1’s (in the second column), since that is how many times each 2 tuple will

appear within the perfect dominating set. Then place (kQ_kQ)L — (215__31)L

k—1 -2
2’s in the first column. (This is because a total of (,**,) z17 2’s must appear in
the code.) This process can be generalized for the nth digit. In adding the nth

digit to the matrix, every k — m tuple that can be formed using only the digits
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1,2,...,n must be created (zkkjllj((kk:gb))) % times. If this can be done with each
digit 1,2,...,2k 4+ 1, then a perfect dominating set will be the result.

It is easy to place the digits that never appear in the last column, which are
the digits 1 through k£ — 1. This is because, in placing those digits, we never add
more than one k — 1 tuple at one time; where these digits go is already defined.
Digits in the last column are more difficult to place, because k — 1 tuples are
added k at a time. There are more options for places to put the digit, and more
tuples are formed with each placing. The following is an example of a partially
formed perfect dominating set using this algorithm for the (151) Kneser graph.
(The vertices are placed side by side to save space).

12345 | 1236 | 123 | 123 | 1246 | 124
124 1256 | 125 | 125 | 126 | 12
1346 | 134 | 134 | 1356 | 135 | 135
136 13 1456 | 145 | 145 | 146
14 156 | 15 16 16 1

2346 | 234 | 234 | 2356 | 235 | 235
236 23 2456 | 245 | 245 | 246
24 256 | 25 26 26 2

3456 | 345 | 345 | 346 | 34 356
35 36 36 3 456 | 45
46 46 4 96 96 )

Note that, when the digit 5 is placed in the 1st row, the rest of the 5’s are
easy to place, as are all the 6’s. We believe this to be true for any kth and k+1th
digits in a Kneser graph that has a perfect dominating set. It is also important
to notice that, for the same reason that all the ‘1’s go in the 1st column, all of
the 2k + 1’s will go in the last column. The same remark can be made about
the 2nd and the 2kth digit. The number of times each digit is placed in each
column is not so well defined for the middle three digits: &, k + 1, and k& + 2.
Note that this algorithm does contain some backtracking, but we hope that not
much backtracking is necessary.

7 Permuting a Perfect Dominating Set

Once we have found a perfect dominating set, we want to know whether or not
it is unique. Using the symmetries in Kneser graphs, we can show that any
perfect dominating set can be permuted into another perfect dominating set.

Lemma 4 Let a and b be vertices of a (2‘) Kneser graph. Then a and b share
s elements iff w(a) and 7(b) share s elements, where 7 is any permutation.

proof: Clearly m can be composed of transpositions i <+ j wherei,j € {1,2,...,n}.
If @ and b share s elements, then they have no more or less numbers in common
in interchanging the numbers ¢ and j.
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Conversely, suppose m(a) and 7(b) share s elements but a and b share a
different number of elements. Then either the common numbers between a and
b must be mapped to two different places or the common numbers between 7(a)
and 7(b) were mapped from two different places. Neither of these can happen
in a permutation. Hence, a and b share s elements iff 7(a) and 7(b) share s
elements, where 7 is any permutation. O

Theorem 3 Suppose C' is a set of vertices that are a perfect dominating set for
the (Z) Kneser graph. Let m be a permutation, and let A be the set such that
if a € C then w(a) € A. Then A is also a perfect dominating set on the (Z)
Kneser graph.

proof: From Lemma 4 we know that A has the same number of elements as C.

Lemma 4 also tells us that the relationships between the words in C' is preserved

in A. Hence, A contains #)H elements, all of which are of distance 3 or
k

greater from each other. Therefore, A is also a perfect dominating set on the

(%) Kneser graph. O

8 Decoding to the Dominating Vertex

Let D be our dominating set. Suppose we are given a vertex a, and we want
to know to which element of D a is adjacent (itself, if @ € D). One type of
decoding technique involves a matrix of all the elements of D in the form of
binary strings. The length of a binary string for a vertex for the (Qk,j' 1) Kneser
graph is 2k + 1. A ‘1’ is placed in the ith slot of the binary string if the vertex
has an 7 in it, and a ‘0’ if not. Each string representing an element of D is a
row in the matrix, so that the size of the matrix is (**) s X 2k+1. The
vertex to be decoded is also written as a binary string in the same way, and
can be considered as a binary vector. The matrix is multiplied by the vertex to
be decoded, and a vector will result. There will be one element of the resulting
vector that is congruent to 0 (modk). If that element is in the jth row, then
our vertex is decoded to the vertex represented by the jth row of our matrix.

This is not an easy decoding technique, as it requires that we have a list
of all the elements of D. One would hope that this would not be necessary.
Unfortunately, a better decoding technique has not been found.

9 Conclusions and Future Work

In order for a Kneser graph to have a perfect dominating set, it must be of
the form (21@2-1) where k + 2 is prime. Also, any perfect dominating set on a
Kneser graph is a perfect set, and any perfect set on a Kneser graph is a perfect
dominating set. We know that the (7), the (%), and the (*!) Kneser graphs have
perfect dominating sets. Any permutation of a perfect dominating set results

in another perfect dominating set. We have given an algorithm with which a
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perfect dominating set can be found, as well as a method for decoding a vertex
to the vertex which dominates it.

Future work could include finding a sufficient condition for which a Kneser
graph has a perfect dominating set. We believe that having the graph be of the
form (**') where k+2 is prime is sufficient, but as yet have been unable to prove
so. The algorithm we have created to find a perfect dominating set involves a
little bit of guess and check. It would be nice to have a direct algorithm, with
no guess involved. Also, the decoding technique described in this paper requires
having a list of the elements of the perfect dominating set. This list can be very
large, depending on the size of the Kneser graph. A decoding technique that
didn’t require that list would be much more useful.

Other topics that can be examined are perfect ¢ dominating sets, ¢ > 1.
A perfect ¢ dominating set on a graph G = (V,E) is a subset D, C V such
that, for every v € V, either v € D, or 3 exactly one w € D, such that the
distance between v and w is less than or equal to ¢. Also, are Kneser graphs
Cayley graphs? A Cayley graph is a representation of a group. Each vertex
corresponds to a group member, and the edges correspond to a set of generators.
Two vertices a and b have an edge if 3 a generator g such that ga = b. Perhaps
knowing something about a group structure on a Kneser graph would help in
knowing whether or not it has a perfect dominating set. Another question for
further investigation is whether or not the perfect domination problem for cayley
graphs is an NP-complete problem.
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A The (?7)) Kneser graph

B A Perfect Dominating Set for the (151) Kneser

Graph

12345
1248B
13469
1368B
149AB
23468
2369A
2489A
34567
357AB
4679A

12367

12568

1347B
1379A
15679

2347A
2378B
2567A
3458B
3678A
4689B

12389
1257B
1348A
1456B
158AB
2349B
24569
2589B
3459A
3679B
478AB
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123AB
1259A
1356A
1457A
167AB
2356B
24578
26789
346AB
389AB
5678B

1246A
1269B
13578
14589
1689A
23579
245AB
268AB
34789
4568A
569AB

12479
1278A
1359B
14678
1789B
2358A
2467B
279AB
35689
4579B
5789A
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