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1 Introduction

The motivation for this paper was to make progress in the field of geometric
tomography toward solving Hammer’s x-ray problem. Geometric tomography is
the study of convex bodies and their idealized x-rays. Thus, factors like density
are ignored when taking an x-ray of a convex body. This paper focuses only on
directed x-rays. For more information on geometric tomography including both
parallel and directed x-rays, consult Gardner [1].

In this paper, we analyze and characterize convex bodies with the same x-ray
data from a single point source. First, we derive various families of convex bodies
through parameterizations and by adding x-ray data to a line. A second goal is
to improve the method for determining the convexity of a body by extending the
quadratic form introduced by Lam and Solmon [2]. Finally, we find conditions
that determine which x-rays can be associated with a convex body away from
the source and what restrictions the x-ray data puts on the convex body.

We would like to thank Dr. Solmon for his guidance throughout this project.
We would also like to thank the National Science Foundation for its support of
the Research Experience for Undergraduates program. Lastly, we would like to
acknowledge Courtney Fitzgerald who began working on this project, but was
unable to continue due to illness.



2 Notation and Definitions

Definition 2.1 A convex body is a compact, convex subset of the plane with
non-empty interior.

Definition 2.2 The characteristic function of a convezr body K is

xk(p) = {0 io¢ K for p € E?

lifpe K

Throughout the paper, K is assumed to be a convex body. Unless otherwise
specified, points will be in polar coordinates (r, ) where r > 0 and ¢ is measured
counterclockwise from the positive z-axis.

Definition 2.3 A directed x-ray transform, also known as a point source
z-ray or a fan-beam z-ray, gives the chord length of the convex body along a
particular direction 0 from a given point O, which is called the point source.
Thus, the directed z-ray of K, Dk, is

Dko(p) = / Xk (O +t0)dt, 6 =< cosp,sinp >
0

Since we are only considering a single source for the directed x-rays, we assume,
without loss of generality, that the source, O, is at the origin.

From a single point source, O, we can define the convex body K by a unique
pair of functions r(y), R(yp) satisfying

K ={(s,¢) :7(¢) <s < R(p)}

We refer to the points with polar coordinates (r(y), ¢) as points on the near
boundary of K and the function r(p) as the near boundary function of K. In a
similar manner, the terms far boundary and far boundary function refer to the
points (R(¢), ¢) and the function R(p). As a convention throughout this paper,
we use lowercase letters to refer to the near boundary and uppercase letters to
refer to the far boundary. With this notation, the directed x-ray of K in the
direction # =< cos p,sinp > becomes X (p) = R(p) — r(p). Throughout the
paper, we refer to these functions simply as X,R, and r.

Definition 2.4 Let K be a convex body with an associated directed z-ray from
point O. Then the supporting cone Cla, 5] of K is the cone with vertex at O
such that for all o, a < ¢ < B, Dk, (p) > 0. The supporting rays of K are

p=aand p=_0.

Throughout the paper, the supporting rays are labeled a and g where a <
B. Since K is bounded away from O, f — a < 7, and we can always choose
coordinates such that K lies above the y-axis.

We would to be able to determine whether a near or far side function is
convex the right way. One method that is extremely useful in determining this
is the quadratic form defined by Lam and Solmon [2].



Definition 2.5 Given three points on the curve x, {1, x>, x3}, with associated
angles o1, 2,03 such that o1 < Y2 < 3 < @1 + 7, we define the quadratic
form, Q(z), as

Q(z) = Qx1,x2,x3) = 122 8i0(P2 — 1) + T2x3 sin(ps — Y2) — 123 sin(ps — 1)
where x; is a function of @;.

This form can be written Q(z) = zAz”, where

) 0 sin(p2 — 1) —sin(ps — 1)
A= 3 sin(pa — 1) 0 sin(ps — ¢2)
—sin(ps —¢1) sin(ps — ¢2) 0

and z is the vector < z1,z2,23 >. Both forms appear in the paper, but the
second expression is useful in expressing the middle term when expanding Q(r+
s) = Q(r) + 2rAsT + Q(s).

From Lam and Solmon [2], we find some important properties of Q. A
bounded function r on [, 3], 0 < 8 —a < 7, is the near side of a convex body
K if and only if for all @ < 1 < w2 < w3 < B, Q(r) < 0. Similarly, a bounded
function R on [a, (] is the far side of K if and only if Q(R) > 0. This allows
us to uniquely identify any convex body bounded away from the source O with
supporting cone C|a, 8] with a pair of bounded functions (r, R) satisfying

i) 0 <r(p) < R(p) on [a, B] with r < R on (a, )
ii) Q(r) <0 and Q(R) > 0 on [a, f]

Having made this identification, given the source O, we may refer to K as
the pair of functions (r, R) satisfying i and ii above.

3 Properties of Q

In this section, we introduce some useful properties associated with Q.
Theorem 3.1 The quadratic form Q satisfies the following
i) Q(tx) = t2Q(x) for all functions x and scalars t.
i) If O(R) >0, Q(s) <0, and R > s, then Q(R —s) > 0.
iii) If Q(r) <0 and Q(s) <0, then Q(r +s) <0.

PROOF. i) is trivial. ii) was proved by Lam and Solmon [2]. To prove iii), we
first expand
Q(r +5) = Q(r) + Q(s) + 2rAsT

where

2rAs™ = (r1s2 +7251) sin(p2 — 1)
+ (r283 + r352) sin(pz — w2) — (1183 +r3s1) sin(ps —@1). (1)



Since Q(r) < 0, we know that

< rir3 sin(ps — 1)
= rysin(ps — ¢1) + r3sin(ps — p2)

and similarly because Q(s) <0,

s183sin(ps — 1)
82 < - - .
s18in(ps — 1) + sz sin(ps — @2)

Substituting into (1), we find that 2rAs” <

_ sin(ip2 — 1) sin(pz — p2) sin(ps — 1) (r153 — s371)° <0

(r1sin(ps — 1) + r3sin(pz — 2))(s18in(p2 — @1) + szsin(ps — v2)) ~

Since this expression is always less than or equal to 0 and Q(r), Q(s) < 0 as
given, Q(r +s) <0. O

The first result of this theorem is useful in computations of @. The second
result implies that the directed x-ray of a convex body is itself the far side of
a convex body with source O, a result of Longinetti [3]. The last result of this
theorem provides a property that allows the comparison of combinations of the
near sides of two different convex bodies.

4 Some convex bodies with a common directed
X-ray

We begin with a convex body K bounded away from O and its associated x-ray

data X from a given source O. Then K = (R, r) where Q(r) < 0 and Q(R) > 0.

In addition, we can associate a convex body M with the x-ray data of K as

(0, X)) since Q(0) =0 and Q(X) > 0.

4.1 Linear Combinations of (0, X) and (r, R)

Given a source O and convex bodies K = (r,R) and M = (0,X), we define a
linear function L as

L(t) = (1 — t)(0, X) + t(r, R) = (tr,(1 — )X + tR)

L(t) is a body with near side tr, the result of scaling r, but the far edge
(1—t)X +tR is not necessarily convex and may look different from R, especially
as t approaches 0.

Theorem 4.1 For all t € [0,1], L(t) is always a convex body with x-ray data
X=R-r.



Figure 1: The convex bodies L(1) and L(0.5) and their x-ray data

Proor. First, we show that the x-ray data is preserved for all ¢. Since (r, R)
has directed x-ray data X, we can write R = r + X . Substituting into L(t), we
find

L(t) = (tr, (1 — )X + tR) = (tr, (1 — )X + t(r + X)) = (tr, tr + X)

which certainly has x-ray data X.

Second, we must show that the new body L(¢) is convex for ¢ € [0, 1]. Hence,
we must show that Q(¢r) <0 and Q(tr + X) > 0. The first condition is trivial
since Q(tr) = t2Q(r), but the second condition is more difficult. We know that
att =0, Qtr+ X) = Q(X) >0and at t = 1, Q(tr + X) = Q(R) > 0.
Expanding gives

Qtr + X) =t2Q(r) + 2trAXT + Q(X)

which is a quadratic with leading coefficient Q(r). By hypothesis, Q(r) < 0, so
the parabola must open down, and since at t = 0 and t = 1, Q(¢r + X) > 0,
Q(tr + X) >0 for all t € [0,1]. O

It should be noted that of the three necessary conditions for the body (¢r, tr+
X) to satisfy the above theorem, two hold for all ¢ while the other always holds
for t € [0,1] but not necessarily for other ¢. Both the preservation of x-ray
data and convexity of the near side ¢r hold for all ¢. The convexity of tr + X
restricts the interval for ¢ in most cases. We can, in fact, show that this interval
is bounded, provided Q(r) # 0. In some cases, the interval is bounded when

Q(r) =0.

Theorem 4.2 There exists some to > 1 such that Q(tor + X) < 0, provided
that either



i) Q(r) <0 for 1 <2 <@z <1+, or
ii) Q(r) =0 and Q(X) > Q(R).

Proor. First, we consider the condition in part i. Since Q(tr+ X) is quadratic
and the coefficient of t2, Q(r), is always less than 0, Q(tr+ X) is a parabola that
opens down. In addition, Q(X),Q(R) > 0, so because Q(r) # 0, the quadratic
must have two roots, one of which is greater than 1. Call this root ¢*. Then for
to > t*,

Qtor + X) < Q(t"'r+X) =0

Now, we consider the second case. Here the quadratic reduces to a linear

expression so
Q(tr + X) = 2trAXT + Q(X).

At t =0, Q(tr + X) = Q(X), and at t = 1, Q(tr + X) = Q(R). Since
Q(X) > Q(R) by hypothesis, this line must have negative slope and therefore
must intersect the z-axis at some T*. So for o > T,

Qtor + X) < QI™r+X) =0

Therefore, there exists some to > 1 such that Q(tor + X) < 0 and L(t) is not
convex for t > tg. O

4.2 Extending Convex Bodies from (r, R)

In the previous section, we showed that it is possible to construct convex bodies
that have the same x-rays by taking a certain linear combination of (0, X) and
(r,R). This involved scaling the near side and constructing the far side by
adding the x-ray data to the scaled near side. In this section, we examine what
happens when we scale the far side and construct the near side by subtracting
the x-ray data.

Given a source O and a convex body K = (r, R) with x-ray data X = R—r,
we define a function G so that

G(s) =(s—1)(X,0) + s(r,R) = (sR — X,sR)

Theorem 4.3 If Q(R) = 0, then G(s) is a convex body with z-ray data X =
R—7r forall s> 1.

ProoF. It is obvious that the x-ray data is preserved in this parameterization,
so we address convexity. Again, in order for G(s) to be convex, Q(sR) > 0 and
Q(sR — X) < 0. Since Q(sR) = s?Q(R) = 0 holds for all s, we are left with
only the last condition. Rewriting,

QsR-—X)=Q(sR—(R—1))=Q((s—1)R+7)



Figure 2: The convex bodies G(1) and G(1.5) and their x-ray data

Because s >1 = s—1>0,let s* =s—1>0. Then, Q((s —1)R+7r) =
Q(s*R+r), and because Q(s*R) = 0 and Q(r) < 0, by part iii of Theorem 3.1,
Q(s*R+r) <0. O

Notice that we must restrict R to be a line in order to guarantee convexity
for G(s) for all s > 1. If we do not, we are left with a quadratic with leading
coefficient Q(R) > 0. That implies that graph of Q(sR — X) is a parabola that
opens up. Because Q(sR— X) = Q(r) < 0 at s = 1, we know that there is some
s’ > 1 such that Q(s'R — X) = 0, and therefore G(s) will not be convex for all
s> s

4.3 Combining the two parameterizations

Using both of the parameterizations in the above sections, we can construct a
two-parameter family of convex bodies with the same directed x-ray from source
O. We begin with the family (sR — X, sR) and apply the first parameterization
(tr,tr + X) by substituting r = sR — X to produce the family

H(s,t) = (t(sR— X),t(sR—X)+ X) = (tsR—tX,tsR+ (1 — t)X)

Again, the x-ray data is preserved, while convexity is limited by the s and ¢
parameters.

5 The Differential Operator X

One of the problems with the quadratic form is that it requires three points to
compute the concavity of a curve. It is also limited when analyzing behavior



Figure 3: The convex bodies H(1,1) and H(1.5,0.3) and their x-ray data

if p; = ¢; for i < j since it is always 0. Thus, it becomes apparent that a
differential operator that requires only information from one point is superior
for many applications. While such an operator requires the curve be twice
differentiable, the curves we will be examining have only a small number of
points where this is an issue.

We derive the differential operator K from the quadratic form Q by tak-
ing limits as ¢1,p3 — ¢2. To accomplish this, we first compute Q*(z) =

limg, 4, Q) By L’hospital’s Rule, Q" (z)

Y2—P1
_ oy B1%2 sin(pa — 1) + wox3 sin(ps — p2) — w123 sin(ps — p1)
Y1—>p2 Y2 — Y1
. d . .
. sin(ps — 1) d—w(ﬂfzxs sin(ps — 2) — T173 8in(ps — 1))
= lim 12 + d
P1—rp2 Y2 — Y1 d—w((p2 — 901)
. sin(yp2 — . .
= lim :rlng + lim (2]z3sin(ps — 1) — 173 cos(ps — ¢1))
Pr—>p2 Y2 — Y1 Pr—>p2

= :r% + zhr3 sin(ps — @2) — T2w3 cos(pz — p3).



After this we take the limg, ., @?:%))2

23 + zhas sin(ps — o) — Tawz cos(ps — p2)

= lim

P3P (p3 — p2)?
L (xhalh + zaws) sin(ps — 2) + (Thrs — x22%) cos(ps — ©2)
= lim

P32 2(p3 — ©2)

1" 2 + 1.2 )

= (2)% +1/2 w§%2(xgxg — zaxy) cos(pz — p2)
_ (xh)® + a3 N () — zoah
N 2 2

= (3 +2(a})” — 2225) /2

Since the constant is unimportant when considering whether the operator is
positive or negative, we define K(z) = 2? + 2(z')? — 2" .

Remark This derivation of K assumes that the curve z is C?, but the limit
formula will hold except on a set of zero Lebesgue measure for curves satisfying

Q(r) <0or Q(R) > 0.

Remark Since we apply the differential operator to sums, we derive K(z + y)
now.

n

z+y)* +2((z+y)) - (@ +y)@+y)

Kz +y) = (
K(z) + 2zy + 42’y — zy" — 2"y) + K(y)

Next, we establish conditions for concavity similar to those Q produces by
showing that for ¢ in some interval (a,3), when K(z) > 0, the graph of the
polar function z(yp) is concave toward the source and when K(z) < 0, the graph
of z is concave away from the source.

Theorem 5.1 Let g(¢) be a C? polar function on (a, ) and continuous on
[a, B], 0 < f—a < . Define the parametric curve I' =< g(p) cos ¢, g(¢) sin ¢ >.
Then,

i) T is concave toward the origin if and only if K(g)(v) > 0 for all p € (o, §)

ii) T is concave away from the origin if and only if K(g)(p) < 0 for all
¢ € (o, B).

PRrROOF. First, let § =< cosg,sinp > and §+ =< —sinyp, cosp >. Consider
the polar parametric curve

[' =< g(p) cosp, g(p) sinp >= g(p)0.



Then,

I =< g'(¢) cosp — g(p) sinp, g'(p) sinp + g(¢) cos >
= g'(¢) < cos,sinp > +g(p) < —sinp, cos p >
=g'(9)f + g(p)b "

I = g"(p)0 + g' ()" + g'(p)0" — g(p)f
=T" = (g"(¢) — 9(¥))0 + 29' (p)0"

A simple cross product yields

I’ xT" = (g'(9)0 + g(0)65) x (¢"() — 9())0 + 29/ (0)6+
[6'(@)7(6 % 65) + g(0) (9" (¥) — g() (6" x )

[9' (@)K + (5°(0) — g(0)g" (0))k

K(g9)(p)k

where k is the unit vector in the positive z direction. Recall from vector calculus
that the second derivative of a parametric curve I' is called the acceleration
vector and can be written as

2
2

dv =
"= éT + kv?id (2)

where v = ||I7(¢)||,s is the curvature of T', T = Hll:—:\l is the unit tangent vector,
and 7 is the principal unit vector (7 always points to the side of the curve which
is concave). Observe that T' = Hll:—:\l =

'(p) = [T T = oT (3)

From equations (2) and (3), we can write

L dv -
I x I =0T x (LT + ko)
dep

= kv*(T x 1)
By definition £ > 0 and since v = ||[T'(p)|| > 0, v* > 0 = «&v® > 0.

Furthermore, since T is perpendicular to 7 and they both are unit vectors, we
know T x it = £k. Thus, I x I'"" = £k0’k = K(g)(¢)k =

K(g)(p) >0 < Txid=k

and
K(g)(p) <0 < T xit=—k
By the right hand rule Txit=kiff it points toward the origin and the curve I'

is concave toward the origin, and Txi=—kiffit points away from the origin
and the curve I is concave away from the origin. O

10



Remark One interesting and logical property of the differential operator K is
that it is related to the formula for curvature . Deriving this formula in polar
coordinates yields

2 "2 n
v+ 2(z') — 2"z

k(x) = (z")
(22 + (2')2)3/2

Since the denominator is always positive, the numerator of the formula deter-

mines whether the curve has positive or negative curvature. But this numerator
is exactly the differential operator /.

6 Creating convex bodies by adding lines to x-
ray data

Lemma 6.1 Let g(¢) and h(p) be C* functions on (a, 3). Then the tangent
lines of g and h are parallel at po if and only if % = % for some o € (@, B).

PRrROOF. Parameterize g(p) as y = g(p)sin(p),x = g(p) cos(p). Then by the
chain rule the slope of the tangent line of g at o, my(p) is

dy

_dy ay
mg(@)—%—g
dy

_ 9'(@)sing + g(p)cosp
g'() cosp — g(p) sing

!
%51ncp+cosap

! .
%cosg@—smap

Similarly the slope of the tangent line of h at ¢ is

h_’ .
ma(p) = Iiﬁsmgo-{—C(.)sgo
G cosp —sing

If % = % at some ¢y, then clearly m,(po) = mp(po). Conversely, if the slopes
of the tangent lines are parallel at ¢q, then

g sin ¢g + €os Yo I gin o + cos o
mg (o) = mp(po) = 2 =4

r . ’ .
% cospy —singy % cospg — sin g

g . AU ISR e g9
<= —=—sIn" g + 5 COS” g = ——— 81N~ Py + — COS” g
g h h g

! !
= E(sin2 ©o + cos® @g) = %(sin2 ©o + cos? o)
—I = g—l at © =
7 9 ¥ = %o

11
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Lemma 6.2 If X is the z-ray data from a non-parallel wedge W = (r, R), then
there exists a 6 > 0 such that K(z) > ¢ for all v € [a, B].

ProoF. Since W = (r, R) is a non-parallel wedge, K(r) = 0 and K(R) = 0 for
all ¢ € [a, f]. Hence

2
T,’:T+2(T) (4)
r
and e
R =Ry B R) (5)

for all ¢ € [a, f]. Because X = R —r, we can expand K(X) as

K(R—r)=K(R)— (2rR+4r'R' —rR" —7"R) + K(r)
=—(2rR+4r'R' —rR" — r"R)

Substituting (4) and (5), we find

K(X)=—-Q2rR+4r'R —r (R+2(R')2> R <T+2(r;)2>

R
1
= = (2R —ar'RR 4+ R 4 2 (R)? 4 B 4+ 2R(r))
1
= SR —r'R)* 20

Equality holds if and only if rR’ = 'R in which case R is parallel to r and
the wedge is a parallel wedge by Lemma 6.1. Contradiction. The existence of §
follows since K(X) is continuous on [a, 5] by the Extreme Value Theorem. O

Remark To ensure that K is defined on the closed interval [«, 8], we make the
following definitions. We define K(z)(a) = 2% + 2(z" )?> — 22" and K(z)(8) =
z? + 2(z!.)? — zz] where z_ and #” denote the left hand first and second
derivatives and 2/, and /[ the right hand derivatives.

Theorem 6.3 Given a non-parallel wedge W = (r,R) with z-ray data X =
R — r, for any line | there exists a to > 0 such that W' = (tol,tol + X) is a
convez body provided | intersects both o and 8 away from the source.

PrROOF. Since W is a non-parallel wedge, we know that (r) = K(R) = 0 so
(4) and (5) from the previous lemma hold. In order to show W' = (tol, tol+X) is
convex we must show there exists a tg > 0 such that K(tgl) < 0 and K(tol+X) >
0. Since [ is a line, K(¢I) = t2kC(I) = 0 for all t € R. So

Kl +X)=K(t) +t2IX +4'X' - 1"X —1X") + K(X)
=t(AX +4I'X' - 1"X —1X") + K(X)

12



Figure 4: A wedge W and the result of adding its x-ray data to a line

Substituting (4) and (5), we find
K(t + X) = —liX(z'X XY 4 K(X)

We now have a linear expression in ¢ with a y-intercept greater than § > 0.
By continuity there exists a to > 0 such that (ol + X) > 0. O

Theorem 6.4 Given a non-parallel wedge W = (r, R) with z-ray data X =
R —r, then for each line L whose slope is sufficiently close to R, there exists an
so such that W' = (soL — X, soL) is a convex body with the same directed z-ray
as W.

Proor. To show W' = (soL — X, soL) is a convex body, we need to show
there exists an so > 0 such that K(soL — X) <0 and K(soL) > 0.

Since W is a non-parallel wedge, (4) and (5) from Lemma 6.2 still hold.
We also know from hypothesis that K(sL) = s>kK(L) = 0. Next, we show
K(sL — X) <0 for some s > 0.

K(sL — X) = $?K(L) — s(2LX +4L'X' — LX" — L"X) + K(X)
=K(X)—-sLX +4L'X' - L"X — LX") (6)
=K(X)-sQ2LX +4L'X' - L"X — L(R—1)")
This is a linear expression in s. Since K(X) > 0, it has a positive y-intercept.
Thus, expression (6) can only become negative for some s > 0 if the expression

2LX +4L'X' — L"X — LX" is positive. We are only concerned with the slope
and therefore can drop K(X). After substituting (4) and (5) from Lemma 6.2,

13



Figure 5: A wedge W and the result of subtracting its x-ray data from a line

we find 2LX +4L'X' — L"X — LX"
=2LX +4L'X' — L"X — LR" + Lr"
(R')?

2
:2LX+4L’X’—L”X—L<R+2T>)+L<r+2ﬂ>

12 12
:L(2R_2T_R+T)+4L’X’—L”X—2L<(R) _(T) )

Since L is a straight line, (L) = 0 and

L :L+2$ (8)

Substituting (8) into (7), we find

(7) = LX +4L'X" - (L + 2%) X 2L ((1%1;)2 - (T;)2>
2R(L')? _2r(L))® 2L(R)®  2L(r)?
7 A T

(2RrLL'(R —r)' — R*r(L")? + Rr*(L")* — rL*(R')* + RL*(+")?

=4L'X' —

LRr

= Li% (R((rL")* — 2r'LL' + (r'L)?) — r((RL")? —2RR'LL' + (R'L)?)
r
— I (f(RL = RL)* = RO L' = 'L)?)

(9)

Studying expression (9), we can see the slope of the linear equation is neg-
ative when r(RL' — LR')? — R(rL' —1'L)? < 0 since L, R, and r are positive.

14



Rewriting,

L' R\’ o\’
R(f‘ﬁ) ‘T(f‘?> <0 (10)
From Lemma 6.1, we know

/
L sing + cos p
_ b
my=—p—— ——
E cosp —sing

where m,, is the slope of a polar function p(p). Then this expression

Y I
= mp(— cosp —siny) = —sinp + cos p
p p

/
= %(mpcosgo—singo):mpsin<p+cos<p
N P _ my sin g + cos

p mp COS ¢ — sin g

The slope of p can be expressed in terms of the angle of inclination, v, in
the following way

sin ¥,
m, = tany, =
P Yr = Cos Yy
v 22; ﬁ’; sin p + cos
> — = —
P ¥ hgp —ging

cos Y,

Multiplying by = Y yields

cos Y

P’ sint, sin g + cos @ cos (1)
p sin 1, cos ¢ — sin p cos 1,

Using the trigonometric identities cos(z—y) = sinz sin y+cosz cos y and sin(r—
y) =sinz cosy — siny cosx we can write (11) as

!

P _ cos(tp — )

p  sin(Yp — @)
= COt(‘/’p - )

Using this relation, we can rewrite (10) as

R(cot(Yr — @) — cot(vr, — ¢))? — r(cot(¢, — @) — cot(yhr, — ))* < 0

_ B (cot(®, — ) —cot($r —9))? (12)

r (cot(Yr — @) — cot(Yr —p))?

and the slope is negative when (12) holds.
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Observe that % is bounded as R and r are bounded and 0 < r < R. There-
fore as ¢, — g the right hand side goes to infinity. This means that if the
angle of inclination of L is sufficiently close to the angle of inclination of R (i.e.
the slope of L is sufficiently close to the slope of R) then the slope of (10) is
negative. Hence there exists a sp > 0 such that K(sgL — X) < 0. Also notice
that the only time the right hand side of this inequality is undefined is when
@ =1 or o =g or p = Y. If p =1 or ¢ = g then tanp = tanyyr or
tany = tant,. This implies that the slope of R or r is parallel to the slope
of the ray ¢. If that were the case we would have a parallel wedge. Suppose
p =19 — tanp =tanvYy = my. Then tana < mp or my < tan 3. Then L
would intersect a and § only at the origin. Contradiction. g

Remark Also notice that when vy — 1, the right hand side of 12 goes to
zero. This means that when the slope of L is sufficiently close to the slope of
r the inequality does not hold as % is bounded below by 1. Hence for lines
L who have slopes close to that of r there does not exist an sg > 0 such that
IC(S()L - X) S 0.

Corollary 6.5 The set of all conver bodies with same directed z-ray is not
CONVEL.

PROOF. From the theorem, we know that we can find two convex bodies, (r, R)
and (s,S), with the same x-ray data that both have a line for their far side,
and different slopes. Examine the linear combination of these bodies: L(s,t) =
(I1—t)(r,R)+1t(s,S) at t = s = 0.5. Then L(0.5,0.5) = (0.5(r +5),0.5(R+ 5)).
So for this body to be convex, Q(0.5(R + S)) > 0. But, Q(0.5(R + 5)) =
(0.5)2Q(R + S), and we know that because R and S are both lines, Q(R) = 0
and Q(S) = 0. Then, by part iii of Theorem 3.1, Q(R + S) < 0 This means
that Q(R + S) = 0, but this is impossible because that implies that R and S
are parallel. a

7 Determining the existence of a convex body
from the x-ray data

We have shown that we can construct families of convex bodies that have the
same x-ray by using the s and ¢ parameterizations (§4) and by adding and sub-
tracting the x-ray data from a line (§6). In this section, we focus our attention
on when a function X (¢) can be the x-ray data of a convex body. We assume
that X’ and X" are bounded throughout this section.

First, we examine x-ray data that has one point where X£(X) = 0, and show
that if a convex body bounded away from the origin exists, there must be points
of zero curvature at the same angle on r and R. Second, we show that if there
exist two different points of zero curvature on the x-ray and a point in between
that has curvature greater than zero, then there can be no convex body bounded
away from the origin that has that x-ray data.

16



Lemma 7.1 If K = (r,R) is a convex body bounded away from the origin
in Cla, ] and its directed z-ray X satisfies K(X)(po) = 0 for some po €
(a, B), then K(r)(vo) = K(R)(vo) = 0 and the tangent lines to the functions
X(p),r(¢), and R(p) are parallel at ¢ = ¢q.

ProOF.
K(R)=K(X +7r)=K(X)+ 2Xr +4X'r' — Xr" — X"r) + K(r)

Since R is the far side of the convex body K, by Lemma 5.1 we know that
K(R) > 0. So, K(X)+(2Xr+4X'r'—Xr"—X"r)+K(r) > 0. Since KL(X)(po) =
0, we know that

K(R) = (2X7 +4X"7 — Xr'" — X"r) + K(r) > 0 at p = 0.

By Lemma 5.1, we know

Kir)y<0 = r">r- 2@ (13)

and by hypothesis, we know

(X7)?
K(X)(po)=0 = X"=X -2 X at ¢ = @p. (14)
Substituting (13) and (14) into K(R), we find

2 "2
K(R) < (2Xr +4X'r' —Xr—2X% —Xr—2r&) + K(r)

X

_ (4x (r)? o, (X))

= (4X'r = 2X " — 20 ) +K(r)

- —;%(X%')? = 2XX'rr’ 4 (X')*r?) + K(r)
2 ' 2

_ _X_r(XT_XT) -|-IC(T)

2
0 < K(R) S—X—r(X’r—Xr')z—HC(r) at ¢ = @o. (15)
Since —<&(X'r — Xr')? is always less than or equal to zero and K(r) <0,
inequality (15) only holds when —<2(X'r — Xr')? = 0 and K(r) = 0. So
K(r)(o) = 0 and % = %I which implies the tangent line of X is parallel to the

tangent line of r at ¢ = ¢y.
A similar argument yields the inequality

0> K(r) > %B(X’R _ XR') +K(R) at ¢ = @ (16)

This inequality holds when K(R) = 0 and £z (X'R—XR')? = 0. So K(R)(o) =
0, and the tangent line of X is parallel to the tangent line of R at ¢ = ¢¢. O
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Theorem 7.2 Let X () be a function on [a, B] that is C? on (a, B) and satisfies
K(X)(p) >0 for ¢ € (a, ). If there exist angles o and p1, a < @o < 1 <
such that

i) K(X)(po) = K(X(p1)) = 0 and

i) K(X)(g) >0 for some ¢ € (po,¢1),
then the only convex body with directed z-ray data X is K = (0, X).

PROOF. Suppose there exists a convex body K' = (r, R), bounded away from
the origin with directed x-ray data X. Then by Lemma 7.1 and condition i),
we know that

K(r)(wo) = K(r)(¢1) = K(R)(p0) = K(R)(p1) =0

and the slopes of the tangent line of X ,R, and r are equal at .

Choose coordinates so that the y-axis is parallel to the tangent lines of X R,
and r at g and 0 < r(pg) < R(po). Since the ray going through X (o) and
R(yo) intersects the ray going through X (¢;) and R(p1) at O and nowhere
else, we can conclude that both r(p;) and R(p;) are on the same side of the
line connecting r(pg) and R(pp). Observe that since K is a convex body, as we
travel around K from r(pg) clockwise, the slope of the tangent line at each
point on 0K must be monotone decreasing from oo to 0 and then to —oo when
we get to R(po). Likewise if we travel counterclockwise from r(pg) around 0K,
the slopes of the tangent lines must be monotone increasing from —oo to 0 and
then to co at R(pp). (We denote a slope of —co to be equal to the slope of
00, both of which are vertical. The only reason we use the different signs is so
we can describe the slope as increasing or decreasing accordingly.) If the slopes
of the tangent lines at r(y1) and R(p;) are equal and the curvature is zero
at these two points, then there are only two possibilities in order to preserve
the convexity of K. The first possibility is that r(¢1) and R(y1) lie on a line
segment. The second possibility is that r(¢1) lies on a vertical line connected
to (o), and R(p1) lies on a vertical line connected to R(pp).

Possibility 1: r(¢1) and R(p1) lie on a line segment.

If this is true, then in order to preserve the convexity of K, the line segment
connecting r(p1) and R(y1) must contained in 0K and thus must be contained
in a supporting ray of K. This implies that r(p1) and R(y1) are endpoints of
the r(¢) and R(yp), respectively. Then, either p; = a or ¢1 = 3, and this is a
contradiction.

Possibility 2: r(p1) lies on a vertical line connected to (o) and R(p;) lies
on a vertical line connected to R(yo).

If this is true, then K contains a parallel wedge and by [2, Theorem 3.1], the
x-ray data contains an interval of zero curvature connecting X (yo) and X (¢1).
Thus, (X (¢)) =0 for all ¢ € (vo, ¢1),and again this is a contradiction. O
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Theorem 7.3 If X € Cla, (], K(X) > 0 on [a, 5], then there exists a convex
body Kx bounded away from the origin such that X is the directed z-ray of K.

ProoF. Let I be a line. Show K(tl + X) > 0 for some ¢ > 0. Since
Ktl+X)=tQIX+4'X"-1"X —1X")+ K(X)

By the Extreme Value Theorem, there exists a § such that £(X) > § > 0 on
[a, B]. By hypothesis, 21X + 4I'X' — "X — LX" is bounded. Hence for some
t>0, Kt + X) > 0. O

Remark This result is not as strong as we would like since to show that as
long as {¢ € (a,B) : K(z)(¢) = 0} is connected, then there exists a convex
body bounded away from the origin with directed x-ray X.
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