
Properties of Planar Convex Bodies from One

Directed X-ray

William Black
Oregon State University

Corvallis, OR
blackw21@yahoo.com

David Koop
Calvin College

Grand Rapids, MI
koop@mac.com

Advisor: Dr. Donald Solmon
Oregon State University

Corvallis, OR
solmon@math.orst.edu

January 26, 2001

1 Introduction

The motivation for this paper was to make progress in the �eld of geometric
tomography toward solving Hammer's x-ray problem. Geometric tomography is
the study of convex bodies and their idealized x-rays. Thus, factors like density
are ignored when taking an x-ray of a convex body. This paper focuses only on
directed x-rays. For more information on geometric tomography including both
parallel and directed x-rays, consult Gardner [1].

In this paper, we analyze and characterize convex bodies with the same x-ray
data from a single point source. First, we derive various families of convex bodies
through parameterizations and by adding x-ray data to a line. A second goal is
to improve the method for determining the convexity of a body by extending the
quadratic form introduced by Lam and Solmon [2]. Finally, we �nd conditions
that determine which x-rays can be associated with a convex body away from
the source and what restrictions the x-ray data puts on the convex body.

We would like to thank Dr. Solmon for his guidance throughout this project.
We would also like to thank the National Science Foundation for its support of
the Research Experience for Undergraduates program. Lastly, we would like to
acknowledge Courtney Fitzgerald who began working on this project, but was
unable to continue due to illness.
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2 Notation and De�nitions

De�nition 2.1 A convex body is a compact, convex subset of the plane with

non-empty interior.

De�nition 2.2 The characteristic function of a convex body K is

�K(p) =

(
0 if p =2 K

1 if p 2 K
for p 2 E2

Throughout the paper, K is assumed to be a convex body. Unless otherwise
speci�ed, points will be in polar coordinates (r; ') where r � 0 and ' is measured
counterclockwise from the positive x-axis.

De�nition 2.3 A directed x-ray transform, also known as a point source

x-ray or a fan-beam x-ray, gives the chord length of the convex body along a

particular direction � from a given point O, which is called the point source.

Thus, the directed x-ray of K, DKO is

DKO (') =

Z 1

0

�K(O + t�)dt; � =< cos'; sin' >

Since we are only considering a single source for the directed x-rays, we assume,
without loss of generality, that the source, O, is at the origin.

From a single point source, O, we can de�ne the convex body K by a unique
pair of functions r('); R(') satisfying

K = f(s; ') : r(') � s � R(')g

We refer to the points with polar coordinates (r('); ') as points on the near
boundary of K and the function r(') as the near boundary function of K. In a
similar manner, the terms far boundary and far boundary function refer to the
points (R('); ') and the function R('). As a convention throughout this paper,
we use lowercase letters to refer to the near boundary and uppercase letters to
refer to the far boundary. With this notation, the directed x-ray of K in the
direction � =< cos'; sin' > becomes X(') = R(') � r('). Throughout the
paper, we refer to these functions simply as X ,R, and r.

De�nition 2.4 Let K be a convex body with an associated directed x-ray from

point O. Then the supporting cone C[�; �] of K is the cone with vertex at O
such that for all ', � < ' < �, DKO (') > 0. The supporting rays of K are

' = � and ' = �.

Throughout the paper, the supporting rays are labeled � and � where � <
�. Since K is bounded away from O, � � � < �, and we can always choose
coordinates such that K lies above the y-axis.

We would to be able to determine whether a near or far side function is
convex the right way. One method that is extremely useful in determining this
is the quadratic form de�ned by Lam and Solmon [2].
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De�nition 2.5 Given three points on the curve x, fx1; x2; x3g, with associated

angles '1; '2; '3 such that '1 < '2 < '3 < '1 + �, we de�ne the quadratic

form, Q(x), as

Q(x) = Q(x1; x2; x3) = x1x2 sin('2�'1)+x2x3 sin('3�'2)�x1x3 sin('3�'1)

where xi is a function of 'i.

This form can be written Q(x) = xAxT , where

A =
1

2

0
@ 0 sin('2 � '1) � sin('3 � '1)

sin('2 � '1) 0 sin('3 � '2)
� sin('3 � '1) sin('3 � '2) 0

1
A

and x is the vector < x1; x2; x3 >. Both forms appear in the paper, but the
second expression is useful in expressing the middle term when expanding Q(r+
s) = Q(r) + 2rAsT +Q(s).

From Lam and Solmon [2], we �nd some important properties of Q. A
bounded function r on [�; �], 0 < � � � < �, is the near side of a convex body
K if and only if for all � � '1 < '2 < '3 � �, Q(r) � 0. Similarly, a bounded
function R on [�; �] is the far side of K if and only if Q(R) � 0. This allows
us to uniquely identify any convex body bounded away from the source O with
supporting cone C[�; �] with a pair of bounded functions (r; R) satisfying

i) 0 < r(') � R(') on [�; �] with r < R on (�; �)

ii) Q(r) � 0 and Q(R) � 0 on [�; �]

Having made this identi�cation, given the source O, we may refer to K as
the pair of functions (r; R) satisfying i and ii above.

3 Properties of Q

In this section, we introduce some useful properties associated with Q.

Theorem 3.1 The quadratic form Q satis�es the following

i) Q(tx) = t2Q(x) for all functions x and scalars t.

ii) If Q(R) � 0, Q(s) � 0, and R � s, then Q(R� s) � 0.

iii) If Q(r) � 0 and Q(s) � 0, then Q(r + s) � 0.

Proof. i) is trivial. ii) was proved by Lam and Solmon [2]. To prove iii), we
�rst expand

Q(r + s) = Q(r) +Q(s) + 2rAsT

where

2rAsT = (r1s2 + r2s1) sin('2 � '1)

+ (r2s3 + r3s2) sin('3 � '2)� (r1s3 + r3s1) sin('3 � '1): (1)
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Since Q(r) � 0, we know that

r2 �
r1r3 sin('3 � '1)

r1 sin('2 � '1) + r3 sin('3 � '2)

and similarly because Q(s) � 0,

s2 �
s1s3 sin('3 � '1)

s1 sin('2 � '1) + s3 sin('3 � '2)
:

Substituting into (1), we �nd that 2rAsT �

�
sin('2 � '1) sin('3 � '2) sin('3 � '1)(r1s3 � s3r1)

2

(r1 sin('2 � '1) + r3 sin('3 � '2))(s1 sin('2 � '1) + s3 sin('3 � '2))
� 0

Since this expression is always less than or equal to 0 and Q(r), Q(s) � 0 as
given, Q(r + s) � 0. �

The �rst result of this theorem is useful in computations of Q. The second
result implies that the directed x-ray of a convex body is itself the far side of
a convex body with source O, a result of Longinetti [3]. The last result of this
theorem provides a property that allows the comparison of combinations of the
near sides of two di�erent convex bodies.

4 Some convex bodies with a common directed

x-ray

We begin with a convex body K bounded away from O and its associated x-ray
data X from a given source O. Then K = (R; r) where Q(r) � 0 and Q(R) � 0.
In addition, we can associate a convex body M with the x-ray data of K as
(0; X) since Q(0) = 0 and Q(X) � 0.

4.1 Linear Combinations of (0; X) and (r; R)

Given a source O and convex bodies K = (r; R) and M = (0; X), we de�ne a
linear function L as

L(t) = (1� t)(0; X) + t(r; R) = (tr; (1� t)X + tR)

L(t) is a body with near side tr, the result of scaling r, but the far edge
(1�t)X+tR is not necessarily convex and may look di�erent from R, especially
as t approaches 0.

Theorem 4.1 For all t 2 [0; 1], L(t) is always a convex body with x-ray data

X = R� r.
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Figure 1: The convex bodies L(1) and L(0:5) and their x-ray data

Proof. First, we show that the x-ray data is preserved for all t. Since (r; R)
has directed x-ray data X , we can write R = r +X . Substituting into L(t), we
�nd

L(t) = (tr; (1� t)X + tR) = (tr; (1� t)X + t(r +X)) = (tr; tr +X)

which certainly has x-ray data X .
Second, we must show that the new body L(t) is convex for t 2 [0; 1]. Hence,

we must show that Q(tr) � 0 and Q(tr +X) � 0. The �rst condition is trivial
since Q(tr) = t2Q(r), but the second condition is more diÆcult. We know that
at t = 0, Q(tr + X) = Q(X) � 0 and at t = 1, Q(tr + X) = Q(R) � 0.
Expanding gives

Q(tr +X) = t2Q(r) + 2trAXT +Q(X)

which is a quadratic with leading coeÆcient Q(r). By hypothesis, Q(r) � 0, so
the parabola must open down, and since at t = 0 and t = 1, Q(tr + X) � 0,
Q(tr +X) � 0 for all t 2 [0; 1]. �

It should be noted that of the three necessary conditions for the body (tr; tr+
X) to satisfy the above theorem, two hold for all t while the other always holds
for t 2 [0; 1] but not necessarily for other t. Both the preservation of x-ray
data and convexity of the near side tr hold for all t. The convexity of tr + X
restricts the interval for t in most cases. We can, in fact, show that this interval
is bounded, provided Q(r) 6= 0. In some cases, the interval is bounded when
Q(r) = 0.

Theorem 4.2 There exists some t0 � 1 such that Q(t0r + X) < 0, provided
that either
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i) Q(r) < 0 for '1 < '2 < '3 < '1 + �, or

ii) Q(r) = 0 and Q(X) > Q(R).

Proof. First, we consider the condition in part i. Since Q(tr+X) is quadratic
and the coeÆcient of t2, Q(r), is always less than 0, Q(tr+X) is a parabola that
opens down. In addition, Q(X),Q(R) � 0, so because Q(r) 6= 0, the quadratic
must have two roots, one of which is greater than 1. Call this root t�. Then for
t0 > t�,

Q(t0r +X) < Q(t�r +X) = 0

Now, we consider the second case. Here the quadratic reduces to a linear
expression so

Q(tr +X) = 2trAXT +Q(X):

At t = 0, Q(tr + X) = Q(X), and at t = 1, Q(tr + X) = Q(R). Since
Q(X) > Q(R) by hypothesis, this line must have negative slope and therefore
must intersect the x-axis at some T �. So for t0 > T �,

Q(t0r +X) < Q(T �r +X) = 0

Therefore, there exists some t0 � 1 such that Q(t0r + X) < 0 and L(t) is not
convex for t � t0. �

4.2 Extending Convex Bodies from (r; R)

In the previous section, we showed that it is possible to construct convex bodies
that have the same x-rays by taking a certain linear combination of (0; X) and
(r; R). This involved scaling the near side and constructing the far side by
adding the x-ray data to the scaled near side. In this section, we examine what
happens when we scale the far side and construct the near side by subtracting
the x-ray data.

Given a source O and a convex body K = (r; R) with x-ray data X = R� r,
we de�ne a function G so that

G(s) = (s� 1)(X; 0) + s(r; R) = (sR�X; sR)

Theorem 4.3 If Q(R) = 0, then G(s) is a convex body with x-ray data X =
R� r for all s � 1.

Proof. It is obvious that the x-ray data is preserved in this parameterization,
so we address convexity. Again, in order for G(s) to be convex, Q(sR) � 0 and
Q(sR � X) � 0. Since Q(sR) = s2Q(R) = 0 holds for all s, we are left with
only the last condition. Rewriting,

Q(sR �X) = Q(sR� (R� r)) = Q((s� 1)R+ r)
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Figure 2: The convex bodies G(1) and G(1:5) and their x-ray data

Because s � 1 =) s � 1 � 0, let s� = s � 1 � 0. Then, Q((s � 1)R + r) =
Q(s�R+ r), and because Q(s�R) = 0 and Q(r) � 0, by part iii of Theorem 3.1,
Q(s�R+ r) � 0. �

Notice that we must restrict R to be a line in order to guarantee convexity
for G(s) for all s � 1. If we do not, we are left with a quadratic with leading
coeÆcient Q(R) � 0. That implies that graph of Q(sR�X) is a parabola that
opens up. Because Q(sR�X) = Q(r) � 0 at s = 1, we know that there is some
s0 � 1 such that Q(s0R �X) = 0, and therefore G(s) will not be convex for all
s > s0.

4.3 Combining the two parameterizations

Using both of the parameterizations in the above sections, we can construct a
two-parameter family of convex bodies with the same directed x-ray from source
O. We begin with the family (sR�X; sR) and apply the �rst parameterization
(tr; tr +X) by substituting r = sR�X to produce the family

H(s; t) = (t(sR �X); t(sR�X) +X) = (tsR� tX; tsR+ (1� t)X)

Again, the x-ray data is preserved, while convexity is limited by the s and t
parameters.

5 The Di�erential Operator K

One of the problems with the quadratic form is that it requires three points to
compute the concavity of a curve. It is also limited when analyzing behavior
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Figure 3: The convex bodies H(1; 1) and H(1:5; 0:3) and their x-ray data

if 'i = 'j for i < j since it is always 0. Thus, it becomes apparent that a
di�erential operator that requires only information from one point is superior
for many applications. While such an operator requires the curve be twice
di�erentiable, the curves we will be examining have only a small number of
points where this is an issue.

We derive the di�erential operator K from the quadratic form Q by tak-
ing limits as '1; '3 ! '2. To accomplish this, we �rst compute Q�(x) =

lim'1!'2
Q(x)
'2�'1

. By L'hospital's Rule, Q�(x)

= lim
'1!'2

x1x2 sin('2 � '1) + x2x3 sin('3 � '2)� x1x3 sin('3 � '1)

'2 � '1

= lim
'1!'2

x1x2
sin('2 � '1)

'2 � '1
+

d
d'1

(x2x3 sin('3 � '2)� x1x3 sin('3 � '1))

d
d'1

('2 � '1)

= lim
'1!'2

x1x2
sin('2 � '1)

'2 � '1
+ lim
'1!'2

(x01x3 sin('3 � '1)� x1x3 cos('3 � '1))

= x22 + x02x3 sin('3 � '2)� x2x3 cos('3 � '2):
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After this we take the lim'3!'2
Q�

(x)
('3�'2)2

= lim
'3!'2

x22 + x02x3 sin('3 � '2)� x2x3 cos('3 � '2)

('3 � '2)2

= lim
'3!'2

(x02x
0
3 + x2x3) sin('3 � '2) + (x02x3 � x2x

0
3) cos('3 � '2)

2('3 � '2)

=
(x02)

2 + x22
2

+ 1=2 lim
'3!'2

(x03x
0
2 � x2x

00
3 ) cos('3 � '2)

=
(x02)

2 + x22
2

+
(x02)

2 � x2x
00
2

2

= (x22 + 2(x02)
2 � x2x

00
2 )=2

Since the constant is unimportant when considering whether the operator is
positive or negative, we de�ne K(x) = x2 + 2(x0)2 � x00x.

Remark This derivation of K assumes that the curve x is C2, but the limit
formula will hold except on a set of zero Lebesgue measure for curves satisfying
Q(r) � 0 or Q(R) � 0.

Remark Since we apply the di�erential operator to sums, we derive K(x+ y)
now.

K(x+ y) = (x+ y)2 + 2((x+ y)0)2 � (x+ y)(x+ y)00

= K(x) + (2xy + 4x0y0 � xy00 � x00y) +K(y)

Next, we establish conditions for concavity similar to those Q produces by
showing that for ' in some interval (�; �), when K(x) � 0, the graph of the
polar function x(') is concave toward the source and when K(x) � 0, the graph
of x is concave away from the source.

Theorem 5.1 Let g(') be a C2 polar function on (�; �) and continuous on

[�; �], 0 < ��� < �. De�ne the parametric curve � =< g(') cos'; g(') sin' >.
Then,

i) � is concave toward the origin if and only if K(g)(') � 0 for all ' 2 (�; �)

ii) � is concave away from the origin if and only if K(g)(') � 0 for all

' 2 (�; �).

Proof. First, let � =< cos'; sin' > and �? =< � sin'; cos' >. Consider
the polar parametric curve

� =< g(') cos'; g(') sin' >= g(')�:
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Then,

�0 =< g0(') cos'� g(') sin'; g0(') sin'+ g(') cos' >

= g0(') < cos'; sin' > +g(') < � sin'; cos' >

= g0(')� + g(')�?

�00 = g00(')� + g0(')�? + g0(')�? � g(')�

= �00 = (g00(') � g('))� + 2g0(')�?

A simple cross product yields

�0 � �00 = (g0(')� + g(')�?)� (g00(') � g('))� + 2g0(')�?

= 2[g0(')]2(� � �?) + g(')(g00(') � g(')(�? � �)

= 2[g0(')]2k + (g2(')� g(')g00('))k

= K(g)(')k

where k is the unit vector in the positive z direction. Recall from vector calculus
that the second derivative of a parametric curve � is called the acceleration
vector and can be written as

�00 =
dv

d'
~T + �v2~n (2)

where v = k�0(')k,� is the curvature of �, ~T = �0

k�0k is the unit tangent vector,

and ~n is the principal unit vector (~n always points to the side of the curve which

is concave). Observe that ~T = �0

k�0k =)

�0(') = k�0k~T = v ~T (3)

From equations (2) and (3), we can write

�0 � �00 = v ~T � (
dv

d'
~T + �v2~n)

= �v3(~T � ~n)

By de�nition � � 0 and since v = k�0(')k � 0, v3 � 0 =) �v3 � 0.

Furthermore, since ~T is perpendicular to ~n and they both are unit vectors, we
know ~T � ~n = �k. Thus, �0 � �00 = ��v3k = K(g)(')k =)

K(g)(') � 0 () ~T � ~n = k

and

K(g)(') � 0 () ~T � ~n = �k

By the right hand rule ~T �~n = k i� ~n points toward the origin and the curve �
is concave toward the origin, and ~T � ~n = �k i� ~n points away from the origin
and the curve � is concave away from the origin. �

10



Remark One interesting and logical property of the di�erential operator K is
that it is related to the formula for curvature �. Deriving this formula in polar
coordinates yields

�(x) =
x2 + 2(x0)2 � x00x

(x2 + (x0)2)3=2

Since the denominator is always positive, the numerator of the formula deter-
mines whether the curve has positive or negative curvature. But this numerator
is exactly the di�erential operator K.

6 Creating convex bodies by adding lines to x-

ray data

Lemma 6.1 Let g(') and h(') be C1 functions on (�; �). Then the tangent

lines of g and h are parallel at '0 if and only if g0

g = h0

h for some '0 2 (�; �).

Proof. Parameterize g(') as y = g(') sin('),x = g(') cos('). Then by the
chain rule the slope of the tangent line of g at ', mg(') is

mg(') =
dy

dx
=

dy
d'

dx
d'

=
g0(') sin'+ g(') cos'

g0(') cos'� g(') sin'

=

g0

g sin'+ cos'
g0

g cos'� sin'

Similarly the slope of the tangent line of h at ' is

mh(') =
h0

h sin'+ cos'
h0

h cos'� sin'

If g
0

g = h0

h at some '0, then clearly mg('0) = mh('0). Conversely, if the slopes
of the tangent lines are parallel at '0, then

mg('0) = mh('0) ()

g0

g sin'0 + cos'0

g0

g cos'0 � sin'0

=
h0

h sin'0 + cos'0

h0

h cos'0 � sin'0

() �
g0

g
sin2 '0 +

h0

h
cos2 '0 = �

h0

h
sin2 '0 +

g0

g
cos2 '0

()
h0

h
(sin2 '0 + cos2 '0) =

g0

g
(sin2 '0 + cos2 '0)

()
h0

h
=
g0

g
at ' = '0
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Lemma 6.2 If X is the x-ray data from a non-parallel wedge W = (r; R), then
there exists a Æ > 0 such that K(x) > Æ for all ' 2 [�; �].

Proof. Since W = (r; R) is a non-parallel wedge, K(r) = 0 and K(R) = 0 for
all ' 2 [�; �]. Hence

r00 = r + 2
(r0)2

r
(4)

and

R00 = R+ 2
(R0)2

R
(5)

for all ' 2 [�; �]. Because X = R� r, we can expand K(X) as

K(R � r) = K(R)� (2rR+ 4r0R0 � rR00 � r00R) +K(r)

= �(2rR + 4r0R0 � rR00 � r00R)

Substituting (4) and (5), we �nd

K(X) = �(2rR + 4r0R0 � r

�
R+ 2

(R0)2

R

�
�R

�
r + 2

(r0)2

r

�

=
1

rR

�
�2r2R2 � 4rr0RR0 + r2R2 + 2r2(R0)2 +R2r2 + 2R2(r0)2

�
=

1

rR
(rR0 � r0R)2 � 0

Equality holds if and only if rR0 = r0R in which case R is parallel to r and
the wedge is a parallel wedge by Lemma 6.1. Contradiction. The existence of Æ
follows since K(X) is continuous on [�; �] by the Extreme Value Theorem. �

Remark To ensure that K is de�ned on the closed interval [�; �], we make the
following de�nitions. We de�ne K(x)(�) = x2 + 2(x0�)

2 � xx00� and K(x)(�) =
x2 + 2(x0+)

2 � xx00+ where x0� and x00� denote the left hand �rst and second
derivatives and x0+ and x00+ the right hand derivatives.

Theorem 6.3 Given a non-parallel wedge W = (r; R) with x-ray data X =
R � r, for any line l there exists a t0 > 0 such that W 0 = (t0l; t0l + X) is a

convex body provided l intersects both � and � away from the source.

Proof. Since W is a non-parallel wedge, we know that K(r) = K(R) = 0 so
(4) and (5) from the previous lemma hold. In order to showW 0 = (t0l; t0l+X) is
convex we must show there exists a t0 > 0 such that K(t0l) � 0 and K(t0l+X) �
0. Since l is a line, K(tl) = t2K(l) = 0 for all t 2 R. So

K(tl +X) = K(tl) + t(2lX + 4l0X 0 � l00X � lX 00) +K(X)

= t(2lX + 4l0X 0 � l00X � lX 00) +K(X)
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Figure 4: A wedge W and the result of adding its x-ray data to a line

Substituting (4) and (5), we �nd

K(tl +X) = �
t

lX
(l0X � lX 0)2 +K(X)

We now have a linear expression in t with a y-intercept greater than Æ > 0.
By continuity there exists a t0 > 0 such that K(t0l +X) > 0. �

Theorem 6.4 Given a non-parallel wedge W = (r; R) with x-ray data X =
R� r, then for each line L whose slope is suÆciently close to R, there exists an

s0 such that W 0 = (s0L�X; s0L) is a convex body with the same directed x-ray

as W .

Proof. To show W 0 = (s0L � X; s0L) is a convex body, we need to show
there exists an s0 > 0 such that K(s0L�X) � 0 and K(s0L) � 0.

Since W is a non-parallel wedge, (4) and (5) from Lemma 6.2 still hold.
We also know from hypothesis that K(sL) = s2K(L) = 0. Next, we show
K(sL�X) � 0 for some s > 0.

K(sL�X) = s2K(L)� s(2LX + 4L0X 0 � LX 00 � L00X) +K(X)

= K(X)� s(2LX + 4L0X 0 � L00X � LX 00)

= K(X)� s(2LX + 4L0X 0 � L00X � L(R� r)00)

(6)

This is a linear expression in s. Since K(X) > 0, it has a positive y-intercept.
Thus, expression (6) can only become negative for some s > 0 if the expression
2LX + 4L0X 0 � L00X � LX 00 is positive. We are only concerned with the slope
and therefore can drop K(X). After substituting (4) and (5) from Lemma 6.2,
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Figure 5: A wedge W and the result of subtracting its x-ray data from a line

we �nd 2LX + 4L0X 0 � L00X � LX 00

= 2LX + 4L0X 0 � L00X � LR00 + Lr00

= 2LX + 4L0X 0 � L00X � L

�
R+ 2

(R0)2

R

�
) + L

�
r + 2

(r0)2

r

�

= L(2R� 2r �R+ r) + 4L0X 0 � L00X � 2L

�
(R0)2

R
�

(r0)2

r

� (7)

Since L is a straight line, K(L) = 0 and

L00 = L+ 2
(L0)2

L
(8)

Substituting (8) into (7), we �nd

(7) = LX + 4L0X 0 �

�
L+ 2

(L0)2

L

�
X � 2L

�
(R0)2

R
�

(r0)2

r

�

= 4L0X 0 �
2R(L0)2

L
+

2r(L0)2

L
�

2L(R0)2

R
+

2L(r0)2

r

=
2

LRr
(2RrLL0(R � r)0 �R2r(L0)2 +Rr2(L0)2 � rL2(R0)2 +RL2(r0)2

=
2

LRr
(R((rL0)2 � 2rr0LL0 + (r0L)2)� r((RL0)2 � 2RR0LL0 + (R0L)2)

= �
2

LRr
(r(RL0 �R0L)2 �R(rL0 � r0L)2)

(9)

Studying expression (9), we can see the slope of the linear equation is neg-
ative when r(RL0 � LR0)2 � R(rL0 � r0L)2 < 0 since L, R, and r are positive.
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Rewriting,

R

�
L0

L
�
R0

R

�2

� r

�
L0

L
�
r0

r

�2

< 0 (10)

From Lemma 6.1, we know

mp =

p0

p sin'+ cos'
p0

p cos'� sin'

where mp is the slope of a polar function p('). Then this expression

=) mp(
p0

p
cos'� sin') =

p0

p
sin'+ cos'

=)
p0

p
(mp cos'� sin') = mp sin'+ cos'

=)
p0

p
=
mp sin'+ cos'

mp cos'� sin'

The slope of p can be expressed in terms of the angle of inclination,  p in
the following way

mp = tan p =
sin p
cos p

=)
p0

p
=

sin p
cos p

sin'+ cos'

sin p
cos p

cos'� sin'

Multiplying by
cos p
cos p

yields

p0

p
=

sin p sin'+ cos' cos p
sin p cos'� sin' cos p

(11)

Using the trigonometric identities cos(x�y) = sinx sin y+cosx cos y and sin(x�
y) = sinx cos y � sin y cosx we can write (11) as

p0

p
=

cos( p � ')

sin( p � ')

= cot( p � ')

Using this relation, we can rewrite (10) as

R(cot( R � ')� cot( L � '))2 � r(cot( r � ')� cot( L � '))2 < 0

=)
R

r
<

(cot( r � ')� cot( L � '))2

(cot( R � ')� cot( L � '))2
(12)

and the slope is negative when (12) holds.
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Observe that R
r is bounded as R and r are bounded and 0 < r < R. There-

fore as  L !  R the right hand side goes to in�nity. This means that if the
angle of inclination of L is suÆciently close to the angle of inclination of R (i.e.
the slope of L is suÆciently close to the slope of R) then the slope of (10) is
negative. Hence there exists a s0 > 0 such that K(s0L �X) � 0. Also notice
that the only time the right hand side of this inequality is unde�ned is when
' =  r or ' =  L or ' =  R. If ' =  r or ' =  R then tan' = tan R or
tan' = tan r. This implies that the slope of R or r is parallel to the slope
of the ray '. If that were the case we would have a parallel wedge. Suppose
' =  L =) tan' = tan L = mL. Then tan� < mL or mL < tan�. Then L
would intersect � and � only at the origin. Contradiction. �

Remark Also notice that when  L !  r the right hand side of 12 goes to
zero. This means that when the slope of L is suÆciently close to the slope of
r the inequality does not hold as R

r is bounded below by 1. Hence for lines
L who have slopes close to that of r there does not exist an s0 > 0 such that
K(s0L�X) � 0.

Corollary 6.5 The set of all convex bodies with same directed x-ray is not

convex.

Proof. From the theorem, we know that we can �nd two convex bodies, (r; R)
and (s; S), with the same x-ray data that both have a line for their far side,
and di�erent slopes. Examine the linear combination of these bodies: L(s; t) =
(1� t)(r; R)+ t(s; S) at t = s = 0:5. Then L(0:5; 0:5) = (0:5(r+ s); 0:5(R+S)).
So for this body to be convex, Q(0:5(R + S)) � 0. But, Q(0:5(R + S)) =
(0:5)2Q(R + S), and we know that because R and S are both lines, Q(R) = 0
and Q(S) = 0. Then, by part iii of Theorem 3.1, Q(R + S) � 0 This means
that Q(R + S) = 0, but this is impossible because that implies that R and S
are parallel. �

7 Determining the existence of a convex body

from the x-ray data

We have shown that we can construct families of convex bodies that have the
same x-ray by using the s and t parameterizations (x4) and by adding and sub-
tracting the x-ray data from a line (x6). In this section, we focus our attention
on when a function X(') can be the x-ray data of a convex body. We assume
that X 0 and X 00 are bounded throughout this section.

First, we examine x-ray data that has one point where K(X) = 0, and show
that if a convex body bounded away from the origin exists, there must be points
of zero curvature at the same angle on r and R. Second, we show that if there
exist two di�erent points of zero curvature on the x-ray and a point in between
that has curvature greater than zero, then there can be no convex body bounded
away from the origin that has that x-ray data.
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Lemma 7.1 If K = (r; R) is a convex body bounded away from the origin

in C[�; �] and its directed x-ray X satis�es K(X)('0) = 0 for some '0 2
(�; �), then K(r)('0) = K(R)('0) = 0 and the tangent lines to the functions

X('),r('), and R(') are parallel at ' = '0.

Proof.

K(R) = K(X + r) = K(X) + (2Xr + 4X 0r0 �Xr00 �X 00r) +K(r)

Since R is the far side of the convex body K, by Lemma 5.1 we know that
K(R) � 0. So, K(X)+(2Xr+4X 0r0�Xr00�X 00r)+K(r) � 0. Since K(X)('0) =
0, we know that

K(R) = (2Xr + 4X 0r0 �Xr00 �X 00r) +K(r) � 0 at ' = '0:

By Lemma 5.1, we know

K(r) � 0 =) r00 � r � 2
(r0)2

r
(13)

and by hypothesis, we know

K(X)('0) = 0 =) X 00 = X � 2
(X 0)2

X
at ' = '0: (14)

Substituting (13) and (14) into K(R), we �nd

K(R) � (2Xr + 4X 0r0 �Xr � 2X
(r0)2

r
�Xr � 2r

(X 0)2

X
) +K(r)

= (4X 0r � 2X
(r0)2

r
� 2r

(X 0)2

X
) +K(r)

= �
2

Xr
(X2(r0)2 � 2XX 0rr0 + (X 0)2r2) +K(r)

= �
2

Xr
(X 0r �Xr0)2 +K(r)

0 � K(R) � �
2

Xr
(X 0r �Xr0)2 +K(r) at ' = '0: (15)

Since � 2
Xr (X

0r �Xr0)2 is always less than or equal to zero and K(r) � 0,
inequality (15) only holds when � 2

Xr (X
0r � Xr0)2 = 0 and K(r) = 0. So

K(r)('0) = 0 and X0

X = r0

r which implies the tangent line of X is parallel to the
tangent line of r at ' = '0.

A similar argument yields the inequality

0 � K(r) �
2

XR
(X 0R�XR0)2 +K(R) at ' = '0 (16)

This inequality holds when K(R) = 0 and 2
XR (X

0R�XR0)2 = 0. So K(R)('0) =
0, and the tangent line of X is parallel to the tangent line of R at ' = '0. �

17



Theorem 7.2 Let X(') be a function on [�; �] that is C2 on (�; �) and satis�es

K(X)(') � 0 for ' 2 (�; �). If there exist angles '0 and '1, � < '0 < '1 < �
such that

i) K(X)('0) = K(X('1)) = 0 and

ii) K(X)(') > 0 for some ' 2 ('0; '1),

then the only convex body with directed x-ray data X is K = (0; X).

Proof. Suppose there exists a convex body K 0 = (r; R), bounded away from
the origin with directed x-ray data X . Then by Lemma 7.1 and condition i),
we know that

K(r)('0) = K(r)('1) = K(R)('0) = K(R)('1) = 0

and the slopes of the tangent line of X ,R, and r are equal at '0.
Choose coordinates so that the y-axis is parallel to the tangent lines of X ,R,

and r at '0 and 0 < r('0) < R('0). Since the ray going through X('0) and
R('0) intersects the ray going through X('1) and R('1) at O and nowhere
else, we can conclude that both r('1) and R('1) are on the same side of the
line connecting r('0) and R('0). Observe that since K is a convex body, as we
travel around @K from r('0) clockwise, the slope of the tangent line at each
point on @K must be monotone decreasing from 1 to 0 and then to �1 when
we get to R('0). Likewise if we travel counterclockwise from r('0) around @K,
the slopes of the tangent lines must be monotone increasing from �1 to 0 and
then to 1 at R('0). (We denote a slope of �1 to be equal to the slope of
1, both of which are vertical. The only reason we use the di�erent signs is so
we can describe the slope as increasing or decreasing accordingly.) If the slopes
of the tangent lines at r('1) and R('1) are equal and the curvature is zero
at these two points, then there are only two possibilities in order to preserve
the convexity of K. The �rst possibility is that r('1) and R('1) lie on a line
segment. The second possibility is that r('1) lies on a vertical line connected
to r('0), and R('1) lies on a vertical line connected to R('0).

Possibility 1: r('1) and R('1) lie on a line segment.

If this is true, then in order to preserve the convexity of K, the line segment
connecting r('1) and R('1) must contained in @K and thus must be contained
in a supporting ray of K. This implies that r('1) and R('1) are endpoints of
the r(') and R('), respectively. Then, either '1 = � or '1 = �, and this is a
contradiction.

Possibility 2: r('1) lies on a vertical line connected to r('0) and R('1) lies
on a vertical line connected to R('0).

If this is true, then K contains a parallel wedge and by [2, Theorem 3.1], the
x-ray data contains an interval of zero curvature connecting X('0) and X('1).
Thus, K(X(')) = 0 for all ' 2 ('0; '1),and again this is a contradiction. �
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Theorem 7.3 If X 2 C[�; �], K(X) > 0 on [�; �], then there exists a convex

body KX bounded away from the origin such that X is the directed x-ray of K.

Proof. Let l be a line. Show K(tl +X) � 0 for some t > 0. Since

K(tl +X) = t(2lX + 4l0X 0 � l00X � lX 00) +K(X)

By the Extreme Value Theorem, there exists a Æ such that K(X) > Æ > 0 on
[�; �]. By hypothesis, 2lX + 4l0X 0 � l00X � LX 00 is bounded. Hence for some
t > 0, K(tl +X) > 0. �

Remark This result is not as strong as we would like since to show that as
long as f' 2 (�; �) : K(x)(') = 0g is connected, then there exists a convex
body bounded away from the origin with directed x-ray X .
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