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Abstract

In this paper we simulate random boolean networks of connectivity 2

and calculate the lengths of state cycles in hopes of gaining some insight

into the distribution of cycle lengths for random boolean networks. Past

results suggest that for networks with connectivity 2 state cycles are rel-

atively short, but for higher connectivities the cycle length seems to grow

exponentially with the size of the network. However, this property has

yet to be veri�ed analytically.

1 Introduction

In 1969 Stuart Kau�man [6] found a generalization of the classic McCulloch
and Pitts neural network model useful in modeling what he called \genetic
regulatory networks." He was modeling genes in organisms as large, randomly
connected autonomous networks of binary switching elements, where the state
of each element at one moment was a boolean function of the state of some
number of other elements at the previous moment. In principle, perhaps a great
many things could be modeled in this way; anything that can be thought of as
a network of interconnected binary elements might potentially be modeled in
the same way.

Boolean networks and their properties are quite simple concepts to describe
mathematically, but, like so many problems in discrete mathematics, many of
the most interesting questions about them turn out to be di�cult or impossible
to answer in general. Kau�man studied the state cycles of his genetic networks
and suggested some properties of them that were interesting to him. As it has
turned out, mathematical con�rmation of these properties is far from trivial. In
fact, in 30 years his results have yet to be con�rmed in a rigorous mathematical
fashion, despite all the work that has been done on the problem.

�This research done as part of the REU Program in Mathematics at Oregon State Univer-

sity. Thanks to Paul Cull for his guidance in completion of this project.
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In this paper, �rst we cover some de�nitions and basic properties of boolean
networks. We then discuss past results, including Kau�man's work and related
work by other researchers. The subject of NP -Completeness and how it relates
to what we're studying here is brie
y covered, here. Next we discuss algo-
rithms for randomly generating boolean networks with given connectivities and
�nding state cycles on these networks. Lastly, we discuss the results from one
implementation of these algorithms and ideas.

2 Boolean Networks

2.1 De�nitions

A boolean network is simply a network of boolean functions. If xi(t) is value
on the i-th input line of some element of a network at time t then that element
can be described by a discrete di�erence equation:

xi(t+ 1) = fi
�
x1(t); x2(t); : : : ; xn(t)

�
In particular, the function fi(x1; : : : ; xn) can be any boolean function.

An autonomous boolean network is one in which the inputs to every element
come from other elements in the network (even, perhaps, the element itself),
and the output of every element is connected to other elements in the network
(possibly several at once) if it's connected at all. We can think of the state of
the network at time t as simply the boolean vector consisting of the outputs
from each of the elements at time t. Written in this way, the state St of an
n-element network at time t is an element of boolean n-space, f0; 1gn (which
we will denote Bn), and the state at time t + 1 can be written as a di�erence
equation:

St+1 =

0
BBB@
x1(t+ 1)
x2(t+ 1)

...
xn(t+ 1)

1
CCCA =

0
BBB@
f1(x1(t); x2(t); : : : ; xn(t))
f2(x1(t); x2(t); : : : ; xn(t))

...
fn(x1(t); x2(t); : : : ; xn(t))

1
CCCA = F (St) (1)

Since each fi can be any function of the form fi : Bn ! B the function F can be
any boolean from boolean n-space into boolean n-space. That is, F : Bn ! Bn.

Also note that if, say, the i-th element only depends on the outputs of
elements j and k, you can write it's function fi as

fi(x1; x2; : : : ; xn) = gi(xj ; xk)

for some i, j, and k without loss of generality. It works both ways, however.
That is, any function of, say, one or two variables can be written as a function
of k variables, with k � 2. Thus, we can think of the number of inputs to an
element in a network as the number of variables on which it's function actually
depends. Note that in the de�nition of a particular network each variable will
be associated with some element of the network.
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De�nition 2.1. The connectivity of a boolean network is the largest number
of inputs that any one element receives. That is, if ki is the number of inputs
to element i, then the connectivity k = max fki : i = 1; : : : ; ng where n is the
number of elements in the network.

Thus, we can think of every node in a boolean network as having exactly k

inputs, where k is the connectivity of the network. Equation 1 then gives us

St+1 =

0
BBB@
x1(t+ 1)
x2(t+ 1)

...
xn(t+ 1)

1
CCCA =

0
BBB@
f1(x11(t); x12(t); : : : ; x1k(t))
f2(x21(t); x22(t); : : : ; x2k(t))

...
fn(xn1(t); xn2(t); : : : ; xnk(t))

1
CCCA = F (St) (2)

where xij(t) denotes the j-th input to element i, which can be any of x1(t)
through xn(t).

2.2 Basic Properties

Since we can think of our set B = f0; 1g as equivalent to the simplest �nite �eld
Z2 (the integers modulo 2), let us now recall some information about this �eld.
The two operations are addition modulo 2 and multiplication modulo 2, de�ned
in the usual way, namely

0 + 0 = 0

0 + 1 = 1 = 1 + 0

1 + 1 = 0

and

0 � 0 = 0

0 � 1 = 0 = 1 � 0
1 � 1 = 1

These operations correspond, respectively, to the boolean operations exclusive
or (or xor), and and. The following proposition is an interesting property of
this �eld that will be useful later.

Proposition 2.1. Every function of k variables on Z2 (i.e. functions of the
form f : Zk

2 ! Z2) can be written as a polynomial with no variable raised to a
power higher than 1.

Proof. Now the cardinality of Z2 is jZ2j = 2 and jZk
2j = 2k, so the total number

of possible functions of the form f : Zk
2 ! Z2 is 2

2
k

; there are 2k elements in
the domain of the function, and each one can map to one of 2 elements|0 or
1|and so we get

2 � 2 � � � 2| {z }
2k

= 22
k

possible mappings.
Note that 02 = 0 and 12 = 1, so x2 = x for x 2 Z2. If xn = x then

xn+1 = xn � x = x � x = x2 = x, and so by induction xn = x 8n � 1.
Given this property, any polynomial of k variables could be reduced to a

multinomial in k variables (an example with three: �0+�1x1+�2x2+�3x1x2+
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�4x3 + �5x1x3 + �6x2x3 + �7x1x2x3 for some coe�cients �i 2 B). In general,
there will be

�
k
i

�
terms of i variables. Each one gets one coe�cient, and so there

will be �
k

0

�
+

�
k

1

�
+ � � �+

�
k

k

�
= 2k

coe�cients in the multinomial. Each coe�cient can be either 0 or 1, and so

there are 22
k

di�erent multinomials on k variables. Since two multinomials of
the same form and the same number of variables have di�erent coe�cients if
and only if their values di�er for at least one setting of their variables, and since
we're counting the number of choices for coe�cients, each function of k variables
on Z2 corresponds to a unique multinomial.

Because the state of a boolean network of size1 n at any moment in time
is simply a vector in boolean n-space Bn, there are 2n possible states of the
network. This is a �nite number|and the network itself is a deterministic
system (that is, there is exactly one possible next state for any given state of
the network)|and so if the network is started in some state and run for long
enough, it will eventually return to a state St that it was in previously. It will
then repeat the sequence of states following St. In general, from any given
starting state (which can be any possible state), the network will transition
through some number of transient states (possibly none) before entering a cycle.

Given that the only behavior of the network possible is for it to enter a cycle
after some number of transient states, we de�ne the following:

De�nition 2.2. Given an n-element boolean network F , with St+1 = F (St),
a cycle is an ordered set of states C = fS1; S2; : : : ; Sjg such that S1 = F (Sj),
S2 = F (S1), etc. The length ` of a cycle C is the cardinality of the set. That is,
` = jCj.

From determinism it should be clear that for a particular network any two
given cycles C1 and C2 are either disjoint or equal. In addition any given state
is either an element of some cycle or a transient state, but not both. Thus, the
total number of states involved in cycles in a network may not necessarily be
all possible states of that network, i.e. in general if Ci are all distinct (meaning
disjoint) cycles in a boolean network of size n then[

all i

Ci � Bn

but Bn *
[
all i

Ci

To illustrate some of these properties, we turn now to a simple example of
a boolean network with 3 elements taken from Kau�man [7, pages 189{190].

1throughout this paper size will refer to the number of elements in a network
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Figure 1: State-transition diagram for an example boolean network

Example 2.1. Consider a boolean network of three elements de�ned by

St+1 =

0
@x1(t+ 1)
x2(t+ 1)
x3(t+ 1)

1
A =

0
@ x2(t)x3(t)
x1(t) + x3(t) + x1(t)x3(t)
x1(t) + x2(t) + x1(t)x2(t)

1
A = F (St) (3)

The operations that the three elements compute are the functions corresponding
to, respectively, the boolean operations of and, or, and or. There are 23 = 8
possible states of this network. For our purposes here, we will denote a state
vector (x1; x2; x3), where xi 2 B, by the binary string x1x2x3.

If we start the machine in the state 000, we can see from 3 that F (000) =
(0 � 0)(0 + 0 + 0 � 0)(0 + 0 + 0 � 0) = 000 (we will write simply 000 7! 000),
and so we have the cycle C0 = f000g, a cycle of length 1. If we start the
machine in state 001, we see that 001 7! 010 7! 001 7! � � � and so we have
the cycle C1 = f001; 010g, a cycle of length 2. From the state 100 we get
100 7! 011 7! 111 7! 111 7! � � � , which gives us the cycle C2 = f111g, a cycle
of length 1. The only remaining states are 110 and 101. From these we get
110 7! 011 7! 111 7! 111 7! � � � , which is C2 again, and 101 7! 011 7! 111 7! � � � ,
which is also C2.

Notice, here, that 100, 110, and 101 each lead in one step to the state 011,
which then leads in one step into the cycle C2. Also, all of the states 100, 110,
101, and 011 are transient states. As described above, if the machine passes
through these states it only enters them once, and then passes on into a cycle
that does not involve that state. The total number of states involved in cycles,
here is 4 (two cycles of length 1 plus one cycle of length 2). There are �ve states
that lead to cycle C2 (including the one state in the cycle itself), and so for this

network the expected cycle length E(`) = b̀= 5

8
� 1 + 2

8
� 2 + 1

8
� 1 = 5+4+1

8
= 1 1

4

(note that it is not 1+1+2

3
= 1 1

3
). The state diagram associated with this network

appears in �gure 1.
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2.3 Previous Results

Kau�man [6] suggested that for boolean networks constructed at random with
a connectivity of 2 (and a given size), the median of the cycle length was ap-
proximately

p
n, where n is the number of elements. In addition, he suggested

that the distribution of cycle lengths was not symmetric, and speci�cally that
short cycles tended to dominate.

A number of researchers have tried to understand the behavior of random
boolean networks and the k = 2 case in particular. Cull [2] developed a lin-
earization technique for boolean networks and showed how it could be used to
analyze the behavior of random networks, Sherlock [9, 10] attempted to ana-
lyze Kau�man's results [6] mathematically, and Fogelman-Soulie, et al. [1, 5]
have attempted to understand speci�c sorts of random networks, to cite a few
examples.

Nicole Mayer [8] attempted to verify|among other things|that the average
cycle length for k = 2 networks is ĉ

p
n for some ĉ > 0. Computer simulation

of random boolean networks of sizes 2 through 40 was used for this, but the
results were inconclusive.

Although the most general case|namely, that in which k is equal to n, also
called the totally connected case|has been described rigorously, in 30 years no-
body has rigorously con�rmed or denied Kau�man's original conjecture, or, for
that matter, described the probabilistic behavior of random boolean networks
with connectivities k < n in a rigorous manner, despite all the work that has
been done on the problem. For instance, Some researchers have found evidence
con�rming Kau�man's claim (Kau�man [7] cites one or two examples), and
others �nd evidence against it or are otherwise unable to con�rm the results
(such as Sherlock [10]).

This paper is not an attempt to actually solve the problem, but just to
produce more computer simulations of boolean networks in hope of gaining
more insight into the problem.

2.4 Boolean Networks and NP -Completeness

It should be mentioned at this point that many of the questions we would
like to answer about boolean networks are NP -Complete. Cull [4] gives some
examples of NP -Complete problems in the speci�c case of neural networks using
the classic McCulloch and Pitts model. This neural network model uses neurons
that compute linear threshold functions, which are speci�c types of boolean
functions. As mentioned in x1, the model we're using here is a generalization of
that model to allow the \neurons" to now compute any boolean function.

A brief word about NP -Completeness would be appropriate before men-
tioning which problems can be classi�ed as such. The following description is
taken from Cull [4]. Those problems which possess an algorithm with run time2

bounded by a polynomial in the size of the input3 are, in general, easy problems.

2number of steps required to complete the algorithm
3the data on which the algorithm is being applied
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Let us call such algorithms fast. Problems without such an algorithm are hard.
In general it may be di�cult to show that a problem has no fast algorithm,
but if one can show that the problem is the hardest problem within some well-
de�ned class the problem can still be called hard. For example, NP is the class
of problems which have fast algorithms if you write your algorithms to allow
for nondeterministic computation (you might think of this as supposing, for in-
stance, your computer has a magical \guess" instruction which always chooses
the correct alternative from a set of possibilities). The hardest problems in NP

are called NP -Complete, and NP -Complete problems are generally considered
too hard to be solvable by some by any practical algorithm.

It should be pointed out that although there are precise ways to think about
what a \practical algorithm" is, it has never been proven that any of the prob-
lems in NP (including those that are NP -Complete) have no practical algo-
rithm associated with them. In other words, it has never been proven that
NP -Complete problems do not have fast algorithms in the conventional sense
(i.e. no \guess" instruction).

Cull [4] mentions the following problems (among others) about neural net-
works which are NP -Complete:

� Given an autonomous neural network and a speci�ed state S, is there a
state such that if the network is started in this state then it will enter the
speci�ed state S?

� Given an autonomous network, are there transient states?

These problems both seem easy, and for particular networks they may be easy,
but in general they are not. If these questions are di�cult to answer for neural
networks, then surely generalizing the model to boolean networks does not make
things any easier. Indeed, these seem like questions we might want to answer if
we were to calculate something like a probability distribution for cycle length
in random boolean networks.

3 Computer Simulation

In order to generate a boolean network at random (with a given connectivity),
we would need to generate the function F from equation 2 in x2.1. That function
is de�ned by the component functions fi and the n sequences of k variables on
which each fi depends. Thus, we have two major steps in generating a boolean
network at random with a given size and connectivity.

From Proposition 2.1, any boolean function of k variables can be represented
as a multinomial in the variables. Since that multinomial will be uniquely deter-
mined by it's coe�cients (provided they, two, are boolean values), to generate
a function of k variables at random, we need only generate the 2k coe�cients
at random.

Now, to determine which k variables (i.e. elements) each function depends
on, we need only generate n �nite sequences of k integers from the set En =
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f1; 2; : : : ; ng. Although in general we might like to generate each sequence
by choosing at random from the set without replacement, to do so would add
complexity|and thus run time|to the algorithm. Note that if we are deal-
ing with, say, a 100 element network, the probability that we will choose the
same number twice (assuming independence, of course, which is a reasonable
assumption in this case) is 1

100
� 1

100
= 1

10000
= 0:0001, and so we should be able

to ignore the issue without noticeably altering the results.
Hence, to generate a boolean function of size n and connectivity k, we do

the following:

1. Generate n sequences of 2k boolean values to serve as the coe�cients for
the functions fi de�ning our network. Let �

i
j be the j-th coe�cient of the

i-th function.

2. Generate n sequences of k integers from the set En (mentioned above).
Call �ij the j-th number in the i-th sequence.

Now, say k = 2. Given a state St (where St(i), now, denotes the state of
the i-th element at time t), to evaluate the state of element i at time t + 1 we
would compute fi as follows:

St+1(i) = �i
1 + �i

2St(�
i
1) + �i

3St(�
i
2) + �i

4St(�
i
1)St(�

i
2) (4)

Where multiplication and addition are computed mod 2. Note that this is
equivalent to using and and xor (exclusive or) for multiplication and addition,
respectively. The advantage of this is that on most computers, and and xor are
functions that can be evaluated in a single instruction, which improves the speed
of our computations (as opposed to using mod 2 arithmetic). If we compute
St+1(i) as above for i = 1; : : : ; n, then we will have computed the entire next
state of our network.

Since we are interested in cycle lengths, we need to somehow �nd cycles on
our networks. Note that since there are 2n states in any n-element net, �nding
every cycle would get out of hand very quickly for even reasonable values of
n (for example 2100 � 1030). Thus, we want to take a random sample of the
cycles in a network. We could start from a random state and �nd the cycle this
state leads to. By repeating this some number of times for a given (randomly
constructed) network we should have something like a random sample.

So, given a starting state A, how do we �nd a cycle and calculate it's length?
First we need to �nd a state actually in the cycle, and then from that state we
can iterate until we arrive back at that state again. If C = fs1; s2; s3g is a cycle
of length three, then starting from s1 we will get s1 7! s2 7! s3 7! s1. The cycle
had a length of 3 and it took 3 iterations to return to state s1. In general, from
any state in any cycle of length ` it takes exactly ` iterations of the function F

to return to that state. So how do we �nd a state actually in the cycle? Starting
from a state A and letting B = F (A), we repeat the following until B = A:

1. Let B = F (F (B))
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2. Let A = F (A)

For example, let us say the state s� 7! s� 7! s1 from our cycle C above in
some network. Then if we start from A = s� and B = s� we will get, after the
�rst iteration of our loop, B = s2 (s� 7! s1 7! s2) and A = s� (s� 7! s�). Next
we have B = s1 (s2 7! s3 7! s1) and A = s1 (s� 7! s1) and so B = A and we
stop. We have now found a state in the cycle. Note after each repetition B is
one iteration further from A than it was before, and so eventually B will equal
A if there is a cycle (and there always is, from x2.2, recall). This is not a proof
that the algorithm will always work (and always terminate), but with a bit of
thought hopefully it will be clear that this is the case.

The source code to a program implementing these algorithms is given in the
appendix. Various versions of that program were used to gather the results that
appear in the next section.

4 Results

As mentioned above, Mayer [8] computed average cycle lengths for simulated
random boolean networks with k = 2 and for n running from 2 to 40. That
data was inconclusive, and so an attempt was made, here, to extend that data
to larger values of n with the hope that an obvious pattern might emerge.

Figure 2 shows a graph of average cycle length as a function of network size
on a logarithmic scale. A graph of

p
n is shown for comparison. The curve in this

graph clearly does not even remotely resemble any smooth function such as
p
n.

Comparison of this graph with results from other runs of the program revealed
at least two things: �rst, the spikes and dips are not necessarily occurring in the
same places in every run and, second, the extreme dips and spikes get larger as
n gets larger. In short, although it seems clear that cycle length is increasing
with network size, the plot appears random and not much more information can
be read into the data than that. The only conclusions that suggest themselves,
then, from this data is that we really cannot draw any conclusions from this
data. The important insight behind Kau�man's original suggestion that the
median cycle length for k = 2 nets is

p
n is that the cycle length is far shorter

than for higher connectivities, where it seems to be growing exponentially as n
increases (see Cull [4]), but this data cannot even con�rm that.

Perhaps more could be learned by looking at the distribution itself. So the
next thing we might look at are histograms of the cycle length for certain values
of n. Figure 3 shows four histograms of the cycle length (from 2000 total cycles
per network size) for networks of sizes 50, 100, 150, and 200. It seems from that
graph that the majority of the cycles consist of 10 states or less for n up as high
as 200. From this we can see that at n = 50 almost no cycles appear longer
than about ` = 30, but as n ranges up to 200 more long cycles start to show
up. However, the median cycle length for n = 200 appears to be less than 10
from the graph. Variance was not calculated in these runs, but it appears that
although small cycles dominate, there are an increasing number of long cycles
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Figure 2: Plot of the cycle length on a logarithmic scale as a function of the size
of the network. The dotted line is a graph of f(n) =

p
n for comparison
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as n increases, and perhaps that is why calculations of the average vary as much
as they do.

5 Conclusion

The data from these simulations is still incomplete; it is di�cult to draw con-
clusions from the information presented herein. It does seem to suggest that
most, if not all, of the cycles are of length less than n, or at least 2n. In a
200 element network there are 2200 � 1:6 � 1060 possible states, but on average
these networks seem to be limiting themselves to cycling amongst 100 states or
less. This is an incredibly small fraction of the number of states available. This
would be a signi�cant result if it were true, but all we have here are results
from simulations, and statistics such as the standard deviation and con�dence
intervals were not calculated from the data presented.

Perhaps simulating networks of sizes up to, say n = 10; 000 would produce
some information from which some conclusions could be drawn. The dominance
of very small cycles (less than

p
n) is fascinating, and so it would be interesting

to see if this trend continues for more reasonable values of n (note that the
situations to which this model applies may involve thousands of elements or
more in a network).

And, of course, a more detailed analysis of what numbers we do have is still
in order.
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A Program Source

This is the source code of one version of the program used to produce the results
in this paper. It is written in the `C' programming language and was compiled
using the GNU C Compiler, gcc. The functions rrand() and rseed() were
written so that the usual ANSI-standard system calls rand() and srand() could
be replaced by better a better random number generator that might happen to
exist on a particular system (this was, in fact, done with other versions of the
program used to get the results that appear above).

/***********************************************************

***********************************************************

***********************************************************

* *

* main.c - main program. *

* *

* Generates boolean networks of sizes from 15 to the *

* given first argument and of the connectivity given as *

* the second argument, generating 200 of each size and *

* finding 10 cycles in each one and outputting a matrix *

* of histograms of the cycle lengths in a format *

* understandable by Matlab. *

* *

* Patrick Yaner - Mon Aug 2 1999 *

* *

***********************************************************

***********************************************************

***********************************************************/

#include <stdlib.h>

#include <stdio.h>

#include "boolnet.h"
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#include "rrand.h"

void histogram(int buckets[])

{

int i;

int len = findcycle();

for (i = 1; i < 20; ++i) {

if ( len < (5 * i) ) {

buckets[i-1] += 1;

break;

}

}

if ( 20 == i ) buckets[19] += 1; /* it's >= 95 */

}

void getcycles(int n, int k, int buckets[])

{

int i, j;

for (i = 0; i < 200; ++i) {

newbnet(n,k);

for (j = 0; j < 10; ++j)

histogram(buckets);

}

}

void calcavgs(int k, int maxN)

{

int n;

int i;

int buckets[20] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

printf("X = [");

for (n = 15; n < maxN; ++n) printf("%i, ",n);

printf("%i];\nY = [",maxN);

for (n = 5; n < 100; n = n + 5) printf("%i, ",n);

printf("%i];\nH = [",100);
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for (n = 15; n < maxN; ++n) {

getcycles(n,k,buckets);

for (i = 0; i < 19; ++i) {

printf("%i, ",buckets[i]);

buckets[i] = 0;

}

printf("%i;\n ",buckets[i]);

buckets[i] = 0;

}

getcycles(n,k,buckets);

for (i = 0; i < 19; ++i)

printf("%i, ",buckets[i]);

printf("%i];\n",buckets[i]);

}

int main(int argc, char **argv)

{

int k, maxN;

if ( 3 == argc ) {

maxN = atoi(argv[1]);

k = atoi(argv[2]);

} else if ( 3 == argc ) {

maxN = atoi(argv[1]);

k = 2;

} else if ( 1 == argc ) {

maxN = 50;

k = 2;

} else {

fprintf(stderr,"too many arguments\n");

return 1;

}

rseed();

calcavgs(k,maxN);

return 0;

}

/***********************************************************
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***********************************************************

***********************************************************

* *

* boolnet.h - header for use of a random boolean network *

* *

* Patrick Yaner - Mon Aug 2 1999 *

* *

***********************************************************

***********************************************************

***********************************************************/

#ifndef _BOOLNET_H

#define _BOOLNET_H

#ifndef NULL

#define NULL 0 /* just in case */

#endif /* !NULL */

#define MAX_NODES 512 /* size limit for our networks */

#define MAX_STATES 1073741824 /* upper limit on cycle length */

#define C0(i) (coeff[i] & 0x01) /* these are the */

#define C1(i) ((coeff[i] & 0x02) >> 1) /* coefficients of the */

#define C2(i) ((coeff[i] & 0x04) >> 2) /* multinomials that */

#define C3(i) ((coeff[i] & 0x08) >> 3) /* compute the next */

#define C4(i) ((coeff[i] & 0x10) >> 4) /* state of each node */

#define C5(i) ((coeff[i] & 0x20) >> 5)

#define C6(i) ((coeff[i] & 0x40) >> 6)

#define C7(i) ((coeff[i] & 0x80) >> 7)

#define I1(i) inputs[i][0] /* these are the first, */

#define I2(i) inputs[i][1] /* second, and third */

#define I3(i) inputs[i][2] /* inputs of node 'i' */

#define SQUARE(X) (X*X)

void newbnet(int mu, int kappa);

/* generate a new boolean network in the given struct with

* mu elements and a connectivity of kappa, where kappa is

* either 2 or 3

*/

int findcycle();

/* returns length of the cycle starting from a random state */

#endif /* !_BOOLNET_H */
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/***********************************************************

***********************************************************

***********************************************************

* *

* boolnet.c - implementation of a randomly generated *

* boolean network *

* *

* Patrick Yaner - Mon Aug 2 1999 *

* *

***********************************************************

***********************************************************

***********************************************************/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <sys/types.h>

#include <sys/time.h>

#include "boolnet.h"

#include "rrand.h"

/***** some static functions used only in this module *****/

static void randcoeff();

/* randomly generate the coefficients */

static void inputvectors();

/* randomly connect the net */

static unsigned char * F(unsigned char s[]);

/* computes the next state from s (in place; returns s) */

static void randvector(unsigned char s[]);

/* generates a random state in s */

static void setvector(unsigned char x[], unsigned char y[]);

/* set y = x */

static int samevector(unsigned char A[], unsigned char B[]);

/* returns true (1) if A = B and false (0) otherwise */

/***** The actual boolean network *****/

/* These variables are global only to this module */
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static int n; /* size of the net */

static int k; /* connectivity of the net */

static int inputs[MAX_NODES][3]; /* connection graph */

static unsigned char coeff[MAX_NODES]; /* coefficient vectors */

void newbnet(int mu, int kappa)

{

n = mu;

k = kappa;

randcoeff();

inputvectors();

}

int findcycle()

{

/* This uses the little trick of starting with two

* states A, B equal to each other and, in a loop, iterating

* B twice (i.e. B = F(F(B)) ) and A once

* (A = F(A) ), checking for equality of the two states

* after each iteration to find a loop. Once a cycle is

* found the state is iterated until it is reached again,

* and the number of required iterations is returned as

* the length of the cycle (since it is)

*/

unsigned char A[MAX_NODES];

unsigned char B[MAX_NODES];

int len = 0;

int i;

randvector(A); /* randomly generate a starting state in A */

setvector(B,A); /* let B = A */

F(B); /* and iterate it once. (now B=F(A)) */

/* First we need to find a cyclic state.

* When this loop is done A will equal B

* and we'll be in a cyclic state

*/

for (i = 0; (i < MAX_STATES) && !samevector(A,B); ++i) {

F(F(B));
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F(A);

}

/* Now we have A = B again, so we've found the cycle

* next we determine the length by iterating around

* the cycle once and counting how many iterations

* it takes.

*/

F(B);

for (len = 1; !samevector(A,B); ++len)

F(B);

return len;

}

static void randcoeff()

{

/* here we'll generate 8 constants regardless of the

* connectivity on the assumption that if k=2 (and thus

* only 2^2 = 4 constants are needed) the first four

* bits will be just as random as the last four. Since

* k can be no more than 3 (requiring 2^3 = 8 constants)

* no more than 8 constants are required. ( => 8b = 1B

* is required for storage, where `b' means `bits' and `B'

* means `bytes').

*/

int i;

for (i = 0; i < n; ++i)

coeff[i] = (unsigned char) rrand(255);

}

static void inputvectors()

{

/* here we generate a n x k array of integers at

* random (called inputs) where inputs(i,j) (in C

* written as inputs[i][j]) is the node from which

* the j-th input to the i-th node is coming.

*/

int i, j;
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for (i = 0; i < n; ++i)

for (j = 0; j < k; ++j)

inputs[i][j] = rrand(n-1);

}

static unsigned char * F(unsigned char s[])

{

/* This actually evaluates the function F (where

* S_t+1 = F(S_t) defines the network). It first

* calculates the new state in a temporary variable

* called `rVal' and then it copies this value back

* into the argument. Arrays are always pass-by-

* reference in C since an array is really just

* a pointer to the first element of the array.

*/

int i;

unsigned char rVal[MAX_NODES];

for (i = 0; i < n; ++i) {

switch (k) {

case 2: rVal[i] = C0(i);

rVal[i] ^= C1(i) & s[I1(i)];

rVal[i] ^= C2(i) & s[I2(i)];

rVal[i] ^= C3(i) & s[I1(i)] & s[I2(i)];

break;

case 3: rVal[i] = C0(i);

rVal[i] ^= C1(i) & s[I1(i)];

rVal[i] ^= C2(i) & s[I2(i)];

rVal[i] ^= C3(i) & s[I1(i)] & s[I2(i)];

rVal[i] ^= C4(i) & s[I3(i)];

rVal[i] ^= C5(i) & s[I1(i)] & s[I3(i)];

rVal[i] ^= C6(i) & s[I2(i)] & s[I3(i)];

rVal[i] ^= C7(i) & s[I1(i)] & s[I2(i)] &

s[I3(i)];

break;

default: fprintf(stderr,"AAAARGH!!!!\n"); exit(1);

}

}

for (i = 0; i < n; ++i)
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s[i] = rVal[i];

return s;

}

static void randvector(unsigned char s[])

{

/* generates a random boolean vector in the given

* argument

*/

int i;

for (i = 0; i < n; ++i)

s[i] = rrand(1);

}

static void setvector(unsigned char x[], unsigned char y[])

{

/* given two vectors x and y, here we set y = x */

int i;

for (i = 0; i < n; ++i)

x[i] = y[i];

}

static int samevector(unsigned char x[], unsigned char y[])

{

/* this function returns true (1) if x = y and false (0)

* otherwise. The loop below short-circuits the moment

* a difference is encountered (we get a very small

* increase in run time on average from doing this)

*/

int retval = 1;

int i;

/* x[0] = y[0] and x[1] = y[1] and ... */

for (i = 0; (i < n) && (retval); ++i)
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retval = (x[i] == y[i])? 1 : 0;

return retval;

}

/***********************************************************

***********************************************************

***********************************************************

* *

* rrand.h - wrapper for rand() and srand() system calls *

* *

* srand() seeds the random number generator with the *

* current clock value (from time()), and rrand(n) returns *

* a random long integer between 0 and n inclusive. *

* *

* Patrick Yaner - Tue Jul 20 1999 *

* *

***********************************************************

***********************************************************

***********************************************************/

#ifndef _RRAND_H

#define _RRAND_H

#ifndef NULL

#define NULL 0

#endif /* !NULL */

extern void rseed();

extern int rrand(int range);

#endif /* !_RRAND_H */

/***********************************************************

***********************************************************

***********************************************************

* *

* rrand.c - wrapper functions for the srand() and rand() *

* system calls. *

* *

* Patrick Yaner - Tue Jul 20 1999 *

* *

***********************************************************

***********************************************************

***********************************************************/
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#include <stdlib.h>

#include <limits.h>

#include <math.h>

#include <sys/types.h>

#include <sys/time.h>

#include "rrand.h"

void rseed()

{

unsigned int seed;

seed = (unsigned int) time(NULL);

srand(seed);

}

int rrand(int range)

{

int rval;

double temp;

temp = rand() / (double) INT_MAX;

temp *= range;

rval = (int) rint(temp);

return rval;

}
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