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Abstract

We apply the symmetry reduction process to Maxwell’s Equations in
order to construct solutions invariant under various subgroups of the in-
homogeneous Poincaré group. We investigate the physical properties of
the solutions. Of particular interest are their applications to the Goursat
problem.

1 Introduction

The Poincaré group is generated by translations, rotations, and Lorentz boosts.
Homogeneous and isotropic space is invariant under the full Poincaré group. In
practical problems, this symmetry may be broken by factors such as charges,
currents, and boundary conditions. The resulting electromagnetic field, how-
ever, might remain invariant under a subgroup of the Poincaré group. If a
field carries a Poincaré subgroup as a symmetry group, we can then observe
the motion of a test charged particle in that field. Also, if a group preserves
boundary conditions, we can then use group-invariant solutions to help solve
boundary value problems for the corresponding electromagnetic field. Of par-
ticular interest is the Goursat problem, which arises in a new formulation of
electromagnetics advocated by Dirac, in which boundary condition data on two
hyperplanes, rather than the classical charge and current data, is used to solve
Maxwell’s Equations.

The symmetry reduction process is used to determine the fields invariant
under a specific symmetry group. We note that the classical problems of finding
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rotationally and axially symmetric solutions are special cases of this process.
For example, the symmetry group of an electromagnetic field created by a point
source with a charge is the full rotational (about the point) symmetry group,
since a point source is rotationally invariant. The field created by a line source
with a charge carries a symmetry group consisting of rotations about an infinite
line, and, provided that the charge is homogeneous, translations along the line.

This problem has already been investigated for a charged system in a con-
stant and uniform electromagnetic field and for the electromagnetic field of a
circularly polarized plane wave. The first of these studies has led to derivation
of additivity of charge and the superselection rule for the electric charge, and
the second has produced interesting results about an electron interacting with
a laser beam. Work has also been done in the classification of electromagnetic
fields invariant under connected electromagnetic Poincaré subgroups of dimen-
sions five and six. Further, it has been proven that if a Poincaré subgroup is a
symmetry group of a non-trivial electromagnetic field, then the subgroup must
be of degree six or less 5.

Here we study various electromagetic fields invariant under subgroups of
degree one, two, and three. We select several invariance Poincaré subgroups
and perform symmetry reduction in order to find explicit solutions to Maxwell’s
Equations. We investigate the physical properties of these solutions, in partic-
ular their applications to the Goursat problem. This work was done as part of
the Research Experiences for Undergraduates (REU) Program at Oregon State
University during the summer of 1999 under the direction of Juha Pohjanpelto.

2 Maxwell’s Equations

We list the basic laws of electromagnetism, known as Maxwell’s Equations,
which describe the behavior of electric and magnetic fields and their interaction.
Here we consider the empty-space Maxwell equations, which are applicable in
vacuum:

. OE' O0FE? O0OF3

d“:E = Oz + dy * 9z 0 dl\:B " Oz * Jy * 9z 0 ()
oFE = 0B =
o =V P - VHE )

Equations (1) are known as the divergence equations. Equations (2), the
time-evolution equations, are equivalent to the six equations below:
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We observe that charge conjugation is preserved by the Maxwell equations:
o(E,B) =(B,—E)

We will take full advantage of charge conjugation in carrying out our calcu-
lations, defining our quantities so as to preserve this symmetry. Thus, once an
equation involving electric fields is derived, the symmetrical equation for mag-
netic fields can easily be derived without doing the corresponding calculations.

3 Group-Invariant Solutions

Given a complicated system of partial differential equations, such as the Maxwell
Equations, it is often a difficult matter to find explicit solutions. However, a
wide variety of exact solutions can often be obtained by performing symmetry
reduction on the system. The symmetry reduction process (detailed below)
is a procedure for constructing group-invariant solutions to a system of partial
differential equations. This algorithm dates back to S. Lie, and has recently
been used successfully to construct exact solutions to various nonlinear partial
differential equations such as Yang-Mills, KdV, and PKP. In this process we
find explicit solutions which are invariant under some symmetry group of the
system.

Definition 1 A symmetry group of a system of differential equations A is a
group of transformations G such that if u=f(z) solves A and gf (the transfor-
mation of f by g) is defined for g € G, then u=gf(z) also solves A.

We call the solution f of the system invariant under the action of the sym-
metry group if the infinitesimal generator of the symmetry group is tangent to
the graph of f at every point. Using the symmetry reduction process, it is pos-
sible to reduce a system of partial differential equations to a system which may
be easier to solve. The reduced system yields a complete set of group-invariant
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solutions.

3.1 The Symmetry Reduction Process

The basic steps involved in symmetry reduction are outlined below. We assume
that our original system has p independent variables and ¢ dependent variables.

1. Find and classify infinitesimal generators of symmetry groups of the sys-
tem of equations.

2. Choose a degree of symmetry, s, for the invariant solutions. If a solution

is invariant under an s-dimensional symmetry group, then it satisfies a
system of reduced equations that involves s less independent variables than
the original system. Choosing s = p — 1 will result in a reduced system
of ordinary differential equations. Note that the projected action of the
subgroup must be regular, in other words, that the space-time components
of the generators of the subgroup must be functionally independent.

3. Fixing the symmetry group G, find a set of functionally independent in-
variants, p — s of these designated as the new independent variables, and
the remaining ¢ invariants designated as the new dependent variables. As-
sume that these ¢ variables are dependent on the new p — s independent
variables.

4. Solve for the original dependent variables in terms of the new dependent
variables and the original independent variables .

5. Substitute these expressions into the original system of equations. A
reduced system of equations will emerge which depends entirely on the
new independent variables, thereby simplifying the problem by eliminating
s independent variables.

6. Solve the reduced system, if possible.

3.2 Conjugate Subgroups and Classification

We observe that Lie groups, in our case the Poincaré group, typically have an
infinite number of s-dimensional subgroups, making it impossible to consider
every such subgroup individually. However, the classification of group-invariant
solutions can be effectively simplified by noting the following;:

Theorem 2 Let H C G be a subgroup of a group G, and let function f be invari-

ant under H, and g € G. Then f, = gf is invariant under gHg™".

Proof. ghg~(f,) = ghg ' (gf) = ghf =gf = f,. u

It follows that to classify all invariant solutions, it is enough to classify one
representative of each conjugacy class of the Poincaré group.
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Winternitz et al. of CRM in Montreal have classified these conjugacy classess.
We use his classification to begin carrying out the symmetry reduction process.

4 Applying the Process to Various Subgroups

We apply the symmetry reduction process to various Poincaré subgroups of one,
two, and three dimensions found in Winternitz’ classification. Write

uy = taz + Zat — 318E2 — E28Bl + E1832 =+ .828E17
= 2(y0, — 20y) — (0, + 9.) + 2(E*0p — E'Op2) + 2(B?0p: — B10g:),

v] = Oy for spatial translation along y-axis,

u

—

vy = %(8,5 —0,) for spatial translation along z-axis and time translation,
vy = —0p for spatial translation along z-axis, and

vy = %(8,5 +0.) for spatial translation along z-axis and time translation.

4.1 Subgroup generated by ug

We first consider a one-dimensional subgroup generated by wug. This generator
represents a Lorentz boost lifted into a symmetry of Maxwell’s equations. The
Lorentz boost is of interest because it preserves boundary conditions on t+2z = 0
and t — z = 0 and is thus relevant to the Goursat problem.

By the algorithm, we know that a one-dimensional subgroup will reduce the
number of independent variables from the original system by one. We choose
our invariants as follows:

x,Y, S where s = /2 — 22
ey, = tE'—2zB? by = tB'+ zF?
eg = zB'+tE? by = —zE'+tB?
es = E3 by = B3

Note that we choose and name our invariants so that charge conjugation is
preserved.

We then use Cramer’s Rule to solve for E¢ and B%:

o tey + zby Bl — thy — zeo
N 52 N 52
E2 o t62 - Zbl 32 o tbz + zeq
N 52 N 52
E3 = e3 B? = by
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Choosing e;, b; to be dependent on z, y and s, we compute the partial
derivatives necessary to substitute back into the original system:

OF! t Oeq z Oby OE! t Odeq z Oby

0r -

$20r  s20r Oy 20y 20y

OFE' 2zt zt ey 1 n 222 22 Oby
el 1 el i)
0z U1 837 s 52 st 27 3 0s

52 54

OE! 1 22 +t2 Oeqx 2zt 2t Oby
T3 Os 42T 3 s

ot

OF? t Oes z % OE? t Oes z Oby

oz 2 9z s2 Ox oy 20y 82 0y

OF? 2zt 2t Deg 1 n 222 - 22 0by
Lo, 2 22 2
0z 42T 3 s 52 s LT $379s

OE? 1 22 +t2 Oey +22tb 2t Oby
ot \ 82 s 2 s3 Os 4 3 0s

OB _ Oes OB _ 0cs
or  Ox dy Oy
OE% _ —z0es OE% _ 1t 0es
9z s Os Ot s Os

The partial derivatives for the components of B follow by charge con-
jugation.
Substituting these new expressions for the partial derivatives into Maxwell’s
equations yields the following system of equations:
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t Oeq t Jes  zOes z Oby z %

T (Foy s0s S0y Fow | )
t0b  tOby 20bs i%,i%zo (10)
s20r s20y s0s s20y 820w

1861 8[)3 18[)1 863

s 2 11),(12
s Os dy s 0s dy (11),12)
1 862 o 81)3 1 8[)2 o 863

“Ps = O9r  s0s " or (13),(14)
z 861 z 862 t 863 t 81)1 t 8[)2 o

2o "Wy sos 2oy For 0 (15)
z 8[)1 i% Eabg t 861 t 862 —0 (16)

s29r  s2 09y s 0s 820y 8% Or

We see that we can manipulate equations (9), (10), (15) and (16) so as to
be left with equations only in terms of x, y and s as follows:

tx(9) — 2% (15) — %+%_e;:0 (17)
z*(9) —t*(15) — %—37%:75% (18)
t* (10) — z % (16) — %—&-%—22:0 (19)
o0 e da_ e

Equations (11) through (14) and the four above equations make up a new system
of equations that we can attempt to solve. Equation (19) implies that locally
there is an A = A(x,y, s) such that

0A
bl = B_y and b2 = —%.
Substituting these values into (18), we see that
863
AA = —SE.
By (12),
des 19°A 0, 104 10A
—_— - = —{——-— = —— B
Oy s0yds Oy s Os )= e s Os + B(@.s)

863 _l 8214 n 8_B
dr  s0xds Oz
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From (14),

oy 100
ox s 0x0s
SO
0B 0A
%_0 B—B(s)éeg——gg B(S)
Hence,
0 10A 0 10A 1o}

We define Ag, A7 by
(x) Ap(s) = /sB(s)ds and A= Ag+ A,

From above,

OB 9104 910 ~ OB(s) 9104,
e T Bssos AT gssp Aot AN T At A =sTE S A enes s - A
9 194, B
= (**) Sa;g — AAl = 0

A general solution may thus be obtained as follows: We let B be any function
of s, then Ag is determined by (x). Further, we let A; be any solution of (xx),
and define A= Ag + A;. Then

10A 0A 0A
- X . B b = 22 -
es S D5 + (8)7 1 oy and bo oz

By symmetry, there are functions C(x,y,s) and D(s) such that

10C oC oC
bSZ__‘i‘D(S)7 Clza—y and 62:—%.

We could attempt to solve (xx) for A; by using separation of variables, or we
could perform further symmetry reduction in order to find solutions.

We note that there is no change of variables p = p(s) that would bring

9 104, B

into the wave equation. In face, suppose p = p(s) is such a change of variables.
We compute

9 _0959
dp  OpOs
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LB 0 (00 00 (0s\'
op2 Op \Opds) Op2ds Op) 0s2’

Since p(s) takes (xx) into the wave equation, we have that
010 o2

(% x) S%E%_a_;ﬁ and

10 oo (oo
O0ss0s  Op? s Op

0s?’
2
&)
dp

from which

Thus, it follows that

s
op?
However, from (x * ) we see that
02 01 1 1
g _ sl = = —— =0, which is a contradiction.
Op? Os s s s

4.2 Subgroup generated by uy and v,

Under a two-dimensional subgroup, the number of independent variables from
the original system is reduced by two. The invariants used in the subgroup
generated by ug alone are also invariant under v;. We use these same invariants
in our calculations for this two-dimensional subgroup, simply eliminating y.

Excluding y from the independent variables forces all partial derivatives with
respect to y to equal 0, while all other partial derivatives remain the same as
shown previously. The resulting system of equations derived from substituting
the partial derivatives into Maxwell’s equations is simpler, and reduces to the

following:
toby |t 0y z0b (29
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Equations (21)-(24) tell us that e; and by are constants. From equations
(25)-(28) it follows that

863 o 1 8b2 863 o 1 8[)2
9r ~ sds  Os s 0x
8[)3 o 1 862 8[)3 o 1 862
dxr ~  sds s sdx

From the partial derivatives of e3, we see that
3263 o 1 863 3263
0x2 s Os 082’
We can solve this by separation of variables. Let es(x,s) = f(z)g(s). Then,
1d*f 1ldg  1d%g \2
fdz2  sgds gds? '
We can find explicit solutions to Maxwell’s equations by solving
fl/
7=

We note that f(x) will be in the form of trigonometric functions, and that
g(s) satisfies Bessel’s equation of order 0. Hence, for example, on the interval
—m <z <7 the component e3g can be represented by the infinite series

7/\2 szg"+sg’+)\252920.

es(x,s) = Z(Ancos nx + Bysinnz)Jo(ns).

n=0

4.3 Subgroup generated by 1y and v,

Considering the two-dimensional subgroup generated by ug and vs, we choose
our invariants as follows:

T, Yy
El + 32 Bl _ E2
€1 = _— b1 = _—
o o
es = (E*+BYo by = (B*—EY
€3 = E3 b3 = 33
where 0 =t 4 z. Then
1 1
('fe]_——bg Ub1+—62
El _ o Bl _ g
2 2
—oby + Ley oe; + Lby
E2 — Jod 32 — Jod
2 2
E2 = e B3 = by
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After calculating the partial derivatives and substituting them into Maxwell’s
equations, we have the following system:

361 31)17 861 E)b17
o oy 0 oy Tox
Oy Dby Oes O
ox oy dy or
L O de b
1_8x_8y 1= oy Oz

Each pair e, b, satisfies the Cauchy-Riemann equations, so e; + tby, by + ieq
and e3 + ibg are complex analytic functions in z = = + ¢y. In the next section,
we give examples of solutions obtained from these equations by first letting
e3 + ibg = €™, then letting by 4 ieg = %

We note the somewhat surprising fact that under symmetry reduction, the
type of a system of partial differential equations can change. In fact, the above
equations are elliptic as opposed to Maxwell’s equations, which are hyperbolic.

4.3.1 Example Solution 1
Let eg =0, by =0, es =e™cosny, bs = e sinny. It follows that e; =

ne™®cosny and by = ne™*sinny. Then

(t + z)ne™cosny (t + 2)ne™sinny

1 1

E= 2 b= 2

2 o_ (t + z)ne™sinny B2 _ (t + z)ne™cos ny
2 2

E3 = e™cosny B? = e"sinny

is a solution for Maxwell’s equations that is invariant under the subgroup gen-
erated by ug and vo.

We can obtain further invariant solutions by forming the infinite series
o0
E3 = Z ane™*cos ny
n=0
where a,, satisfy a suitable convergence condition. It follows that

o0

t o~ (t
E'! = Zan%emcos ny B! = Zan%emsm ny
n=0 n=1
oo oo
t t
E? = — Z an%emsm ny B? = Z an%e”xcos ny
n=1 n=0
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o0
B3 = g ane*sin ny.
n=1

Imposing a boundary condition on E3 will determine a,, for each series. We
can use these solutions to solve the Goursat problem with boundary data on
t + z =0, in which case the solution reduces to

E' =0 B = 0
E* = 0 B* = 0
E? = Zane”xcos ny B = Zane”msin ny.
n=0 n=1
4.3.2 Example Solution 2
y T
Let 62:—m7 b2:$2——|—y27 63:0, b3:0
It follows that e; = 0 and b; = 0. Then
T Y
Bt = Bt =
2(t + z)(22 + y?) 2(t + 2) (22 + y2)
2 Yy B2 - _ z
2t + 2)(2* +3?) 2(t + 2) (2 +y?)
E} = 0 B® = 0

is another solution for Maxwell’s equations that is invariant under this subgroup.
There is a singularity along the z-axis, where x = y = 0, so we can determine
whether or not this electromagnetic field arises from a line source on the z-axis.

Recall that Gauss’s Law says:
/ E 1ds = Qenc
s

By this, we can see that the charge density, p(t + z), of a wire along the z-axis
is p = . Further, by Ampére’s Law,

. 0®
j[B-dgza—tEH,

we can determine the current along the wire, i(t + z), to be ¢ = =£. For a

t+=z
physical interpretation of this solution, we assume z > 0 in order to avoid the
singularity at z = —t. Otherwise, we can say that at z=-t, there is an infinite

charge travelling at the speed of light in the negative z direction on the wire.
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Furthermore, this solution lends itself to the Goursat problem. We see that
on the hyperplane t = z the solution reduces to

T Yy
E' = ——— B! = ——
4z(2? + y?) 4z(2? + y?)
Yy 2 X
2 = —Z B2 = —
4z(22 + y?) 4z(2? +y?)
E} =0 B =0

4.4 Subgroup generated by ug, v, and vy

In a three-dimensional subgroup, there will only be one independent variable.
The invariants used for the subgroup generated by ug and v; are also invari-
ant under vy. We use these same invariants in our calculations for the three-
dimensional subgroup generated by ug, v1, and vg, but eliminating y. After the
necessary computations, we find that the following hold:

61:b1:0

ea2,ba,e3,b3 are constants

So
1_ _—b2 B2 = _c E3 = ey
2t + 2) 2t + 2)
2(t + 2) 2t + 2) 3

is an explicit solution to Maxwell’s equations that is invariant under the sub-
group generated by wug, vy, and vs. For further applications, we can choose
specific values for e, e3, by and bs and interpret the results.

4.5 Subgroup generated by ug, v, and v3

The invariants used for the subgroup generated by uy and v, are also invariant
under v3, so keeping only s = /2 — 22 from the independent variables, the rest
of our invariants are again

egr = tE'—2zB? bi = tB'+zE*
eo = 2zBY'4tF? by = —zE'+4+tB?
€3 = E3 b3 = .B3
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Carrying out the symmetry reduction process reveals that

o tey + zby Bl — thy — zeo
- ) - 12 _ 52
B2 _ teg — zby B _ tby + ze;
- 12 — 52 - 12 — 2
E3 = e3 B? = by

where all e, and b, are constants. As in the previous subgroup, we can choose
specific values for the functions e, and b, and interpret out results for further
applications.

4.6 Subgroup generated by u;

We now construct a one-dimensional subgroup using the following infinitesimal
generator:

1
up = 2(ydx — xdy) — 5(87& +02) + 2(E?0E* — E'0E?) 4+ 2(B%0B' — B'oB?)

uy generates a subgroup of the Poincaré group representing a combination
of rotation about the z-axis, spatial translation (along the z axis), and time
translation.

By the algorithm, we expect that a one-dimensional subgroup will eliminate
one independent variable from the original system. We choose our invariants
as follows:

n=t—2z, p=+2+y2 :—2(25—1—2:)—l—arc‘cang
x
er = zE'+4yE? by = aB'+4+yB?
ey = yE!'—zE? by = yB!'—aB?
€3 = E3 b3 = .B3

Solving for E* and B* using Cramer’s Rule, we get

Bl re + yeg Bl _ xbi + yby
$2 + y2 $2 + y2
2 — yer —xeg B2 ybi — xby
LEQ + y2 IQ + y2
E3 = €3 B3 = b3
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Assuming that e;,b; are new variables dependent on 7, p, and 6, we now
compute the partial derivatives necessary to substitute back into the original
system:

aa_il — (p—l2 - 2p—1;12)€1 + Z—zapel — %3961 — %62 + %8/)92 - Z—zam
88_121 _ 72;13161 n xgapel n Z_iaeel + (% — 2pi42)e2 + i—zapeg + %3@62
88_121 = —%&7(31 — i—g@eq - %&762 - %3992

88—21 = %37791 - i—g&)el + %37762 - %8962

88_]i2 = ,%el + Z—ga,,el - y—zaeel + (= 12 + 2_1;2)@2 - p_zapeQ +—300e2
88_Eyz — (,0_12 — 2p—y42)e1 + i—zapm + %3961 + Q;y@ - iz_gape? Z—j@geg
88E22 = 7%87761 — %3@61 + %&762 + i—zaeez

88—E: = %37191 - i—g@eel - %37162 + %8‘962

88_]?/3 — <%> dpes + %3963

8323 = —Ope3 — 20pes3

aa—Et?) = Opes — 20ges

We compute the partial derivatives for B in an identical manner.

We now substitute these partial derivatives back into Maxwell’s Equations.
We observe that our equations are greatly simplified by both cancellation and
summation of terms. Since vy generates a symmetry group of Maxwell’s Equa-
tions, we expect that at the end of our simplifications, the original independent
variables x,y, z,t will be completely eliminated, leaving a system entirely de-
pendent on the new independent variables 7, p, 6.

We start with the divergence equations.

. QE' O0E?> OFE3
ox + dy + 0z

G () e () () () (5) v
=B (3) e () v (3) e () s () v
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—8,,63 — 26963,

which simplifies to the equation
1 1
—8p61 - —28962 - 87,63 - 26963 =0. (29)
p P
Likewise, from the divergence equation for magnetic fields, we get
1 1
—0pb1 — — 0pbz — Opbs — 20pb3 = 0. (30)
p p
‘We move on to the curl equations:

OE3 0B* 0B!

ot ox dy ns Does
2w T 2 x> z2 T
= = (Z) bi+ () 0pb1— (%) Dubr-+(— b+ 2000 — (£ ) Opba+ (24 ) Bobo
2w T z 2y 2 T
(2 ) b () pb1— (£ ) O0b1— (5~ 22— (%) Gybo— () Db
2 2 2 2
= (&) 0obr (%) 00br — (%) Db~ (%) By
which simplifies to the equation
1 1
87,63 — 28@63 = ——269171 — —8pb2. (31)
p p
1 1
Similarly, we obtain = 0,bs — 20pb3 = F@gel + ;8p62. (32)

We find that we must manipulate the remaining curl equations in order to
cancel out the original independent variables: we take pairs of curl equations,
multiply one by z and one by y, and then take the sum or difference of the
resulting equations. In this manner we successfully eliminate all z,y, z, t.

We first multiply equation (3) by = and equation (5) by y and take the sum
of the resulting equations. After substitution, cancellation, and combination of
terms, we obtain

8,,61 — 26961 = —a,,bz — 269172 + 891)3. (33)
Similarly, we multiply equation (4) by « and equation (6) by y, and take the
sum of the resulting equations. We obtain

Bnbl — 20pb = 37762 + 20ge9 — Opes. (34)
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Next, we add equations (3) and (6), giving

2x 2y x Y
<P > 3 e; + <F> 8,762 + <;> 8p€3 — <F> Opes
- (iy> d,by (296) O,bs + ( )a bs + (%) Dobs, (35)

and subtract (5) from

(4)
< >8 €1+< >8 €9 — <%>8p63 (%)3963
. <i_§> Dbt + <2—2> Dybs + <%> Bpbs — <%> Oobs. (36)

p
We multiply (35) by y and (36) by z, and add the resulting equations, giving

, giving

287](32 — 8963 - Qar]bl + papb:’n (37)

and multiply (35) by z and (36) by y, and take the difference of the resulting
equations, giving

28,71)2 - 89b3 = 728,761 - papeg. (38)

We have derived a reduced system consisting of eight equations: (29), (30),
(31), (32), (33), (34), (37) and (38). Unfortunately the system has resisted
integration, so we were unable to derive any explicit solutions in this case. In
our next example, we increase the degree of symmetry by one, thereby making
it easier to construct solutions to the system.

4.7 Subgroup generated by u; and v,

We construct a two-dimensional subgroup using the generators u; and vs. We
expect that a two-dimensional subgroup will eliminate two independent variables
from our system. We choose our invariants as follows, simply eliminating the
7 invariant from our work on the previous subgroup.

p=+vz2+y20=-2t+2) + arctan Z
T

er = axBE'4+yFE? by = xB'+yB?
ey = yE'—zE? by = yB'—aB?
es = E3 by = B3
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It follows that our solutions for E* and B* are identical to those found for
the previous subgroup. We can obtain our reduced system by simply setting
all 7-derivatives from the reduced system above equal to zero.

The divergence equations yield (from equations (29) and (30) above):

1 1 1 1
;8p61 - Fagez - 26963 =0 zapbl - Fagbg - 289()3 =0 (39)

The curl equations yield (from equations (31), (32), (33), (34), (37), and
(38) above):

1 1 1 1
20pe3 = Fagbl + ;apbg 20pb3 = 7@8@61 — ;8p€2 (40)
20pe1 = 209by — Ogbs 20pb1 = —20yes + Oges (41)
8963 = —papbg 89173 = papeg (42)

It is now our task to solve this system of eight equations. We do so by rec-
ognizing that several of our reduced equations are Cauchy-Riemann equations,
and thus can be solved by choosing some of our variables to be the components
of complex analytic functions. The following are several sample solutions. Here
we choose f(z) = e to be our analytic function. We omit the details of finding
these solutions. Assume [,k to be constant.

gl l kx +ly Bl o_ l lx — ky
2 \ 22 +9y2 2 \ 22 + 32
1 (ky—lx 1 (ly+kx
E? = = B = =
2<$2+y2> 2<I2+y2>
E} =0 B =0

E' = <2x2 j_ 2y2> (rsinf —ycosf) B! = <ﬁ> (wcosf + ysinb)
E?2 = <ﬁ> (ysinf + zcosf) B? = <ﬁ> (ycost — xsin 0)
E* = 0 B = 0
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g — x(k + psinb) + y(I — pcosb) Bl — y(—k + psind) + x(I + pcos H)

22 + 292 22 + 292

2 y(k+ psin®) — z(l — pcosb) 5?2 _ —x(—k+ psind) + y(l + pcosb)
222 + 2y? 222 + 2y?

B = 0 B> = 0

Note that all of these solutions have singularities at 22 + y? = 0 , which
suggests that the electromagnetic field might be created by a charge at the
origin or along the z-axis.

4.8 Subgroup generated by u;, v; and vs

We construct a three-dimensional subgroup using the generators u, v; and vs.
By the algorithm, we expect that a three dimensional subgroup will eliminate
three variables from our system of equations, thus resulting in a system of
ordinary differential equations.

We choose our invariants as follows:

n=t—z
p = VI(EY)+(E?)? £ = V(BY)?+(B?)?
E? B2
0 = =2(t+2)+ arctan(ﬁ) = =2(t+2)+ arctan(ﬁ)
e3s = F3 by = B3

Solving for our original dependent variables, we obtain:

E' = pcos(642(t+2)) Bl = &cos(p+2(t+ 2))
E? = psin(6+2(t + 2)) B? = &cos(p+2(t+ 2))
E3 = e3 B = by

Assuming that p,0,&, ¢ are new variables dependent on 7, we compute the
partial derivatives and substitute them into Maxwell’s Equations.

0 ab
The divergence equations yield s _ 0 and — =0.

on on
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After some algebraic manipulation, the curl equations yield

peosa = —Esin B psina = £ cos B (43)
and
Ozcosa% —,osinozg—f7 —sinﬁg—f] —§cosﬁg—i (44)
0:sinozg—7p7 +pcosag—z+cosﬂg—§7—fsin g—s; (45)
0:sinozg—7p7 +pcosag—z+cosﬂg—§7—fsin g—s; (46)
0=—cosag—f] —&-psinag—f]—i-sinﬁg—f] —&-fcosﬂg—i (47)

where a =0 +2(t+ z), B=¢p+2(t+ 2).
Squaring (43) and summing the results gives p = +£, so we get

cosav = —sin g (48)

sina = cos 8 (49)

from which we get
a=0p+% and 0=p+3.

From (44) through (49), we get sinadp+pcosadd =0 = Jdp=00=0
—cosadp + psinadd =0

Thus, we obtain the following solutions, with p, # constant:

E' = pcos(6+2(t+ 2)) B' = psin(d +2(t + 2))
E* = psin(6+2(t + 2)) B? = —pcos(f+2(t+2))
E3 = constant B® = constant

We observe that this solution describes a circularly polarized plane wave
propagated in the negative z direction. This solution is invariant under the
symmetries described by the generators of the subgroup: rotation about the
z-axis, spatial translation along z,y, z, and time translation.

119



5 Conclusion

We have performed symmetry reduction on Maxwell’s equations under various
Poincaré subgroups of dimensions one, two, and three. We have constructed
several physically relevant and interesting solutions, including potential appli-
cations to the Goursat problem. We also observe that the type of a system of
partial differential equations can change under symmetry reduction.

It can be noted that after performing symmetry reduction, the resulting re-
duced equations might have new symmetries not present in the original system.
In this case, it might be instructive to perform further symmetry reduction, es-
pecially if the reduced system cannot be solved using standard methods. Such
multiple applications of the symmetry reduction process has not been well stud-
ied up to the present, and might produce interesting results.
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