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Abstract

The classification of curves in the plane is a wide-open problem. While
this topic has been addressed in the past, new research into the use of
topological invariants has shed much light on the subject. = We clarify
recent research and give new perspectives. We also present a table of
curves with extremal values of the invariants.

1 Introduction

The first systematic attempt to classify plane curves was carried out by H.
Whitney in 1937 [3]. He was able to classify isotopy classes of curves by the
rotation index. For example, each of the following curves have rotation index
2, so they can be deformed into each other.

All three of these curves have index = 2.

Advances in knot theory make it natural to consider equivalence of curves un-
der ambient diffeomorphisms and reparametrizations of curves. This question
has been recently treated by Arnold again in [2]. He approaches the classifi-
cation question by considering three invariants for such curves, which he calls
St, JT, J=. While these invariants are well-defined in the equivalence classes
of curves, it turns out that they fail to distinguish between different classes of
curves. In fact, one can easily find non-equivalent curves of two double points
with the same values of the invariants. The classification of all plane curves
appears to be a formidable problem. Presently, it is not even known whether
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the general classification problem can be completely solved by solely considering
some sort of local invariants.

@ e

Both of these curves have St = 3, J* = -6, J— = -10.

Aicardi, in [1], considers the simpler problem of classifying the so-called
tree-like curves, which can be uniquely represented by a planar graph.

-

A tree-like curve and the associated planar graph.

One can see that the correspondence between tree-like curves and planar
graphs is not bijective. Consequently, the sought-after classification of all tree-
like curves still fails. However, with the help of the planar graphs, Aicardi
is able to describe tree-like curves with the maximum or minimum values of
various combinations of the three invariants.

The bulk of this paper is devoted to the clarification of the details in the
papers by V.I. Arnold [2], and by F. Aicardi [1]. Furthermore, we present
a novel method for computing the strangeness invariant of a curve using the
Seifert’s circles associated with the curve. We also classify all tree-like curves
of maximum and minimum values of all of the three invariants, St, J—, and JT,
up to five crossings. It appears that this classification has not appeared in the
literature before.

2 Preliminaries
In this section we present a few basic definitions pertaining to plane curves.

Definition 1 A curve is a smooth mapping of a circle to a plane whose deriva-
tive vanishes nowhere.
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A curve and a non-curve.

Definition 2 A double point is the image of two distinct points on the circle,
with the property that the tangent vectors are distinct.

Definition 3 A generic curve intersects itself only in double points.

A generic curve and a non-generic curve.

Definition 4 Two curves are equivalent if they are equal up to ambient diffeo-
morphism.

Ths means that two curves are equivalent if there is no double crossings are
created or eliminated, and no triple points are created.
3 The Invariants

Arnold classifies the curves by using three invariants: St (strangeness), J*, and
J=.  (For proofs of the existence of these invariants, see [2].) If two curves
have the same invariants, they are not necessarily equivalent, but if they have
different invariants, they are definitely not equivalent.
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3.1 The basic moves

According to Arnold [2], ouly triple points and self-tangencies are needed to
move between generic curves. These special points are passed through by the
following moves:

A

!

!

X
~~

!

X
4
e

Remark 5 A J* mowve is positive if the number of double points increases, and
negative if the number decreases. A St move is positive if the newborn triangle
is positive, and negative if the newborn triangle is negative.

3.1.1 Triangles

Definition 6 A vanishing/newborn triangle is a triangle formed by three branches
of a curve before/after a St move.

To find the sign of a triangle, let x be a starting point on the curve which is
not on the triangle. As the curves travels from x around the curve, it orients
the triangle by the order of its visits to the three sides. The sides of the triangle
are oriented in the direction the curve is traveling as it visits each one. Let q
= the number of sides whose orientation agrees with that of the triangle.

Definition 7 The sign of a triangle is (-1)2.
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Figure 1:

The signs of various triangles.

3.2 Perestroikas

Definition 8 A perestroika is a combination of basic moves.

0-.8 -8
R

The C (concordant) perestroika and the D (discordant) perestroika.

3.3 The basic invariants

The standard curves K; are representatives of the curves with index i.

Definition 9 The basic invariants St, J& and J~ of plane curves are defined
by the values of the standard moves and of the values at the standard curves, as
shown below.

58



s L | L‘f} 3 O )G

1 | ] i { [ i ]

Example 10 Given a curve C with index i, the invariants are found by susing
the basic moves to deform the standard curve K; to the given curve. The values
of the moves are added to the values of K; to get the invariants.

O-09d-b-d

Transforming K; to a desired curve in order to calculate the invariants.

Remark 11 The values of J© and J~ are chosen such that J© = the increase
in double points, and J~ = the decrease in double points. Hence JT —J~ =n.

4 Index

Definition 12 The index of a curve is the rotation number of the tangent vec-

For——

The graphs of the tangent vectors of two curves.
4.1 Whitney’s Theorem
Whitney’s classical theorem makes possible all subsequent work on plane curves.

Theorem 13 (Whitney’s Theorem) Curve A may be deformed into curve B if
and only if A and B have the same indez.
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Definition 14 An oriented surgery is a change on a small neighborhood of each
crossing, shown below:

~= X(

The orientation of each branch is preserved but the crossing is eliminated.

Remark 15 When all all crossings have been eliminated, the Seifert’s circles
of the given curve appear.

Lemma 16 The index of an oriented curve is equal to the difference between
the number of positive and negative Seifert’s circles.

DY)

The difference here is 1, giving ind = 1.

Proof. It is easy to observe that the sum of the indices of the curves after
an oriented surgery at one crossing is equal to the index of the original curve:
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Then the lemma follows from the fact that the index of a simple closed curve
is £1 (+1 if oriented counter-clockwise, -1 if clockwise.) m

Definition 17 Choose a starting point x on the curve and travel in the direction
of the tangent vector. A double point on the curve is positive/negative with
respect to x if the first and second branches leaving the double point orient the
plane positively/negatively.

Remark 18 A simple right hand rule can be used to label the crossings: Let
the fingers point in the direction of the first branch leaving the crossing. If the
thumb then points in the direction of the second outgoing branch, the crossing
is positive; otherwise, it is negative.

Crossing a is positive, but crossing b is negative.

Definition 19 The Whitney function defined at ordinary points of a curve is
the difference between the numbers wy(x) and w_(x) of positive and negative
double points with respect to x: w(x) = w4 (r) —w_(z).

Definition 20 i(x) is the number of half-turns of the vector connecting x to a
point y moving along the curve from x to .

i =1

i) =-1

i(z) for two different points on the same curve.

Theorem 21 The value of the Whitney function at an ordinary (non-double)
point of a curve is w(zx) = i(x) —ind.

Proof. The jumps (£2) of w(z) and i(z) as x crosses a double point are
equal:
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If r is positive (with respect to x), then the crossing ¢ is positive. If r
is negative, then the crossing ¢ is negative.
Hence r = t, the jumps of w(z) and i(z) are equal, and the difference
between them is independent of x and is an invariant of the curve.
We now show that w(z) =i(x) — k under J*. Since the difference between
w(z) and i(z) is independent of z, only one case needs to be checked for each
move.

X

The two new crossings are positive, so Aw(z) = +2.
The negative half-curve above & becomes a positive half-curve below =z,
so Ai(x) = +2.
Next, we show w(z) =i(x) — k under J~.




The two new crossings are negative, so Aw(x) = —2.

The positive half-curve above x becomes a negative half-curve below =z,
so Ai(x) = —2.

Finally, w(z) = i(x) — k under St.

Ai(z) = 0, and since the order and direction of the visits of the crossings
are preserved, Aw(z) = 0 also.

To complete the proof, we show that w(z) = i(x) — ind for the standard

i =0: ind = +1, i(z) = +1, and w(z) =0 = i(z) — ind.
i>0: ind =n+1,i(z) =41, and w(z) = —n =1—(n+1) =i(x)—ind.
i<0:ind=1-n,i(z) =41, and w(z) =n =1—(1—n) =i(x) —ind.
Since the statement is true for the standard curves, and under the basic
moves, it is true for any curve. m

Theorem 22 The index of an immersed circle is Y e;+a, where Y g; = —w(x)
and a =i(x).

Proof. w(z) =i(x) —ind = ind = —w(z) +i(z) = e, +a. B

Remark 23 A line can be drawn starting at x which is normal to the curve
at x, intersects the curve only at z, and extends to infinity. If this line and
the tangent vector at x orient the plane positively, then i(x) = +1.

i(z) = —1.

Otherwise,
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Whitney’s original formula for the index of a curve, (N — NT) + p, reverses
the definitions of positive (N*) and negative (N~) crossings. This makes
(NT — N7) equal to > &;. An external point is then chosen such that the
curve is entirely inside one of the half planes created by the tangent vector
at that point. g = +1 depending on whether the curve is in the positive or
negative half-plane, where the tangent vector is viewed as a positive x-axis.
This is equivalent to the method of determining ¢(z) in the remark above.

5 Half-indices

Indices of the double points are a "local” way to calculate combinations of the
basic invariants.

Definition 24 The half index i; of a double point is the angle of rotation of the
vector from that point to a point moving along branch j from the double point
to itself, divided by /2.

Definition 25 The index of a double point is the difference i = i1 — ia, where
branches 1 and 2 are labelled such that they orient the plane positively.

O ®

1
12 =+ il=43 i2=4]

-
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Theorem 26 The combinations I+ = J* 4 3St of the basic invariants of a
generic curve are equal to the sums of the indices of all the double points on the
S(i+2)

1 .

curve: T¥ =
[+=J++35t=-2+3=1
H=(-2+2)+(2+2¥W4 =1

[-=J-+35t=-4+3 =-]
={(-2-2)+{2-2)4=-]

—_—
i
|

42
Proof. Ii=¥:ﬂiziziig.

True for the standard curves:
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ind > 0: 1 for each crossing is i =47y —i9 =3 — 1= 2.
IF=Liyit2=12n)+%=2+2
Then IT =n, I~ =0.

St =n, JT = —2n and J~ = —3n by definition.
Then IT = 2n+3n=mn,and I~ = —3n + 3n = 0.
LR ]

ind < 0: i for each crossing is i =47 —i9 = —1—1=—2.
IF=1%it2=2(-2n)+2=-2+2
Then IT =0, [~ = —n.
St =0, JT =0 and J~ = —n by definition.
Then I =0+ 3(0) =), and I~ = —n+ 3(0) = —n.

True for the basic moves:
Under a positive J* move, AIT = A(J* +38t) =2 for I, 0 for 1.

]

\_} A B
/N

The JT move creates two new points A and B.
ATE =A($Yi+2) = 2(iatip)+1 = 2((ia1—ia2)+(ip1—ip2))£1 =
1((iar —ip2) + (ip1 —ia2)) £ 1.

65



A1 and B2 start out with the same angles of rotation, but after passing
A, B2 goes through an extra negative half-turn. This gives (ia; — ip2) =

p—(p—2)=2

E2

Al

Similarly, B1 and A2 start out with the same angles of rotation, but after
passing B, A2 goes through an extra negative half-turn. This gives (ig1—i42) =
p—(p—2)=2. Then AI* = 1((ia1 —ip2) + (ip1 —ia2)) £+1=1+1=2 for
It,0for I—.

Under a postive J~ move, AIT = A(J* +35t) =0 for I, 2 for I~.

2

The J~ move creates two new points A and B. AI* =A(+Yi+%) =
L(ia+ip)El = 1((ia1—ia2)+(ip1—ip2)) £l = ((ia1—ip2)+(ip1 —ia2)) £1.

3 Bl, A2
Al

B1 and A2 start out with the same angles of rotation, but after passing
B, A2 goes through an extra positive half-turn. This gives (ip1 — i42) =

p—(p+2)=-2
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Similarly, A1 and B2 start out with the same angles of rotation, but
after passing A, B2 goes through an extra positive quarter-turn. This gives
(ia1—ip2) =p—(p+2) = —2. Then AI* = ((ia1 —ip2) + (ip1 —iaz)) £1=
~14+1=0for I+, 2 for I.

The proof for St moves is checked by example, but this is left as an
exercise for the reader.

Since the formula is true for the standard curves and the basic moves, it is
true for all generic curves. m

6 Sums

6.1 Connected Sums

Definition 27 The connected sum of two curves, one in each half of the plane,
is defined by adding a bridge between the two curves which intersects the curves
only at its endpoints:

OAMRLIES

Remark 28 The connected sum of curves is not an operation, since there may
exist many different bridges between two curves.

088 -(5b- (%

The basic invariants, however, are additive under any choice of the bridge.

The standard curves are connected sums of Ks:
K4 K2 K2 K2

Kiy1 =ik (i > 0)
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Ki+1 = —iKO (’L < 0)

There are also formulas for computing sums of the standard curves:

@+6-Gw

z+1 + Ky+1 Kl—i—(z—i—]) P> 0

8-&-¢

Kit1+ Kjp = Ki_i1j) (i <0)
Theorem 29 All three basic invariants are additive under the connected sum.

Proof. It is obvious from the defined values of St for the standard curves
that St is additive between K5 curves, and between Ky curves.
Between the two, the D perestroika shows that St is also additive.

©3-8-®-0

Since any standard curve is the sum of Ky or Ky, St is additive between any
two standard curves.

To show that St is additive between any two curves, consider the case C; +
C; = Cp, where C, has index a.
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Deform the curve K, the standard curve with the same index as C,, to Cp:

We now show that St(C;) + St(C;) = St(Cp).

From the definition of St, St(K;)+ASt(K;) = St(C;) and St(K;)+ASt(K;) =
St(C;). This gives St(C;)+St(C;) = [St(K;)+ASt(K;)|+[St(K;)+ASt(K;)| =
[St(K;) + St(K;)| + [ASH(K;) + ASt(Kj)).

From above, St(K;)+ St(K;) = St(K,). Since the St moves affect only one
side of the curve, ASt(K;) + ASt(K;) = ASt(K,). Hence, St(C;) + St(C;) =
St(Kp) + ASt(K,) = St(Cp).

,+ 2
For J*, recall the sum I+ = J* + 35t = %

This implies J+ = w — 35t = iZi + g — 38t.
St and n are additive, so it only remains to show that the indices of the
double points are
additive.
In fact, the curve on the left will not affect the one on the right, and vice
versa, since the
curve can be contracted to a small enough size that it does not affect
the half-indices.
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Now, J(Co)+7%(05) = + D)= ™S src+ 1 i) £ ME) -
35H(Cy) = 2(SiCH) + TiC) £ 5(n(C:) + n(Cy) = B(SHE) + St(C))) =
1 Y0y £ gn(Cy) — 35H(Cy) = JE(C,). m

6.2 Strange Sums

Definition 30 The strange sum of two curves, one in each half of the plane, is
defined by a segment joining them such that the given curves orient the segment
differently at the endpoints. To get the new curve, double the segment as showm

below:
L
'f.
—3
b
L]

Theorem 31 The invariant St is additive under strange summation of immer-
stons.

Proof. The strange sum is reduced to the connected sum if first appendices
are pushed from each curve toward the other:

®6-0.6)

The appendices do not create any triple points, and therefore do not change
the value of St.

The curves with appendices are then added using the connected sum.

Remark 32 The appendices are created by positive J* moves. This prevents
J*E from being invariant under the connected sum:
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J-=_3 I-=10 Jo= .4 Jom

7 Tree-like curves

Aicardi reduces the problem of classifying curves by only allowing the tree-like
curves. The tree-like curves are of interest because they are ”simpler” than
non-tree-like curves - many proofs that are all but impossible on non-tree-like
curves are attainable on these curves.

Definition 33 A generic curve is tree-like if every double point divides it into
two loops having no other common points.

A tree-like and a non-tree-like curve.
Lemma 34 The number of Seifert’s circles for a given curve is n + 1.

Proof. The curve begins as a single loop. Each oriented surgery breaks off
another loop, so after n oriented surgeries there are n + 1 loops, each a Seifert’s
circle. m

Definition 35 The father of a non-external loop L is the last loop on the path
from the nearest external loop to L.

The father of b is a, the father of e is d, and the father of d is ¢. The father of
both a and c is the external loop.
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Remark 36 There are many theorems which can be proved on tree-like curves.
For example, Aicardi proves that J= + 25t = 0 for all tree-like curves.

One can consider Jt 4+ 25t = 0 to be a ”zero” of generic curves - the
amount by which a curve’s invariants differ from this value being a measure of
its deviation from a tree-like curve.

7.1 A-Trees

To simplify the problem of classification, Aicardi defines structures called A-
trees which represent each tree-like curve [1].

Definition 37 An A-tree consists of three components:
a) T - the tree
b) F - the subtree of exterior loops
¢) ¢ - the character function, defined as follows:
i) c¢(v) = -1if v € F is an exterior vertex
it) c(v) = 1 if the associated loop of v lies inside its father
iit) c(v) = -1 if the associated loop of v lies outside its father

A given curve, its tree with F indicated in the black vertices, and its character
function.

Remark 38 Since each vertex represents a loop, it follows that the number of
vertices for a given curve is n + 1.

Definition 39 The t function on a given A-tree is defined as follows, where
f(v) denotes the father of v:

a) t(v) =0ifve F

b) t(v) = t(f(v)) + 1 if v lies inside its father

¢) t(v) = -t(f(v)) if v lies outside its father
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The character function and the t function for the curve above.

Aicardi goes on to prove that St = > t(v), J* = —2St, and J~ = —2St—n.
This leads to the following theorem:

Theorem 40 The value of St for a given tree-like curve can be calculated from
its Seifert’s circles, where s(r) is the value of a given circle, and s(rg) the value
of the circle which encloses it:

a) Let the external circles each have a value of s(r) =0.

b) If a circle has positive orientation, let it have a value (s(rg) +1).

¢) If a circle has negative orientation, let it have a value —(s(rg) + 1).

Then St =Y s(r). Of course, J* = —2St and J~ = —2S5t —n follow from
JT+25t=0and J* —J =n.

O
}@ "'cfao@

The labelling system of the theorem corresponds to the labelling of the t
function, so the proof is omitted.
7.2 Extremal values

Two examples of proofs that are difficult to prove on all curves, yet relatively
easy on tree-like curves, are those dealing with extremal values of the basic
invariants.

Theorem 41 The maximum value of St = ﬂnz—ﬂl and the minimum values of
J+ = -—n? —2n, J- = —n? —n occur at one and only one tree-like curve with n

crossings.

Proof. First we will prove St .« = ﬂnz—ﬂl by induction.
For k =1 crossing, there are only two possibilities.

O
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Kphas St =0, and K3 has St = 1. H%l =1

For k = n + 1 crossings, suppose one is at St.x for n crossings.
Then St =n(n+1)/2=1+2+...+n.
There is only one way to get 1 +2 + ... +n:

Hﬂ-.a $r—y
0 1 A ¢ | n

When one crossing is added, a new vertex appears. The greatest
possible value for this vertex is desired, to maximize St for the new curve.

The greatest possible value is n + 1, which occurs when the new
vertex is placed as follows:

A 4 (1) = Méﬂ = Stiax for n + 1 crossings.

Next, because J* 425t = 0 for all tree-like curves, and St < ﬂnz—"_ll, we get
Jt>—n?—n.
Finally, since J* —J~ =n, J~ > —n? —2n. &

Theorem 42 Letn = 3d+r. The minimum value of St = (—3d?+d—2rd)/2,
and is attained at

a) one tree-like curve with ind=1—d ifr=0

b) one tree-like curve with ind = —d ifr =1

c) two tree-like curves with ind =1+d if r =2

On these curves the mazimal values of J* are reached; they are J*+ = 3d? —

d+2rd and J— = 3d? — 4d + 2rd — r.

Proof. Since St =" t(v;), the minimal value of St is obtained at an A-tree
where the negative values of ¢(v) give the maximal contribution. From the
definition of ¢(v), we cannot obtain vertices with ¢ < 0 without vertices with
t > 0. The first idea that comes to mind is to attach as many negative vertices
as we can to a vertex with positive character.

Suppose we have k vertices. The minimal value of ¢ is attainable at a
negative vertex whose father v has a positive and maximal value of ¢t. This
value occurs at the last vertex of a tree with £ — 1 vertices with maximum S%,
as in the previous theorem. Under these conditions, we end up with an A-tree
of the form:

Pl < o .
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1 1
For this tree, St = ni(ne 1) ny(n_) = ni(ny £1) —ny(n—mn_), and
ind = 14+ny—n_ = 14+2ny —n, where ny. /n_ = the number of positive/negative
crossings.
m(m 4+ 1)

Let m = n4 when St is at its minimum. Then St.;, = —m(n—

m), and ind =1 + 2m — n. 2
Solve the first equation for m to get m = £(/(2n — 1)2 + 245t + (2n — 1)).
When St is at a minimum, m = the nearest integer to £(2n — 1).

Since m < n, m is the nearest integer to #(2n — 1) = & — ¢.
Let n = 3d + r. Some short caculations give the following table:

r | ind Stmin J;L'ax J ax

0|1—-d| (=37 +d)/2 | 3d°>—d 3d® — 4d

1| d (=3 —ad)/2 | 3d®> +d | 3d®> —2d—1
2| 14+d | (=3d>—3d)/2 | 3d*> + 3d 3d° —2d

The corresponding A-trees are unique up to isomorphism. B

Remark 43 The previous theorem simplifies the classification of tree-like curves
with extremal values of the invariants. The curves with mazimum St are all in
the form of concentric loops. To draw the curves with minimum strangeness,
one can determine the number of negative loops by noting that there are n + 1
loops, and that the index is equal to the number of negative loops subtracted from
the number of positive loops. Thus the number of positive loops is %(n—i—l—i—ind),
and the number of negative loops is equal to %(n +1—ind). The positive curves
are drawn first, as one would draw a curve with mazimum St. The negative
loops are attached to the innermost positive loop.

S5t
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A table of the curves with extremal values of the basic invariants.
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