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Abstract

Given an arbitrary graph, a perfect one error correcting code is a subset of the
vertices called codewords such that no two codewords are adjacent and every
non-codeword is adjacent to exactly one codeword. Determining if there is a
perfect one error correcting code on an arbitrary graph seems di�cult; in fact, it
is NP-Complete. We present a biin�nite family of graphs based on the complete
graphs such that there is a unique perfect one error correcting code on every
graph in the family. We present recursive constructions of these graphs and
constructions for determining which vertices are codewords. Given an arbitrary
�nite alphabet, we show how to assign the strings of �xed length over that
alphabet to a graph in the family. This assignment is such that determining
which strings correspond to codewords is easy. `Easy' here means that codeword
recognition can be accomplished by a four state �nite state machine. Moreover,
error-correction can be accomplished by a �nite state machine. The code which
we present is nonlinear yet codeword recognition and error-correction can be
accomplished as easily as linear codes.
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1 Introduction

The idea of a perfect one error correcting code is a generalization of the error
correcting codes on the hypercube. In this paper we explore the idea of a perfect
one error correcting code. This exploration will be tied to a biin�nite family of
graphs.
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2 De�nitions

2.1 Perfect One Error Correcting Codes

De�nition 2.1. A coded graph is an ordered pairH = (G;C) where G = (V;E)
is a graph and C � V .

The elements of C are called codewords; the elements of V n C are called
non-codewords. We say C is a code on G and refer to H as a coded G.

To simplify our discussion, we often refer to graph theoretic properties of H
by referring directly to H rather than referring to the underlying graph G. For
example, instead of saying K is a subgraph of G we say K is a subgraph of H .
The meaning of such statements will always be clear from context.

De�nition 2.2. Given coded graphs H = (G1; C1) and K = (G2; C2) where
G1 = (V1; E1) and G2 = (V2; E2), H is codeword isomorphic to K if there is a
' : V1 ! V2 such that

1. ' is a graph isomorphism from G1 to G2

2. c 2 C1 if and only if '(c) 2 C2.

De�nition 2.3. Given a coded graph (G;C), C is a perfect one error correcting

code on G if

1. no two codewords are adjacent

2. every non-codeword is adjacent to exactly one codeword.

Determining if there is a perfect one error correcting code on G is in general
a di�cult problem. We state this formally.

De�nition 2.4. The problem of deciding whether or not there is a perfect one
error correcting code on a given graph G is the P1ECC decision problem.

Cull and Nelson [CN99] show the P1ECC decision problem is NP-Complete
by transforming 3-SAT to P1ECC.

2.2 Iterated Complete Graphs

De�nition 2.5. The graph with n vertices such that every vertex is adjacent
to every other vertex is the complete graph on n vertices and is denoted Kn.

The iterated complete graphs are a biin�nite family of graphs based on the
complete graph on n vertices. Let Z1

n be the complete graph on n vertices. To
construct Zm

n for m > 1 �rst form n copies of Zm�1
n . Then, choose n�1 vertices

of minimal degree from each of the n copies of Zm�1
n . Now form

�
n

2

�
edges fx; yg

where x and y are from our chosen n2 � n vertices such that

1. there is exactly one edge between any two distinct copies of Zm�1
n
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2. if fx; yg and fx; zg are edges then y = z.

Item two in the above implies that for every v 2 V (Zm
n ); deg v < n+ 1.

Informally Z2
n can be thought of as a complete graph of complete graphs. That

is, Z2
n can be thought of as a Kn where the \vertices" are copies of Kn. Simi-

larly, Z3
n can be thought of as a Kn where the \vertices" are copies of Z2

n. In
general, Zm

n can be thought of as a Kn where the \vertices" are Zm�1
n . The

�gures on the following page should clarify this idea and the construction.

De�nition 2.6. A vertex v 2 V (Zm
n ) is corner vertex if deg v = n� 1.
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Figure 1: Z1
3

Figure 2: Z2
3

Figure 3: Z3
3

Figure 4: Z3
4

Figure 5: Z2
6

Figure 6: Z3
2
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3 Existence and Uniqueness

3.1 An Alternate Construction of Zm
n

We now describe a new method of constructing the iterated complete
graphs.
Let �1n be the complete graph on n vertices. To construct �mn for m > 1 �rst
form a copy of Kn for each v 2 �mn . Denote the copy associated with vertex v
Kn(v). Form edges between the copies of Kn so that

1. there is an edge incident on a vertex of both Kn(u) and Kn(v) if and only
if fu; vg 2 E(�mn )

2. the degree of every vertex is less than n+ 1.

Theorem 3.1. For every m and n, Zm
n = �mn .

Proof. Clearly Zm
n = �mn for m = 1; 2. Suppose Zk

n = �kn for all k such that
1 � k � m for somem. We show this implies Zm+1

n = �m+1
n . Since Zm

n = �mn ; �
m
n

consists of n copies of Zm�1
n = �m�1n . Since performing the construction method

on �m�1n yields �mn = Zm
n , performing the construction method on n copies of

�m�1n will yield n copies of �mn = Zm
n . It remains only to show that there is

exactly one edge between distinct copies of Zm
n and the degree of every vertex

is less than n+ 1. Both are clear.

3.2 Existence

De�nition 3.2. Given a coded graph H = (G;C), a subgraph K of G is blank
if for every v 2 V (K); v =2 C.

De�nition 3.3. Given a graph G = (V;E) and subgraphs H and K, we say H
is adjacent to K if there is x 2 V (H) and y 2 V (K) such that fx; yg 2 E. In
this case we say x joins H to K.

We now de�ne two families of coded Zm
n , Gm

n and Um
n . Let C(G1

n) be such
that jC(G1

n)j = 1 and let C(U1
n) = ;. To construct C(Um+1

n ) given C(Gm
n ) let

x 2 C(Um+1
n ) if and only if there is a u 2 V (Zm

n ) such that x 2 Kn(u) and

1. there is a v 2 C(Gm
n ) such that x joins Kn(u) to Kn(v)

or

2. degx = n� 1 and there is no v 2 C(Gm
n ) such that Kn(u) is adjacent to

Kn(v).

To construct C(Gm+1
n ) given C(Um

n ) replace `C(Um+1
n ' with `C(Gm+1

n )' and
`C(Gm

n )' with `C(Um
n )' in the above description. We state this for completeness.

To construct C(Gm+1
n ) given C(Um

n ) let x 2 C(Gm+1
n ) if and only if there is

a u 2 V (Zm
n ) such that x 2 Kn(u) and

1. there is a v 2 C(Um
n ) such that x joins Kn(u) to Kn(v)

or
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2. degx = n� 1 and there is no v 2 C(Um
n ) such that Kn(u) is adjacent to

Kn(v).

We state a few facts which may give the gentle reader a more intuitive feel
for the above construction.

1. A subgraph Kn(v) is blank in Gm+1
n if and only if v 2 C(Um

n ).

2. A vertex x 2 C(Gm+1
n ) if and only if x joins a non-blank Kn(u) to a blank

Kn(v) or x is a corner vertex and x is in a non-blank Kn(u) not adjacent
to any blank Kn(v).

Swapping the roles of `G' and `U' in the above yields similar results concern-
ing the construction of Um

n .

Lemma 3.4. The following hold for Gm
n and Um

n for every m and n:

1. no two codewords are adjacent

2. every non-codeword is adjacent to at most one codeword.

Proof. Suppose the properties hold for Um�1
n . We use this to show they hold

for Gm
n .

1. Suppose for a moment there are adjacent codewords x and y in Gm
n . Let

u and v be such that x 2 Kn(u) and y 2 Kn(v).

Case 1 (u = v): Suppose x and y are non-corner vertices. Then there
are s; t 2 V (Um�1

n ) such that x joins Kn(u) to blank Kn(s) and y joins
Kn(u) to blank Kn(t). Note s 6= t since there are never two edges between
two distinct copies of Kn. Hence, u is adjacent to two codewords s and t
contradicting the induction hypothesis.

If it is not the case that x and y are both not corner vertices, we may
assume without loss of generality that x is a corner vertex and y is non-
corner vertex. Hence y joins Kn(u) to a blank Kn. But then x =2 C(Gm

n ),
a contradiction.

Case 2 (u 6= v): Since u 6= v, x joins Kn(u) to Kn(v). Hence, degx = n
so Kn(v) is blank, a contradiction.

2. Suppose there is an x 2 V (Gm
n ) such that x is adjacent to distinct code-

words y and z. Let u; v; w 2 V (Um�1
n ) be such that x 2 Kn(u); y 2 Kn(v)

and z 2 Kn(w). Suppose u 6= v and u 6= w. Then deg x = n�1+2 = n+1,
a contradiction. Hence u = v or u = w. Without loss of generality, say
u = w. If u = v then y is adjacent z which contradicts the above that no
two codewords are adjacent. So u 6= v. Since deg y = n, Kn(u) must be
blank, a contradiction.

A similar argument will establish that if the above properties hold for Gm�1
n

then they will hold for Um
n .
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Lemma 3.5. Every non-codeword in Gm
n is adjacent to at least one codeword.

Proof. We can easily verify the claim holds for m = 1 and m = 2. Suppose the
claim holds for Gm�2

n . Let x be a non-codeword in V (Gm
n ). Let u 2 Um�1 be

such that x 2 Kn(u).

Case 1 (x is not a corner vertex): If x is not a corner vertex let y 2 V (Gm
n )

and v 2 Um�1
n be such that y joins Kn(v) to Kn(u). If x is not adjacent to a

codeword in Kn(u), then Kn(u) is blank. Hence, y is a codeword.

Case 2 (x is a corner vertex): Let v 2 V (Gm�2
n ) be such that u 2 Kn(v).

If v is a codeword then Kn(v) is blank. Hence, Kn(u) is a nonblank and for
every w such that Kn(u) is adjacent to Kn(w);Kn(w) is blank. Hence, x is a
codeword.

If v is not a codeword then v is adjacent to a codeword y. Then Kn(y) is
blank so there is a z 2 Kn(v) such that z joins Kn(v) to Kn(y) and z is a code-
word. Then, Kn(z) is blank so there is a t 2 Kn(v) such that t is a codeword.
Since x is adjacent to t, we are done.

Theorem 3.6. There is a perfect one error correcting code on Zm
n for every m

and n.

Proof. The above lemmas establish that C(Gm
n ) is a perfect one error correcting

code on Zm
n .

We now establish exactly how many vertices must be codewords in a perfect
one error correcting code on Zm

n .

De�nition 3.7. A 1-sphere of a vertex v in a graph G = (V;E) is a set fx 2
V jx = v or x; v 2 Eg.

We refer to v as the center of the 1-sphere.

Theorem 3.8. If C is a perfect one error correcting code on Zm
n then

1. if m is odd, jCj = nm+1
n+1 and (Zm

n ; C) has one corner codeword

2. if m is even, jCj = nm+n
n+1 and (Zm

n ; C) has n corner codewords.

Proof. Suppose C is perfect one error correcting code on Zm
n . Then (Zm

n ; C)
is covered with disjoint 1-spheres with codewords as centers. The 1-spheres
centered at a corner codeword have n vertices; the other 1-spheres have n + 1
vertices. Let A = fx 2 Cjx is a corner codewordg and let B = fx 2 Cjx is a
non-corner codewordg. Put i = jAj and j = jBj. Then

nm = nj + (n+ 1)i (1)

nm � nj (mod n+ 1) and 0 � j � n (2)
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Case 1 (m odd): Suppose m is odd. Let r be such that m = 2r + 1. From
(2), n2r+1 � nj (mod n+ 1). Ergo, n2r � j (mod n+ 1). Then, since n2r � 1
(mod n + 1), j � 1 (mod n + 1). Since 0 � j � n, n = 1. From (1) we obtain
i = nm�n

n+1 . So, jCj = i+ j = nm+1
n+1 .

Case 2 (m even): Suppose m is even. Let r be such that m = 2r. Note
that n2 � 1 (mod n + 1) as n2 = (n + 1)(n � 1) + 1. So, n2r � 1 � n2

(mod n+1). From (2), n2 � nj (mod n+1). Hence, n � j (mod n+1). Since

0 � j � n, j = n. From (1), we have i = nm�n2

n+1 . Then jCj = i+ j = nm+n
n+1 .

Note that if m is odd we have established there is exactly one corner code-
word and if m is even we have established there are exactly n corner codewords.

3.3 Uniqueness

For the following lemmas, let C be a perfect one error correcting code on Zm
n .

Lemma 3.9. No two blank Kn subgraphs of (Zm
n ; C) are adjacent.

Proof. Suppose Kn(u) and Kn(v) are blank subgraphs of (Zm
n ; C) for some

u; v 2 V (Um�1
n ). Let x be such that x joins Kn(u) to Kn(v). Then deg x = n.

So, x is a codeword. Hence Kn(u) is not blank.

Lemma 3.10. Every non-blank Kn subgraph of (Zm
n ; C) is adjacent to at most

one blank Kn subgraph.

Proof. Suppose Kn(u) is adjacent to two blank Kn subgraphs of (Zm
n ; C). Let

x; y; s; t be such that x joins Kn(u) to blank Kn(s) and y joins Kn(u) to blank
Kn(t). Then x; y are codewords. But since x; y 2 Kn(u), x is adjacent to y.

Lemma 3.11. Every Kn subgraph of (Zm
n ; C) not containing a corner vertex

is adjeacent to at most one blank Kn subgraph.

Proof. Let Kn(u) be a subgraph of (Zm
n ; C) containing no corner vertex. If

Kn(u) were adjacent to no blank Kn subgraph, then x would not join Kn(u) to
any blank Kn subgraph. Hence, no x 2 Kn(u) would be a codeword.

Lemma 3.12. There is a Kn subgraph of (Zm
n ; C) containing a corner vertex

and not adjacent to a blank Kn subgraph.

Proof. By our above observation, some corner vertex x of (Zm
n ; C) is a codeword.

Let v be such that x 2 Kn(v). Then Kn(v) is not adjacent to any blank Kn.

Theorem 3.13. Up to codeword isomorphism, for all m and n there is at most
one perfect one error correcting code on Zm

n and there is at most one weak
perfect one error correcting code on Zm

n .
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Proof. Certainly the desired result holds for m = 1. Suppose for some m > 1,
there is at most one weak perfect error correcting code on Zm�1

n . Let G1 =
(Zm

n ; C1) and G2 = (Zm
n ; C2) be such that C1 and C2 are perfect one error

correcting codes on Zm
n . Suppose for a moment thatG1 andG2 are not codeword

isomorphic. Consider ', a graph isomorphism from G1 to G2. Suppose that
for all blank Kn subgraphs of Zm

n , '(Kn) is blank. Then for any x 2 C1,
'(x) 2 C2. This contradicts our supposition that G1 is not codeword isomorphic
to G2. Hence for all graph isomorphisms ' from G1 to G2, there is a blank Kn

subgraph of G1 such that '(Kn) is non-blank. Let W1 = fx 2 V (Zm�1
n )jKn(x)

is blank in C1g and let W2 = fx 2 V (Zm�1
n )jKn(x) is blank in C2g. Let

H1 = (Zm�1
n ;W1 and H2 = (Zm�1

n ;W2). The above lemmas establish that W1

and W2 are weak perfect one error correcting codes on Z
m�1
n . Now we establish

that H1 and H2 are not codeword isomorphic. Suppose to the contrary, letting
 be a codeword isomorphism from H1 to H2. De�ne  : V (G1)! V (G2) by

1. for non-corner vertex x, x 7! y if and only if there are u; v; r; s such that
 (r) = s,  (u) = v, x joins Kn(u) to Kn(r) and y joins Kn(v) to Kn(s).

2. for corner vertex x, x 7! y where y is such that y is the corner vertex in
Kn( (u)) and u is such that x 2 Kn(u).

We claim  is a graph isomorphism with  (Kn) blank for all Kn subgraphs
of G1. To that e�ect, we show that if  (u) = v then  (Kn(u)) = Kn(v).
Consider u 2 V (H1) and v 2 V (H2) such that  (u) = v. Let y 2 Kn(v). If y is
a corner vertex then clearly y is the image of x, the corner vertex in Kn(u). If
y is not a corner verex, y joins Kn(v) to Kn(w) for some w 2 V (H1). Since v is
adjacent to w, u is adjacent to  �1(w). So, Kn(u) is adjacent to Kn( 

�1(w)).
Let x be such that x joins Kn(u) to Kn( 

�1(w)). Then  (x) = y. Hence, for
all y 2 Kn(v) there is some x 2 Kn(u) such that  (x) = y. Then,  jKn(u)
maps onto Kn(v). Since jKn(u)j = jKn(v)j and jKn(u)j is �nite,  jKn(u) is a

bijection. So,  (Kn(u))=Kn(v).
To see that  is a graph isomorphism, consider adjacent vertices x; y 2

V (G1). If x; y 2 Kn(u) obviously  (x) is adjacent to  (y). Suppose x 2 Kn(u),
y 2 Kn(v), u 6= v. It follows from the construction of  that  (x) is adjacent
to  (y). So  is a graph isomorphism such that  (Kn(u)) is blank whenever
Kn(u) is blank. This contradicts the above that for every graph isomorphism
' : G1 ! G2 there is a blank Kn such that '(Kn) is non-blank. Hence, our
supposition that H1 is codeword isomorphic to H2 is false. Hence, H1 is not
codeword isomorphic to H2. This however contradicts the induction hypothesis.
Hence, G1 is codeword isomorhpic to G2. A similar argument establish there is
at most one perfect error correcting code on Zm

n .

Corollary 3.14. For every m and n there is exactly one perfect one error code
on Zm

n .

Proof. Existence was established previously; this together with the previous
theorem establishes the claim.
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4 Labeling

De�nition 4.1. A labeled graph is an ordered triplet L = (G;S; �) such that
G = (V;E) is a graph and S is a collection of strings over some alphabet and
� : V ! S is a bijection.

If L is such an ordered triplet, we say L is a labeling on G. By G(L) we
mean G and by S(L) we mean S.

De�nition 4.2. A coded labeled graph is an ordered triplet L = (H;S; �) such
that H = (G;C) is a coded graph and S is a collection of strings over some
alphabet and � : V (H)! S is a bijection.

To simplify our discussion, when we refer to vertex s where s 2 S, we mean
��1(s). When we refer to the �rst character of a vertex x we mean the leftmost
character of �(x). Similar to before, we simplify our discussion by referring to
graph theoretic properties of L rather than referring to the underlying graph G.
The dear reader who has come this far is hopefully clear on this matter by now.

4.1 Labeling De�nition

Consider an arbitrary alphabet � = fa0; a1; : : : ; an�1g. By ��k we mean the set
of all strings of length k over �. For convenience we set a0 =`0'.

We now de�ne a pair of coded labelings �mn and �m
n on Zm

n .

Let �1n : V (Z1
n) ! ��1 be any bijection. Let C1

n = fx 2 V (Z1
n)j�(x) = a0g.

Let H1
n = (Z1

n; C
1
n). Put �

1
n = (H1

n;�
�

1; �
1
n). To construct �mn for m > 1 and m

even, form n (coded labeled) copies C0; C1; : : : ; Cn�1 of �m�1n . For i 6= j, form
exactly one edge between Ci and Cj such that

1. the edge is incident on corner vertices x 2 V (Ci) and y 2 V (Cj)

2. the leftmost character of x is ak where k � j � i (mod n)

3. the leftmost character of y is ak where k � i� j (mod n).

Lastly, we must de�ne �mn : V (Zm
n ) ! ��m. For x 2 V (Ci); x 7! ai�

m�1
n (x).

That this process results in G(�mn ) = Zm
n and S(�mn ) = ��m is clear.

To construct �mn for m > 1 and m odd, form one copy C0 of �m�1n and n � 1
copies C1; C2; : : : ; Cn�1 of �

m�1
n . For i 6= j, form exactly one edge between Ci

and Cj such that

1. the edge is incident on corner vertices x 2 V (Ci) and y 2 V (Cj)

2. the leftmost character of x is aj

3. the leftmost character of y is ai.
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Lastly, we must de�ne �mn : V (Zm
n ) ! ��m. For x 2 V (Ci); x 7! ai�

m�1
n (x).

That this process results in G(�mn ) = Zm
n and S(�mn ) = ��m is clear.

Let �1n : V (Z1
n) ! ��1 be any bijection. Let C1

n = ;. Let K1
n = (Z1

n; C
1
n).

Put �1
n = (K1

n;�
�

1; �
1
n). To construct �m

n for m > 1 and m odd, form n copies
C0; C1; : : : ; Cn�1 of �

m�1
n . For i 6= j, form exactly one edge between Ci and Cj

such that

1. the edge is incident on corner vertices x 2 V (Ci) and y 2 V (Cj)

2. the leftmost character of x is ak where k � j � i (mod n)

3. the leftmost character of y is ak where k � i� j (mod n).

Lastly, we must de�ne �mn : V (Zm
n ) ! ��m. For x 2 V (Ci); x 7! ai�

m�1
n (x).

That this process results in G(�m
n ) = Zm

n and S(�m
n ) = ��m is clear.

To construct �m
n for m > 1 and m even, form one copy C0 of �m�1

n and
n�1 copies C1; C2; : : : ; Cn�1 of �

m�1
n For i 6= j, form exactly one edge between

Ci and Cj such that

1. the edge is incident on corner vertices x 2 V (Ci) and y 2 V (Cj)

2. the leftmost character of x is aj

3. the leftmost character of y is ai.

Lastly, we must de�ne �mn : V (Zm
n ) ! ��m. For x 2 V (Ci); x 7! ai�

m�1
n (x).

That this process results in G(�m
n ) = Zm

n and S(�m
n ) = ��m is clear.

Note there is exactly one corner vertex in �mn with leftmost digit ai and there
is exactly one corner vertex in �m

n with leftmost digit ai.

We now want to establish that the above construction de�nes a perfect one
error correcting code on Zm

n .

Lemma 4.3. For any m and n, the following hold:

1. for any vertex v of �mn , v is a corner codeword if and only if m is odd and
v = 0 � � � 0| {z }

m

or m even and v = ai 0 � � � 0| {z }
m�1

where 0 � i < n

2. for any corner vertex v of �m
n , v is a non-codeword not adjacent to a

codeword if and only if m even and v = 0 � � � 0| {z }
m

or m odd and v = ai 0 � � � 0| {z }
m�1

where 0 � i < n

3. no corner vertex of �m
n is a codeword.

Proof. The statement clearly holds for m = 1 and m = 2. Suppose the desired
claim holds for m� 1 where m > 1.
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1. Case 1 (m even): Here we handle the case m even. Consider a corner
codeword v 2 V (�mn ). Suppose v has label ais where s 2 ��m�1. Since v
is a corner codeword, s must be the label of a corner codeword w in the
copy Ci of �

m�1
n . As a consquence of m� 1 being odd, s = 0 � � � 0| {z }

m�1

. So, w

has label ai 0 � � � 0| {z }
m�1

. From our above observation that the perfect one error

correcting code on Zm
n has n corner codewords, it follows there is such a

w with label ai 0 � � � 0| {z }
m�1

for each 0 � i < n.

Case 2 (m odd): Consider a corner codeword v 2 V (�mn ). Note that v
must be a vertex in the copy C0 of �

m�1
n since no corner in a copy of �m�1

n

is a codeword. So, v has a label 0s where s 2 ��m�1. Note v connects C0

to a copy Ci of �
m�1
n if and only if the leftmost character of s is ai. So, v

is the corner in �mn if and only if the leftmost character of s is `0'. From
above, 0 � � � 0| {z }

m�1

is a corner codeword in �m�1n . Since the leftmost digit of s

is `0', s = 0 � � � 0| {z }
m�1

. Hence, v = 0 � � � 0| {z }
m

.

2. Here we handle the casem odd. We omit the casem even as the argument
is similar. Consider a non-codeword corner vertex v in V (�m

n ) which is
adjacent to no codeword. Suppose v has label ais where s 2 ��m�1 Note
the label s corresponds to a vertex in �m�1

n that is a corner non-codeword
not adjacent to a codeword. Since m � 1 is even, s = 0 � � � 0| {z }

m�1

. So, v has

label ai 0 � � � 0| {z }
m�1

. By our above lemma, since �m
n has n corner non-codewords

there is such a v for each 0 � i < n.

3. Case 1 (m odd): Each corner vertex in �m
n is a corner in a copy of �m�1

n

and no corner is a codeword there.

Case 2 (m even): Since no corners of �m�1
n are codewords and only

0 � � � 0| {z }
m�1

is a corner codeword in �m�1n , we need only ensure that each vertex

ai 0 � � � 0| {z }
m�1

in a copy Ci of �
m�1
n joins Ci to some distinct copy Cj . Since

the �rst digit of 0 � � � 0| {z }
m�1

is `0', ai 0 � � � 0| {z }
m�1

joins Ci to C0.

Theorem 4.4. For all m and n:

1. in �mn , every non-codeword is adjacent to at least one codeword; in �m
n ,

every non-corner non-codeword is adjacent to at least one codeword
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2. in �mn and �m
n , every non-codeword is adjacent to at most one codeword

3. in �mn and �m
n , no two codewords are adjacent.

Proof. Clearly the desired results holds form = 1 and m = 2; suppose the claim
holds for m� 1 for some m > 1. We prove that the above hold for �mn ; similar
arguments apply to �m

n . The unconvinced reader may supply them if he wishes.

Case 1 (m even): Since every non-codeword in the copies of �m�1n are adja-
cent to some codeword, every non-codeword in �mn is adjacent to some codeword.

Since 2 and 3 hold for the copies of �m�1n , to establish 2 and 3 for �mn , we
need only notice that for any new edge fx; yg between distinct copies Ci and
Cj of �

m�1
n , neither x nor y is a codeword. Were x a codeword, by a previous

lemma, x = 0 � � � 0| {z }
m

. But then 0 � i� j (mod n), contradicting i 6= j.

Case 2 (m odd): We need only consider corners of the copies of �m�1
n not ad-

jacent to any codeword in their respective copy of �m�1
n . By a previous lemma,

ai 0 � � � 0| {z }
m�1

is the only such corner in Ci, a copy of �m�1
n . Since n is odd, n� 1 is

even. So, every corner of �m�1n is a codeword. Consider an edge fx; aitg from
C0, the copy of �m�1n to Ci. By construction, the leftmost character of t must
be 0. Since there is only one corner vertex whose leftmost character is 0, t must
be 0 � � � 0| {z }

m�1

since 0 � � � 0| {z }
m�1

is a corner in �m�1
n . Hence ai 0 � � � 0| {z }

m�1

is adjacent to x, a

codeword.

Suppose there is a non-codeword adjacent to two codewords. Let Ci be the
copy of �m�1

n such that there is a v 2 V (�m�1
n ) which is adjacent to two code-

words. One codeword must be in a copy Ci of �
m�1
n , the other must be in the

copy C0 of �m�1n . Consider the edge x; ait from C0 to Ci. Our immediately
preceeding argument for 1 showed that t = 0 � � � 0| {z }

m�1

. Hence, v = ai 0 � � � 0| {z }
m�1

and so

v is adjacent to no codeword in �m�1
n . This establishes 2.

Clearly 3 holds, as no corners of the copies of �m�1
n are codewords and ev-

ery new edge formed between distinct copies must contain a vertex in a copy of
�m�1
n .

This proof shows that the construction method yields a perfect one error
correcting on Zm

n . By uniqueness then, it follows that

Corollary 4.5. For all m and n C(Gm
n ) = C(�mn ).

Proof. Obvious.
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4.2 Codeword Characterization

Keep in mind that throughout we have made numerous simpli�cations of phras-
ing. For example, if we say vertex v ends in an odd number of zeros we mean
�(v) ends in an odd number of zeros. If we say vertex v = ai0ai1 � � �ain�1 we
mean �(v) = ai0ai1 � � �ain�1 . Other such simpli�cations are clear from context
and we will not dwell on the matter any further. We state a characterization of
the codewords in �mn .

Theorem 4.6. For all m and n, the following hold:

1. for all vertices v of �mn , v is a codeword if and only if v ends in an odd
number of zeros or v = 0 � � � 0| {z }

m

2. for all vertices v of �m
n , v is a codeword if and only if v ends in an odd

number of zeros and v 6= 0 � � � 0| {z }
m

.

Proof. Obviously the desired result holds for m = 1. Suppose the claim holds
for m� 1 where m > 1. We use this to establish the desired result for m. Sup-
pose m is odd. Consider v 2 V (�mn ). Suppose v has label ais where s 2 ��m�1.

If v is in the one copy C0 of �m�1n , then ai = 0. Note v ends in an odd
number of zeros or v = 0 � � � 0| {z }

m

if and only if the string s ends in an odd number

of zeros or s = 0 � � � 0| {z }
m�1

. That is, if and only if s is the label of a codeword in

�m�1n . That is, if and only if v is a codeword.

Suppose v is in a copy Ci of �
m�1
n . Then, ai 6= 0. Note v ends in an odd

number of zeros or v = 0 � � � 0| {z }
m

if and only if the string s ends in an odd number

of zeros or s = 0 � � � 0| {z }
m�1

. That is, if and only if s is the label of a codeword in

�m�1n . That is, if and only if v is a codeword.

The remaining cases are equally trivial and we omit them for sake of brevity.

The codeword recognizor �nite state machine works by scanning strings over
� from right to left. `All' refers to any character and `Nonzero' refers to any of
a1; a2; : : : ; an�1. The following observations are trivial to verify.

1. if w = 0 � � � 0| {z }
m

, then the codeword recgonizer will end in state S1 or S2

given w as input

2. if w 6= 0 � � � 0| {z }
m

ends in an odd number of zeros, then the codeword recognizor

will end in state S3 given w as input
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Figure 7: Codeword Recognizor

3. if w 6= 0 � � � 0| {z }
m

ends in an even number of zeros, then the codeword recog-

nizor will end in state S4 given w as input.

Hence, the codeword recognizor will end in S4 if and only if w is not a codeword.

4.3 Error Correction

De�nition 4.7. A non-codeword is of type

1. R if it ends in a zero

2. E if it ends in a nonzero preceeded by an even number of zeros

3. L if it ends in a nonzero preceeded by an odd number of zeros.

The �nite state machine which sorts strings into these is shown as �gure 8.
The machine reads input strings of length at least two from right to left.

De�ne the following unary operations R;E and L on s a string over � as:

1. R(s) is swap the positions of the �rst nonzero character from right of s
with character to its right

2. E(s) is change the rightmost character of s to `0'
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Figure 8: String sorter

3. L(s) is swap the positions of the �rst nonzero character from right of s
with character to its left.

The �nite state machine which sorts strings into the types R, L and E is
shown as �gure 8. The machine reads input strings from right to left. Consider
the input string s, a non-codeword adjacent to codeword t. If s causes the
machine to halt in R1 then R(s) = t; if s causes the machine to halt in L1 or
L2 then L(s) = t; if s causes the machine to halt in E1 or E2 then E(s) = t.
As is justi�ed by the following theorem, this can be readily veri�ed by checking
that strings of type T cause the machine to halt in a state T i, where T is one
of R, L or E.

Theorem 4.8. For all m and n and non-codeword vertex x adjacent to code-
word vertex y in �mn or �m

n , if x is of type T then T (x) = y where T is one of
R;E or L.

Proof. Clearly the desired result holds for m = 1. Suppose m > 1 and consider
v a non-codeword in a copy Ci of �

m�1
n or �m�1

n . Then v has label ais where
s 2 ��m�1. Since pre�xing a string will preserve the type, if v is adjacent to a
codeword in Ci, the same operation will correct v that will correct the vertex
with label s in the copy Ci. So we need only consider those non-codewords w
adjacent to a codeword in Cj for i 6= j. We prove the claim for �m�1n . The
claim is establish similarly for �m�1

n .

Case 1 (m even): For m even, every non-codeword in a copy of �m�1n . Since
�m�1n is a coded labeled Zm�1

n such that the code is a perfect one error cor-
recting code, every non-codeword in �m�1n is adjacent to some codeword in that
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copy. So, �mn contains no codewords adjacent to some codeword in a distinct
copy of �m�1n .

Case 2 (m odd): Every codeword in the copy C0 of �m�1n is adjacent to
some codeword in that copy as �m�1n carries with it a perfect one error correct-
ing code on Zm�1

n . So any non-codeword v adjacent to a codeword in a distinct
copy must occur in a copy Ci of �

m�1
n and be adjacent to a codeword w in the

copy C0 of �m�1n . So, v = ais where s 2 ��m�1 is the label of a corner vertex
adjacent to no codewords in �m�1

n . Since m� 1 is even, by a previous lemma,
s = 0 � � � 0| {z }

m�1

. Then v = ai 0 � � � 0| {z }
m�1

. Now consider w, the codeword adjacent to v.

Note w = 0t where t 2 ��m�1 and t is the label of a corner codeword in �m�1n .
Since m � 1 is even, by a previous lemma, t = ak 0 � � � 0| {z }

m�2

for some 0 � k < n.

Since an edge connects t in the copy C0 of �
m�1
n and the vertex with label s in

the copy Ci, i = j. So, w = 0ai 0 � � � 0| {z }
m�2

. Hence, v is of type R and R(v) = w.

4.4 Nonlinearity

In the following discussion it is convenient to think of the set of codewords on
�mn as the labels which have been assigned to the codewords rather than the
vertices.

A code C is said to be linear if C is a subspace of the vector space V n which
is the set of n component vectors over some set of scalars V . If V n with an
appropriate operation is a group, then C is linear if and only if C is a subgroup
of V n.

From Lagrange's theorem, the order of a subgroup must divide the order of a
group. In our case, V m = ��m. Note jV

mj = nm. From our counting argument
we can see that jCj will not divide jV mj except in a few special cases. In fact,

Theorem 4.9. If m > 2 than the perfect one error correcting code on Zm
n is

nonlinear.

Proof. Suppose m > 2. If m odd, then the number of codewords on Zm
n is nm+1

n+1
which doesn't divide nm. If m even, then the number of codewords on Zm

n is
nm+n
n+1 which doesn't divide nm.
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5 Conclusion

We have presented a biin�nite family of graphs and demonstrated that on these
graphs there is a unique perfect one error correcting code. We showed how to
label these graphs so that recognition of codewords and error correction is not
hard.
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