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Abstract :

An attempt is made to extend the coding theory based on the Towers of Hanoi puzzle to the
generalized Towers of Hanoi with more than three pegs. A three-dimensional graph is created for
the case of four pegs, and a recursive construction for this graph is given based on the number of
disks used. Proofs that no perfect one error-correcting code (PLECC) or P2ECC exist on the graph
for four pegs with three desks are given.

Introduction

When information is sent electronically, messages are often converted into strings of numbers.
When received, these strings are decoded as the original message. Unfortunately, due to both human
folly and machine inaccuracy, the strings may contain errors, so error-correcting codes are
constructed to enable us to obtain the original message. These error-correcting codes may be studied
as graphs consisting of vertices and deges. The strings are each assigned to a vertex, and an edge
between two vertices represents a distance of 1 between the two strings assigned to those vertices.
Depending on how distance is defined, one may study graphs to see if they contain an
error-correcting code.

1.0 Towers of Hanol

The Towers of Hanoi puzzle has been of mathematical interest for decades. It consists of 3 pegs
and a number of different sized disks which are initially placed on the first peg in order of size, the
smallest on top. The object of the puzzle is to stack all the disks on the third peg by only moving
one disk at a time and placing disks only on larger disks. By labeling the disks and pegs, one may
create a perfect one error-correcting code whose words are base 3 and whose distance between
words is defined as the minimum number of legal moves between configurations on the puzzle (1).

One variant of the Towers of Hanoi puzzle is the generalized Towers of Hanoi which has more

than three pegs. It has been studied by computer scientists in connection with material handling and
production scheduling (Hinz 133), and recursive solutions to the general puzzle have been found.
However, | have found no documentation of relating the error-correcting codes of the original
Towers of Hanoi puzzle with the generalized puzzle. In order to do this, some simple definitions

and notation are necessary.



1.1 Definitions & Notation

See Figure 1. In a generalized Towers of Hanoi puzzle and graph, we let...
k = # of towers, k> 3

Towers are named 0, 1, 2, ..., k-1

n=# of disks, n> 1

Disks are namedigay,...,a

TH(k,n) is a generalized Towers of Hanoi puzzle with k towers and n disks

A = a,...&a; Is aword describing a specific configuration on the puzzle where defined by
the tower on which théh disk rests

® Thedistancefrom one word A to another word B is the minimum number of legal moves it
takes to get from the configuration of A to the configuration of B on the generalized Towers of

Hanoi puzzle. We write D(A,B¥ j for some j>0 € Z to denote distance between A and B,
and we write Dj(A)=<{B : D(A,B) = j}.
Example D(012,020)- 2 and D2(12)= {000,001,002,010,020,011,211

® A word B iscoveredby a codeword A on dECC if D(A,B) < d.

2.0 Reve’'s Puzzle — TH(4,n)

The generalized Towers of Hanoi with four pegs, or Reve’s puzzle, has been studied in both
computer science in relation to computer programming and algorithm complexity as well as in
combinatorial mathematics (Lu & Dillon 3). The rules of the puzzle are the same as TH(3,n), and
both recursive and iterative solutions have been found for the puzzle. We can construct a code
similar to the TH(3,n) code based on Reve’s Puzzle by creating words in base 4 rather than base 3.
One favorable property of the TH(4,n) graph is that despite its complexity, it has a simple recursive
construction as we increase n.

2.1 1Disk —» 2 Disks — TH(4,2)

The initial configuration on Reve’s puzzle consists of all disks on peg 0, so the only possible
action is moving the top disk to peg 1, 2, or 3. This is equivalent to having only one disk on the
puzzle, and the action can be graphically described by a tetrahedron whose four vertices are words
and whose edges represent a distance of 1 between the words (see Figure 2). If the puzzle has two
disks, the graph expands to four tetrahedrons and sixteen vertices, with specific edges between them
(see Figure 3). The process for choosing codewords is quite simple. First, choose an arbitrary word
to be a codeword. Then, all words distance 1 from that codeword are covered by it. All other words
distance 1 from each covered word may not be codewords, and they need to be covered by another
codeword. We choose more codewords to cover these words, being sure that no two codewords are
less than distance 3 apart. For instance, on the TH(4,2) graph, we may choose the word 10 as a
codeword. Then, 20, 30, 11, 12, and 13 are covered by 10, and and 21, 22, 23, 31, 32, 33, 02, and 03
must be covered by other codewords. We could choose either 00 to cover 02 and 03, or we could
choose 01 and cover 02, 03, 21, and 31, but 22, 23, 32, and 33 will not be covered. Since all words
distance 1 from 22 and 33 are already distinguished as non-codewords, we will not have a P1ECC if
10 is a codeword. Figure 3 does contains a PLECC with 00, 11, 22, and 33 as codewords. We see
that the non-codewords on each tetrahedron are decoded to the codeword on that tetrahedron, and
each codeword is distance 4 apart. Thus, no two codewords are adjacent, and each non-codeword is
adjacent to exactly 1 codeword. The choice of codewords on this graph is unique since any other
choice will not generate a P1ECC.
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Figure 2

If we choose any one word
as a codeword, then Figure 2
contains a P1IECC. The
choice of the codeword is
not unique, but each is
homogeneous to the other.

Figure 3

2.2  TH(4,3)

The graph of Reve’s puzzle becomes surprisingly complex when we add a third disk. To
understand the graph, different views may be neccessary. If we ignore the 3-dimensional quality of
the tetrahedrons, we can get an idea of how the bases of the tetrahedrons connect (see Figure 4).
Then, if we stretch the tops of the tetrahedrons, we can see patterns in the edges between them (see
Figure 5).






2.3 Recursive Construction

Notation G, = The graph of Revs puzzle using n disks

}

[ a horizontal reflection in the xplane
\ = a reflection across a line with slopg3

SN a reflection across a line with slopg/3

3

= the tetrahedron containing the wordsaaa0, asazay1, asaza,2, and

azaza3
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for even n for odd n



Example The graph for Reve puzzle witl disks seen from above is as follaws
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Example Though all the edges are not shown on this gragpie may get a better understanding
of the graph by looking at it this way

2.4 CodesonTH (4,3)

After investigating the structure of the TH(4,3) graph, we can see that no P1ECC exists for
TH(4,3). First, itis neccessary to define more notation:

Notation Aasza,0 denotes the tetrahedron containing the wordaz#, asa;1, aza,2, and aa,3.
Example Example Al110includes the word410, 111, 112and113.

241 P1ECC

Theorem (1) For a PIECC, the tetrahedrona000,A110,A220,and A330must contain
codewords

Proof For a PLECC, all words are either codewords or share an edge with a codew&idce
000, 111, 222and333share edges only with words on their respective tetrahedtbey must



either be codeword®r their tetrahedrons must contain codewaords
Theorem (2) 001, 002, 003, 110, 112, 113, 220, 221, 223, 330, 38#332cannot be

codewords

Proof In order to produce a contradictigmssuméO01is a codeword Then000, 002, 003, 021,
and031lare decoded t®01. Furthermore all other words distanc@ from 001 cannot be
codewords Since [§001, 032)= 2, 032must be decoded to another codewokbwever the only
word x such that [032,x) = 1 and D(001,x) >2is 132,s0132must be a codewordThenl112is
decoded td.32and all other words distancé from 112 cannot be codewordsSince this includes
all words on the tetrahedron containirid.1,by Theoreni we would not have aHEECC.
Therefore 001cannot be a codewordThe following table illustrates the procedure for showing
the other norcodewords If a word in the first column is assumed to be a codewdrdn it
decodes the word in the second coluninis implies the word in the third column cannot be a
codewordand it must be decoded to the word in the fourth colur@mce the word in the fourth
column is then a codeword decodes the word in the fifth colunwhich implies the words in the
sixth column cannot be codewordSince the words in each row of the fifth and sixth columns
make up the tetrahedrons in Theordnwe have a contradictian

codeword decodes non-codeword decoded by decodes non-codeword
001 031 032 132 112 A110
002 032 031 231 221 A220
003 023 021 321 331 A330
110 120 123 023 003 A000
112 102 103 203 223 A220
113 103 102 302 332 A330
220 210 213 013 003 A000
221 201 203 103 113 A110
223 203 201 301 331 A330
330 320 321 021 001 A000
331 301 302 102 112 A110
332 302 301 201 221 A220

It follows from Theorems 1 and 2 that if there is a PLECC on TH(4,3), then 000, 111, 222, and
333 must be codewords. However, the following table shows that this cannot be the case.



codeword C 000 111 222 333
001 110 220 330
D1(C) 002 112 221 331
003 113 223 332 No matter what combination of possible
021 120 210 310 codewords we choose to cover D2(C),
031 130 230 320 our new codewords will either be within
non-codewords 012 102 201 301 di 2 of h other. of non-
D2(C) 032 132 231 321 Istance of each other,
013 103 203 302 codewords in D2(C) will not be covered.
023 123 213 312 Thus, there is no PLECC on the graph
010 100 200 300 for TH(4,3).
possible 011 101 201 303
codewords 020 121 211 311
D3(C) 022 122 212 313
030 131 233 322
033 133 232 323

242 P2ECC

If az = a» = a1 and Iy = b, = by but & + bs, then D(aazas, bsbobi) =5. Since we may
recognize this as distanee2e+ 1 in a code where e is the number of errors corrected, we may
expect the code for TH(4,3) to correct 2 errors. Then, the most intuitive choice for codewords is
000, 111, 222, and 333 since they are farthest apart. However, the following table shows that these
words will not generate a P2ECC.

codeword C 000 111 222 333
001 110 220 330
D1(C) 002 112 221 331
003 113 223 332 | Sjnce the non-codewords are not
021 120 210 310 1 covered by any codeword, we do not
031 130 230 320 have a P2ECC. Note that we cannot
D2(C) 012 102 201 301
032 132 31 321 choose any of the no_n-codgwords as
013 103 203 302 _codewords because if we d|d., the words
023 123 213 312 in D1 (C) and D2(C) will be distance 2
010 100 200 300 from 2 different codewords.
011 101 201 303
non-codewords 020 121 211 311
D3(C) 022 122 212 313
030 131 233 322
033 133 232 323

Theorem TH(4,3)does not have aHECC.

Proof For a P2ECC, every word is either a codeword or has distarc2 from exactly one
codeword Thus for 000, 111, 222and333,we need to choose codewords that are distan2e
from each word That is in Tablel, we must choose one word from each column as a codeword
Notice that the words in each column are of one of the following foaag aab, and abc Define
A={0,1,2,3, and let ac A. Define B= A\a, and let be B. Define C= B\b, and let ce C. Alsq,



define D= C\c, and let de D.

@® Case (aaais a codeword ) Now, suppose we choose a word aaa to be a codeibat is,
000, 111, 222¢r 333). Table2 shows the outcomes of this choiceable3 shows distance
between each of the possible codewords from tabl8ince each of the possible codewords
are less than distancgapart, we may only choose one as a codewartbwever there is no
single possible codeword that is distarc@ from the othersso no choice will cover all
words Thus we will not have a RECC if aaa is a codeword

Table 2
Codeword: aaa

Table| 1
000| 110 | 220 33(
001, 111 | 221 331
002| 112 | 222 332
003| 113 | 223 333
012| 102 | 201 301
013| 103 | 203 302
021 120 | 210 31(
023 123 | 213 31z
031 130 | 230 32(
032 132 | 231 321

aab abc acb adb

covers: aac abd acd adc
aad
AbcO aba bbc ba¢
Abd0 abb bbd bad
non- Acb0 aca ccb cab

codewords Acd0 acc ccd cac
AdbO ada ddb dab
AdcO add ddc dag
possible | bba bbb baa bab
codewords cca ccc caa cac
dda ddd daa dad

Table 3
bba| bbb baa bab cca ccc caa cac (dda ddd| daa| dad
bbaf O 1| 3| 3 3 4, 4| 4, 3 4 4 4
bbb| 1 0 3 3 4 5 4 4 4 5 4 4
baa] 3| 3| 0| 1 4 4, 1 2/ 4 4 1 2
bab] 3| 3| 1| O 4 4, 2| 3 4 4 2 3
cca| 3| 4| 4 4 0 1 3 3] 3 4 4 4
ccc| 4 5| 4, 4 1 o 3] 3 4 5 4 4
caa| 4| 4| 1| 2 3 3 0 1 4 4 1 2
cac| 4| 4| 2| 3 3 3 1 O 4 4 2 3
dda|] 3| 4| 4| 4 3 4, 4 4 0 1 3 3
ddd| 4 | 5| 4| 4 4 5 4 4 1 0 3 3
daa) 4| 4, 1, 2 4 4, 1 20 3 3 0 1
dad| 4| 4| 2| 3 4 4, 2/ 3 3/ 3 1 O
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Case (aab is a codeword ) Similarily, if we choose a word aab as a codewpi@ble4 shows
the outcome and TabEshows the words covered by each possible codewagain each
possible codeword is less than distarkcigom the othersso we may only choose ankElowever
none of them cover all of the naodewords in Tabld, so we will not have a BECC if a word

aab is a codeword

Table 4 Table 5
codeword: aab bba | bbb| baa bab
Aaa0 abc AbbO| AbbO | AbaO| AbaO
covers: AacO abd AbcO| bac | AcaO| AbcO
Aad0 cdb AbdO| bad | AdaO| AbdO
dcb bac | bcd | bbc| bbc
non- AbcO AdbO aba bac cdd bad | bca| bbd bbd
codewords: Abd0 AddO abb bad dcal cda | bdc| bcd| caaa
Acb0 Aca0 bbc cda dcd| dca | bda, bcb daa
AccO Ada0 bbd cdc dcc bdc | cad
Possible Codewords: bba bbb baa bab bdb | dac

Case (abc is a codeword ) Now, we may choose a word abc as a codewofdjain, Table6
shows the outcomeSince there are no words distanBérom a word of the form abh@bc cannot

be a codeword

Table 6 codeword: abc
covers| Aab0 Aaa0 Aad0 AdbO aca acd ddc dac bdc cbd
D3 acb cba dda ddb ddd bda bdb bdb bbc bac |bcd
acc cbc dab daa dad ddc cad cdb dca dcd
D4 dcb bba bbb bbd baa bab bad bca bcb bcc
dcc cda cdc cdd caa cab cac cca ccb ccc

Thus, TH(4,3) does not have a P2ECC. However, it does have a trivial error-detecting code if
we choose 000, 111, 222, 333 as codewords. Then, any word not of the form aaa will be detected as

a non-codeword. In fact, for TH(k,n), if we choos@a.1...& of the form aaa wherea {0, 1,...K}
as a codeword, then we will always have this trivial error-detecting code.

Conclusion

Even though the generalized Towers of Hanoi with four pegs does not seem to produce good
one- or two- error correcting codes, its symmetry and patterns could attract more study. It may be
enjoyable to investigate other values of k and n and try to prove general information about the graph
for TH(k,n) as well as perhaps find a gerneral recursive construction for the graphs. Also, one might

explore distance further by constructing a distance formula for any two words. This is an
open-ended problem for many codes, and studying it would surely be a worthwhile activity.
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