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Abstract :
An attempt is made to extend the coding theory based on the Towers of Hanoi puzzle to the

generalized Towers of Hanoi with more than three pegs. A three-dimensional graph is created for
the case of four pegs, and a recursive construction for this graph is given based on the number of
disks used. Proofs that no perfect one error-correcting code (P1ECC) or P2ECC exist on the graph
for four pegs with three desks are given.

Introduction
When information is sent electronically, messages are often converted into strings of numbers.

When received, these strings are decoded as the original message. Unfortunately, due to both human
folly and machine inaccuracy, the strings may contain errors, so error-correcting codes are
constructed to enable us to obtain the original message. These error-correcting codes may be studied
as graphs consisting of vertices and deges. The strings are each assigned to a vertex, and an edge
between two vertices represents a distance of 1 between the two strings assigned to those vertices.
Depending on how distance is defined, one may study graphs to see if they contain an
error-correcting code.

1.0 Towers of Hanoi
The Towers of Hanoi puzzle has been of mathematical interest for decades. It consists of 3 pegs

and a number of different sized disks which are initially placed on the first peg in order of size, the
smallest on top. The object of the puzzle is to stack all the disks on the third peg by only moving
one disk at a time and placing disks only on larger disks. By labeling the disks and pegs, one may
create a perfect one error-correcting code whose words are base 3 and whose distance between
words is defined as the minimum number of legal moves between configurations on the puzzle (1).

One variant of the Towers of Hanoi puzzle is the generalized Towers of Hanoi which has more

than three pegs. It has been studied by computer scientists in connection with material handling and
production scheduling (Hinz 133), and recursive solutions to the general puzzle have been found.
However, I have found no documentation of relating the error-correcting codes of the original
Towers of Hanoi puzzle with the generalized puzzle. In order to do this, some simple definitions
and notation are necessary.
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1.1 Definitions & Notation
See Figure 1. In a generalized Towers of Hanoi puzzle and graph, we let...

� k � # of towers, ku 3
� Towers are named 0, 1, 2, ..., k-1
� n � # of disks, nu 1
� Disks are named a1,a2,...,an

� TH(k,n) is a generalized Towers of Hanoi puzzle with k towers and n disks
A � an...a2a1 is aworddescribing a specific configuration on the puzzle where ai is defined by

the tower on which theith disk rests
� Thedistancefrom one word A to another word B is the minimum number of legal moves it

takes to get from the configuration of A to the configuration of B on the generalized Towers of

Hanoi puzzle. We write D(A,B)� j for some j�0 � À to denote distance between A and B,

and we write Dj(A)� £B : D�A,B  � j¤.

Example D(012,020)� 2 and D2(12)� £000,001,002,010,020,011,211¤.

� A word B iscoveredby a codeword A on adECC if D(A,B) t d.

2.0 Reve’s Puzzle — TH(4,n)
The generalized Towers of Hanoi with four pegs, or Reve’s puzzle, has been studied in both

computer science in relation to computer programming and algorithm complexity as well as in
combinatorial mathematics (Lu & Dillon 3). The rules of the puzzle are the same as TH(3,n), and
both recursive and iterative solutions have been found for the puzzle. We can construct a code
similar to the TH(3,n) code based on Reve’s Puzzle by creating words in base 4 rather than base 3.
One favorable property of the TH(4,n) graph is that despite its complexity, it has a simple recursive
construction as we increase n.

2.1 1 Disk v 2 Disks — TH(4,2)
The initial configuration on Reve’s puzzle consists of all disks on peg 0, so the only possible

action is moving the top disk to peg 1, 2, or 3. This is equivalent to having only one disk on the
puzzle, and the action can be graphically described by a tetrahedron whose four vertices are words
and whose edges represent a distance of 1 between the words (see Figure 2). If the puzzle has two
disks, the graph expands to four tetrahedrons and sixteen vertices, with specific edges between them
(see Figure 3). The process for choosing codewords is quite simple. First, choose an arbitrary word
to be a codeword. Then, all words distance 1 from that codeword are covered by it. All other words
distance 1 from each covered word may not be codewords, and they need to be covered by another
codeword. We choose more codewords to cover these words, being sure that no two codewords are
less than distance 3 apart. For instance, on the TH(4,2) graph, we may choose the word 10 as a
codeword. Then, 20, 30, 11, 12, and 13 are covered by 10, and and 21, 22, 23, 31, 32, 33, 02, and 03
must be covered by other codewords. We could choose either 00 to cover 02 and 03, or we could
choose 01 and cover 02, 03, 21, and 31, but 22, 23, 32, and 33 will not be covered. Since all words
distance 1 from 22 and 33 are already distinguished as non-codewords, we will not have a P1ECC if
10 is a codeword. Figure 3 does contains a P1ECC with 00, 11, 22, and 33 as codewords. We see
that the non-codewords on each tetrahedron are decoded to the codeword on that tetrahedron, and
each codeword is distance 4 apart. Thus, no two codewords are adjacent, and each non-codeword is
adjacent to exactly 1 codeword. The choice of codewords on this graph is unique since any other
choice will not generate a P1ECC.
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2.2 TH(4,3)
The graph of Reve’s puzzle becomes surprisingly complex when we add a third disk. To

understand the graph, different views may be neccessary. If we ignore the 3-dimensional quality of
the tetrahedrons, we can get an idea of how the bases of the tetrahedrons connect (see Figure 4).
Then, if we stretch the tops of the tetrahedrons, we can see patterns in the edges between them (see
Figure 5).

4



Figure 4

111

110

330

100

222

220
200

300

000

310

120

210

230

Figure 5

5



2.3 Recursive Construction
Notation Gn � The graph of Reve’s puzzle using n disks.

� a horizontal reflection in the xy-plane

� a reflection across a line with slope3

� a reflection across a line with slope- 3

a4a3a20

� the tetrahedron containing the words a4a3a20, a4a3a21, a4a3a22, and

a4a3a23

G1 =
0

2

1

3

Gn = 0Gn-1

2Gn-1 3Gn-1

1Gn-1

for even n

Gn = 0Gn-1

2Gn-13Gn-1

1Gn-1

for odd n
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Example The graph for Reve’s puzzle with4 disks seen from above is as follows:
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Example Though all the edges are not shown on this graph, one may get a better understanding
of the graph by looking at it this way.

2.4 Codes on TH (4,3)
After investigating the structure of the TH(4,3) graph, we can see that no P1ECC exists for

TH(4,3). First, it is neccessary to define more notation:

Notation  a3a20 denotes the tetrahedron containing the words a3a20, a3a21, a3a22, and a3a23.

Example Example  110 includes the words110, 111, 112,and113.

2.41 P1ECC
Theorem (1) For a P1ECC, the tetrahedrons 000, 110, 220,and 330must contain
codewords.

Proof For a P1ECC, all words are either codewords or share an edge with a codeword. Since
000, 111, 222,and333share edges only with words on their respective tetrahedrons, they must
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either be codewords, or their tetrahedrons must contain codewords.

Theorem (2) 001, 002, 003, 110, 112, 113, 220, 221, 223, 330, 331,and332cannot be

codewords.

Proof In order to produce a contradiction, assume001 is a codeword. Then000, 002, 003, 021,
and031are decoded to001. Furthermore, all other words distance2 from001cannot be
codewords. Since D(001, 032)� 2, 032must be decoded to another codeword. However, the only
word x such that D(032,x) � 1 and D(001,x) �2 is 132,so132must be a codeword. Then112 is
decoded to132and all other words distance1 from112cannot be codewords. Since this includes
all words on the tetrahedron containing111,by Theorem1 we would not have a P1ECC.
Therefore, 001cannot be a codeword. The following table illustrates the procedure for showing
the other non-codewords. If a word in the first column is assumed to be a codeword, then it
decodes the word in the second column. This implies the word in the third column cannot be a
codeword, and it must be decoded to the word in the fourth column. Since the word in the fourth
column is then a codeword, it decodes the word in the fifth column, which implies the words in the
sixth column cannot be codewords. Since the words in each row of the fifth and sixth columns
make up the tetrahedrons in Theorem1, we have a contradiction.

codeword decodes non-codeword decoded by decodes non-codeword

001 031 032 132 112  110

002 032 031 231 221  220

003 023 021 321 331  330

110 120 123 023 003  000

112 102 103 203 223  220

113 103 102 302 332  330

220 210 213 013 003  000

221 201 203 103 113  110

223 203 201 301 331  330

330 320 321 021 001  000

331 301 302 102 112  110

332 302 301 201 221  220

It follows from Theorems 1 and 2 that if there is a P1ECC on TH(4,3), then 000, 111, 222, and
333 must be codewords. However, the following table shows that this cannot be the case.
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codew o rd C 000 111 222 333

001 110 220 330

D1(C) 002 112 221 331

003 113 223 332

021 120 210 310

031 130 230 320

non-codew o rds 012 102 201 301

D2(C) 032 132 231 321

013 103 203 302

023 123 213 312

010 100 200 300

possibl e 011 101 201 303

codew o rds 020 121 211 311

D3(C) 022 122 212 313

030 131 233 322

033 133 232 323

No matter what combination of possible
codewords we choose to cover D2(C),
our new codewords will either be within
distance 2 of each other, or non-
codewords in D2(C) will not be covered.
Thus, there is no P1ECC on the graph
for TH(4,3).

2.42 P2ECC
If a3 � a2 � a1 and b3 � b2 � b1 but a3 p b3, then D(a3a2a1, b3b2b1) � 5. Since we may

recognize this as distance� 2e� 1 in a code where e is the number of errors corrected, we may
expect the code for TH(4,3) to correct 2 errors. Then, the most intuitive choice for codewords is
000, 111, 222, and 333 since they are farthest apart. However, the following table shows that these
words will not generate a P2ECC.

codew ord C 000 111 222 333

001 110 220 330

D1(C) 002 112 221 331

003 113 223 332

021 120 210 310

031 130 230 320

D2(C) 012 102 201 301

032 132 231 321

013 103 203 302

023 123 213 312

010 100 200 300

011 101 201 303

non-codew ords 020 121 211 311

D3(C) 022 122 212 313

030 131 233 322

033 133 232 323

Since the non-codewords are not
covered by any codeword, we do not
have a P2ECC.  Note that we cannot
choose any of the non-codewords as
codewords because if we did, the words
in D1 (C) and D2(C) will be distance 2
from 2 different codewords.

Theorem TH(4,3)does not have a P2ECC.

Proof For a P2ECC, every word is either a codeword or has distancet 2 from exactly one
codeword. Thus, for 000, 111, 222,and333,we need to choose codewords that are distancet 2
from each word. That is, in Table1, we must choose one word from each column as a codeword.
Notice that the words in each column are of one of the following forms: aaa, aab, and abc. Define
A � £0,1,2,3¤, and let a� A. Define B� A\a, and let b� B. Define C� B\b, and let c� C. Also,
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define D� C\c, and let d� D.

� Case (aaa is a codeword ) Now, suppose we choose a word aaa to be a codeword(that is,
000, 111, 222,or 333). Table2 shows the outcomes of this choice. Table3 shows distance
between each of the possible codewords from table2. Since each of the possible codewords
are less than distance5 apart, we may only choose one as a codeword. However, there is no
single possible codeword that is distancet 2 from the others, so no choice will cover all
words. Thus, we will not have a P2ECC if aaa is a codeword.

Table 1

000 110 220 330

001 111 221 331

002 112 222 332

003 113 223 333

012 102 201 301

013 103 203 302

021 120 210 310

023 123 213 312

031 130 230 320

032 132 231 321

Table 2

Codeword: aaa

aab abc acb adb

covers: aac abd acd adc

aad

 bc0 aba bbc bac

 bd0 abb bbd bad

non-  cb0 aca ccb cab

codewords  cd0 acc ccd cad

 db0 ada ddb dab

 dc0 add ddc dac

possible bba bbb baa bab

codewords cca ccc caa cac

dda ddd daa dad

Table 3

bba bbb baa bab cca ccc caa cac dda ddd daa dad

bba 0 1 3 3 3 4 4 4 3 4 4 4

bbb 1 0 3 3 4 5 4 4 4 5 4 4

baa 3 3 0 1 4 4 1 2 4 4 1 2

bab 3 3 1 0 4 4 2 3 4 4 2 3

cca 3 4 4 4 0 1 3 3 3 4 4 4

ccc 4 5 4 4 1 0 3 3 4 5 4 4

caa 4 4 1 2 3 3 0 1 4 4 1 2

cac 4 4 2 3 3 3 1 0 4 4 2 3

dda 3 4 4 4 3 4 4 4 0 1 3 3

ddd 4 5 4 4 4 5 4 4 1 0 3 3

daa 4 4 1 2 4 4 1 2 3 3 0 1

dad 4 4 2 3 4 4 2 3 3 3 1 0
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Case (aab is a codeword ) Similarily, if we choose a word aab as a codeword, Table4 shows
the outcome and Table5 shows the words covered by each possible codeword. Again, each
possible codeword is less than distance5 from the others, so we may only choose one. However,
none of them cover all of the non-codewords in Table4, so we will not have a P2ECC if a word
aab is a codeword.

Table 4

codeword: aab

 aa0 abc

covers:  ac0 abd

 ad0 cdb

dcb

non-  bc0  db0 aba bac cdd

codewords:  bd0  dd0 abb bad dca

 cb0  ca0 bbc cda dcd

 cc0  da0 bbd cdc dcc

Possible Codewords: bba bbb baa bab

Table 5

bba bbb baa bab

 bb0  bb0  ba0  ba0

 bc0 bac  ca0  bc0

 bd0 bad  da0  bd0

bac bcd bbc bbc

bad bca bbd bbd

cda bdc bcd caaa

dca bda bcb daa

bdc cad

bdb dac

Case (abc is a codeword ) Now, we may choose a word abc as a codeword. Again, Table6
shows the outcome. Since there are no words distance5 from a word of the form abc, abc cannot
be a codeword.

Table 6 codeword: abc

covers  ab0  aa0  ad0  db0 aca acd ddc dac bdc cbd

D3 acb cba dda ddb ddd bda bdb bdb bbc bac bcd

acc cbc dab daa dad ddc cad cdb dca dcd

D4 dcb bba bbb bbd baa bab bad bca bcb bcc

dcc cda cdc cdd caa cab cac cca ccb ccc

Thus, TH(4,3) does not have a P2ECC. However, it does have a trivial error-detecting code if
we choose 000, 111, 222, 333 as codewords. Then, any word not of the form aaa will be detected as
a non-codeword. In fact, for TH(k,n), if we choose anan"1...a0 of the form aaa where a� £0,1, ...,k¤
as a codeword, then we will always have this trivial error-detecting code.

Conclusion
Even though the generalized Towers of Hanoi with four pegs does not seem to produce good

one- or two- error correcting codes, its symmetry and patterns could attract more study. It may be
enjoyable to investigate other values of k and n and try to prove general information about the graph
for TH(k,n) as well as perhaps find a gerneral recursive construction for the graphs. Also, one might
explore distance further by constructing a distance formula for any two words. This is an
open-ended problem for many codes, and studying it would surely be a worthwhile activity.
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