
1

1

A Computer Implementation of Whitehead’s
Algorithm

Michael Lau
St. Olaf College
Northfield, MN

Advisor: Professor Dennis Garity
NSF sponsored REU Program

Oregon State University

August 24, 2010

Abstract

A computer implementation of Whitehead’s Algorithm is given for
F (a, b, c), and is then applied to give a classification of minimal words
of length at most 6. The notion of CP-equivalence is introduced in
conjunction with this classification, and some properties of Whitehead
automorphisms and equivalence are investigated.

∗The extensive help of Professor Dennis Garity in developing the ideas found in this
paper is gratefully acknowledged.

1

1 Whitehead’s Algorithm

In 1936, J.H.C. Whitehead used topological techniques to prove that if two
words of a finitely generated free group are equivalent under an automor-
phism of the group, then they are equivalent under a finite sequence of auto-
morphisms of a special kind, the so-called Whitehead automorphisms [3],[4].
Moreover, for any pair of equivalent words w and w′, where w′ has the min-
imum length occurring in its equivalence class, the words obtained at each
step in this transformation from w to w′ are of strictly decreasing length until
the minimum length is attained, after which the length remains constant.

Some Notation.

• xk will denote the inverse of the letter xk.

• F (x1, . . . , xn) will denote the free group of rank n, having x1, . . . , xn as
its generators, with only the trivial relation xkxk = xkxk = 1.

• w ∼ w′ will indicate the equivalence of two words w,w′ ∈ F =
F (x1, . . . , xn) under some automorphism of F .

• |w| will be defined as the length of a word w.1

In the following two definitions, we will use L to denote the set {x1, x2, . . . , xn,
x1, x2, . . . , xn}.

Definition 1.1 If F = F (x1, . . . , xn), then the Whitehead Type I auto-
morphisms of F are the members of AutF ∩SymL–that is, those permuta-
tions φ acting on L and preserving inverses (i.e. φ(xk) = φ(xk)).

Definition 1.2 If F = F (x1, . . . , xn), then given any x ∈ L and A ⊂ L
such that x ∈ A and x /∈ A, the pair (A, x) will be called a Whitehead
Type II automorphism, where (A, x) is the automorphism determined by

1Keep in mind that the length of a word is the number of letters in the word after it
has been reduced–i.e. after pairs of consecutive letters xkxk and xkxk have been removed
until no such pair remains. By convention, the empty word is reduced.

2

the following actions on each y ∈ L:

y(A, x) =


yx if y ∈ A, y /∈ A, y /∈ {x, x}
xy if y /∈ A, y ∈ A, y /∈ {x, x}
xyx if y, y ∈ A
y otherwise

Example 1.1 ρ = (x1 x3 x2)(x1 x3 x2) is a Whitehead Type I automor-
phism (written in cyclic notation).

Example 1.2 IfA = {x1, x2, x1, x3}, then x2x1x3x2x3(A, x2) = x2x2x1x2x2x3x2x2x3 =
x1x3x3.

Whitehead’s Theorem 1.1 If w,w′ ∈ F = F (x1, . . . , xn) such that w ∼
w′ and w′ is of minimum length for their equivalence class, then there is some
sequence α1, α2, . . . , αm of Whitehead automorphisms such that wα1α2 · · ·αm =
w′ and for all positive integers k ≤ m |wα1α2 · · ·αk| ≤ |wα1α2 · · ·αk−1| with
strict inequality unless wα1α2 · · ·αk−1 is also of minimum length.

As was mentioned above, this result was discovered and proven by Whitehead
[3],[4]. Successively simpler proofs have been given by Rapaport[2] in 1958,
and by Higgins and Lyndon[1] in 1974.

The theorem has several immediate consequences, of which we will con-
cern ourselves with only the simplest and most obvious–the existence of an
easily constructible algorithm for determining whether or not two words of
a finitely generated free group are equivalent under an automorphism of the
group. Moreover, since our ultimate goal in developing a computer imple-
mentation of this algorithm is to provide a useful tool for generating and
testing hypotheses related to such equivalence or nonequivalence, we will
limit ourselves to studying applications of the algorithm to free groups of
rank 3, in order to study a nontrivial automorphism group while avoiding
the complexity and long computer computation times associated with free
groups of higher rank. The specific value of 3 was chosen to benefit fellow
researchers studying free homotopy classes of self-intersecting curves on the
twice-punctured torus, since they consider equivalence questions regarding
elements of F (a, b, c) under automorphisms of the group when demonstrat-
ing distinctness of homotopy classes.2

2Such questions arise since homotopic curves are equivalent under homeomorphisms of
the torus, which in turn induce automorphisms of the first homology group, which is, in

3

Whitehead’s Algorithm
Suppose w, v ∈ F = F (x1, . . . , xn).

1. Find mimimum length words w∗ and v∗ equivalent to w and to v, respec-
tively. Since there are only finitely many Whitehead automorphisms of
F (x1, . . . , xn), this may be done as follows:

Check to see if w or v is equivalent , under a single Whitehead auto-
morphism, to a word of strictly lesser length. If one of them is, then
replace it with this shorter word and repeat this process. If not, then
w and v are of minimum length.

2. Make a list of all the minimum length words equivalent to w by exe-
cuting the following steps:

(i) Using the minimum length word w∗ ∼ w found in Step 1, make a
list consisting of w∗ and all the same-length words equivalent to
w∗ under a single Whitehead automorphism.

(ii) Make a new list by appending (to the old list created in Step 2(i))
all the same-length words equivalent to a word on the old list via
a single Whitehead automorphism. If this new list contains no
words not already found on the old list, then clearly there are
no other minimum length words that are equivalent to w under a
finite sequence of Whitehead automorphisms. If, on the contrary,
it contains new words, then reapply this step, using the “new
list” in place of the “old list”. Note that since there are only
finitely many words of a given length in F , Step 2 must eventually
terminate.

3. If v∗ is on the list produced in Step 2, then clearly w ∼ v. Otherwise,
it follows directly from Whitehead’s Theorem that w 6∼ v.

this special case, F (a, b, c). This means that if the words corresponding to two curves are
nonequivalent under AutF (a, b, c), then the two curves must belong to distinct homotopy
classes.

4

2 A Maple V Implementation of Whitehead’s

Algorithm

Now that we have an algorithmic interpretation of Whitehead’s Theorem,
we are almost ready to present a series of programs (written for Maple V,
release 4) that will perform various functions related to the execution of the
Whitehead Algorithm. However, we will first need to make a few observations
in order to reduce computer computation time later:

Lemma 2.1 Whitehead Type I automorphisms never change the length of a
word.

Proof Since Whitehead Type I automorphisms are permutations, they can-
not increase the number of letters in a word. They preserve inverses while
permuting letters, which means that they cannot introduce new adjacent xx
or xx pairs, so they cannot decrease word length.

Lemma 2.2 If a letter x and its inverse x are not present in a word w,
then no Whitehead Type II automorphisms of the form (A, x) will reduce the
length of w.

Proof By definition, (A, x) acts on letters y ∈ F (x1, · · · , xn) by mapping y
to y, xy, yx, or xyx. Since we have assumed that x is not present in w, the
result of such mappings is merely the possible introuction of additional letters
(occurrences of x and/or x) without the possibility of new cancellations (since
there were no previously existing occurrences of x or x with which to cancel).

Lemma 2.3 If w and v are equivalent words in F (x1, · · · , xn) and v is of
minimum length, then ∃α1, α2, . . . , αs such that
(i) wα1α2 · · ·αs = v
(ii) α1, α2, . . . , αs−1 are Whitehead Type II automorphisms
(iii) αs is a (possibly trivial) Whitehead Type I automorphism
(iv) |wα1α2 · · ·αk| ≤ |wα1α2 · · ·αk−1| with strict inequality unless wα1α2 · · ·αk−1
is of minimum length.

Proof By Whitehead’s Theorem, there exist Whitehead automorphisms
β1, . . . , βr such that wβ1 · · · βr = v and |wβ1 · · · βk| ≤ |wβ1 · · · βk−1| for all

5

1 ≤ k ≤ r with strict inequality unless wβ1 · · · βk−1 is also of minimum
length.

Note that for all y ∈ F (x1, · · · , xn), Whitehead Type I automorphisms ρ,
and Whitehead Type II automorphisms (A, x),

yρ(A, x) = y(Aρ−1, xρ−1)ρ, where Aρ−1 = {zρ−1 : z ∈ A}. (1)

This follows from the facts that yρ = x iff y = xρ−1, yρ ∈ A iff y ∈ Aρ−1,
and xρ−1ρ = x.

Applying this observation to Whitehead’s result, inducting on the posi-
tion of a Whitehead Type I automorphism ρ ∈ {β1, . . . , βr}, then inducting
on the number of Whitehead Type I automorphisms in {β1, . . . , βr} gives a se-
quence of Whitehead automorphisms γ1, . . . , γr such that wγ1 · · · γr = v and
there are no Whitehead Type I automorphisms occurring before a Whitehead
Type II automorphism in this sequence. Since the set of all Whitehead Type
I automorphisms clearly forms a group under function composition3,the com-
position of all the Whitehead Type I automorphisms in γ1 . . . , γr is clearly a
single Whitehead Type I automorphism, which proves (i), (ii), and (iii).

To prove (iv), assume α1, . . . , αn are a sequence of Whitehead automor-
phisms given by Whitehead’s Theorem. Suppose ρ = αj is Whitehead Type
I and (A, x) = αj+1 is Whitehead Type II. Let α′j+1 = (Aρ−1, xρ−1). By
Lemma 2.1, |wα1 · · ·αj| = |wα1 · · ·αj−1|, so it follows from Whitehead’s
Theorem that wα1 · · ·αj−1 has minimal length. It is now sufficient to show
that (a) |wα1 · · ·αj−1α

′
j+1| = |wα1 · · ·αj−1| and (b) |wα1 · · ·αj−1α

′
j+1αj| ≤

|wα1 · · ·αj−1α
′
j+1| with strict inequality unless wα1 · · ·αj−1α

′
j+1 has minimal

length. Note that |wα1 · · ·αj−1α
′
j+1| = |wα1 · · ·αj−1α

′
j+1αj| = |wα1 · · ·αj+1| =

|wα1 · · ·αj−1|. (The first equality is from Lemma 2.1, the second comes
from Equation (1), and the third follows from monotonicity and the fact
that wα1 · · ·αj−1 has minimal length.) But what we have just shown (be-
sides proving (a)) is that wα1 · · ·αj−1α

′
j+1 has minimal length. Then we may

complete our proof of (iv) merely by noting that |wα1 · · ·αj−1α
′
j+1αj| =

|wα1 · · ·αj−1α
′
j+1|.

These lemmas may now be combined with Whitehead’s Algorithm to
construct the following collection of Maple programs:

3Adopting the notation of Definition 1.1, AutF and SymL can easily be embedded
as subgroups of SymF . Then since the intersection of subgroups is itself a group, the
Whitehead Type I automorphisms form a group.

6

2.1 DWH(”Do WHitehead automorphism”)

DWH takes 3 arguments, a word wd, a Whitehead set A and a ”distin-
guished” element x. (x and x should not be in A). It returns the result of
applying the Whitehead Type II automorphism (A ∪ {x}, x) to wd.

kill takes 2 arguments, a word wd and a positive integer k. It returns the
word formed by deleting the kth and (k + 1)st letters of wd.

> kill :=proc(wd,k)

> if length(wd)>k

> then wdn :=cat(substring(wd,1..k-1),substring(wd,k+2..length(wd)));

> else wdn:=wd;fi;

> wdn;

> end:

inv(”INVerse”) takes 1 argument, a letter from the set {a, b, c, A,B,C} and
returns the inverse of that letter where X denotes the inverse of x for all x
in {a, b, c}.

> inv:=proc(y) x:=y;

> if x=’a’ then X:=’A’;

> elif x=’b’ then X:=’B’;

> elif x=’c’ then X:=’C’;

> elif x=’A’ then X:=’a’;

> elif x=’B’ then X:=’b’;

> elif x=’C’ then X:=’c’;

> else ERROR(’dontusebadwords’);

> fi;

> end:

CFC(”Check For Cancellations”) takes 1 argument, a word wd on 6 letters
a, b, c, A,B,C where X denotes the inverse of x for all x in {a, b, c}. It
returns the word formed by performing all allowable cancellations on wd. If
the empty word is the result, it returns ”1”.

7

> CFC :=proc(wd::string)

> w:=wd;

> l:=length(w); k:=1;

> if l>1

> then while k < l

> do

> if substring(w,k)=inv(substring(w,k+1))

> then w :=kill(w,k); k:=max(k-1,1); l:=l-2;

> else k:=k+1;

> fi;

> od;

> fi;

> if l=0 then w:=‘1‘ else w; fi;

> end:

> DWH :=proc(wd,set,x)

> w2:=wd; w3:=w2;

> l:=length(w2); m:=1;

> for k from 1 to l do

> if member(substring(w2,k..k),{x,inv(x)})

> then m:=m+1 elif member(substring(w2,k..k),set)

> then if member(inv(substring(w2,k..k)),set)

> then w3:=cat(substring(w3,1..m-1),inv(x),substring(w2,k..k),

> x,substring(w2,k+1..length(w2))); m:=m+3;

> else w3:=cat(substring(w3,1..m),x,substring(w2,k+1..length(w2)));

> m:=m+2;

> fi;

> elif member(inv(substring(w2,k..k)),set)

> then w3:=cat(substring(w3,1..m-1),inv(x),substring(w2,k..length(w2)));

> m:=m+2;

> else m:=m+1;

> fi;

> od; w3;

> end:

8

2.2 minwd (”Minimum Word”)

minwd4 takes two arguments, a word wd in the free group F (a, b, c) with the
convention that X denotes the inverse of x for all x in {a, b, c}, and an empty
list []. To avoid complications with Maple ”evaluating” the word it is given,
it is best to enclose the argument in a pair of single quotation marks ’and’. It
returns a word that is Whitehead equivalent to wd and is of minimal length,
and the list of Whitehead automorphisms needed to get the minimal word.
It uses all three of the lemmas to reduce computation time.

oldminwd takes one argument, a word wd in F (a, b, c). To avoid complica-
tions with Maple ”evaluating” the word it is given, it is best to enclose the
argument in a pair of single quotation marks ’and’. It returns a word that is
Whitehead equivalent to wd and is of minimal length.

Whitehead sets

aset

> aset:=combinat[powerset]({’b’,’c’,’B’,’C’}):

> aset:=aset minus {{}};

Aset

> Aset:=combinat[powerset]({’b’,’c’,’B’,’C’}):

> Aset:=Aset minus {{}};

bset

> bset:=combinat[powerset]({’a’,’c’,’A’,’C’}):

> bset:=bset minus {{}};

Bset

> Bset:=combinat[powerset]({’a’,’c’,’A’,’C’}):

> Bset:=Bset minus {{}};

cset

> cset:=combinat[powerset]({’b’,’a’,’B’,’A’}):

4The idea and code for using “Whitehead sets” to improve the efficiency of minwd (via
Lemma 2.2) was supplied by Professor Garity.

9

> cset:=cset minus {{}};

Cset

> Cset:=combinat[powerset]({’b’,’a’,’B’,’A’}):

> Cset:=Cset minus {{}};

> minwd:=proc(wd::string,lst::list)

> wold:=CFC(wd); WHlist:=lst; wnew:=wold;

> k:=1;

> while k > 0 do

> j:=0;

> if SearchText(‘a‘,wold)>0 or SearchText(‘A‘,wold)>0

> then for i from 1 to 15 do

> wnew:=CFC(DWH(wold, aset[i],‘a‘));

> if length(wnew)<length(wold)

> then wold:=wnew; WHlist:=[op(WHlist),[aset[i],a]];

> j:=1;

> fi;

> od;

> for i1 from 1 to 15 do

> wnew:=CFC(DWH(wold, Aset[i1],‘A‘));

> if length(wnew)<length(wold)

> then wold:=wnew; WHlist:=[op(WHlist),[Aset[i1],A]];

> j:=1;

> fi;

> od;

> fi;

> if SearchText(‘b‘,wold)>0 or SearchText(‘B‘,wold)>0

> then for i2 from 1 to 15 do

> wnew:=CFC(DWH(wold, bset[i2],‘b‘));

> if length(wnew)<length(wold)

> then wold:=wnew; WHlist:=[op(WHlist),[bset[i2],b]];

> j:=1;

> fi;

> od;

> for i3 from 1 to 15 do

10

> wnew:=CFC(DWH(wold, Bset[i3],‘B‘));

> if length(wnew)<length(wold)

> then wold:=wnew; WHlist:=[op(WHlist),[Bset[i3],B]];

> j:=1;

> fi;

> od;

> fi;

> if SearchText(‘c‘,wold)>0 or SearchText(‘C‘,wold)>0

> then for i4 from 1 to 15 do

> wnew:=CFC(DWH(wold, cset[i4],‘c‘));

> if length(wnew)<length(wold)

> then wold:=wnew; WHlist:=[op(WHlist),[cset[i4],c]];

> j:=1;

> fi;

> od;

> for i5 from 1 to 15 do

> wnew:=CFC(DWH(wold, Cset[i5],‘C‘));

> if length(wnew)<length(wold)

> then wold:=wnew; WHlist:=[op(WHlist),[Cset[i5],C]];

> j:=1;

> fi;

> od;

> fi;

> if j=1 then k:=1; else k:=0; fi;

> od;

> ouput:=[wold,WHlist];

> end:

> oldminwd:=proc(wd::string)wold:=CFC(wd); wnew:=wold;

> k:=1;

> while k > 0 do

> j:=0;

> if SearchText(‘a‘,wold)>0 or SearchText(‘A‘,wold)>0

> then for i from 1 to 15 do

> wnew:=CFC(DWH(wold, aset[i],‘a‘));

> if length(wnew)<length(wold)

11

> then wold:=wnew;

> j:=1;

> fi;

> od;

> for i1 from 1 to 15 do

> wnew:=CFC(DWH(wold, Aset[i1],‘A‘));

> if length(wnew)<length(wold)

> then wold:=wnew; j:=1;

> fi;

> od;

> fi;

> if SearchText(‘b‘,wold)>0 or SearchText(‘B‘,wold)>0

> then for i2 from 1 to 15 do

> wnew:=CFC(DWH(wold, bset[i2],‘b‘));

> if length(wnew)<length(wold)

> then wold:=wnew;

> j:=1;

> fi;

> od;

> for i3 from 1 to 15 do

> wnew:=CFC(DWH(wold, Bset[i3],‘B‘));

> if length(wnew)<length(wold)

> then wold:=wnew;

> j:=1;

> fi;

> od;

> fi;

> if SearchText(‘c‘,wold)>0 or SearchText(‘C‘,wold)>0

> then for i4 from 1 to 15 do

> wnew:=CFC(DWH(wold, cset[i4],‘c‘));

> if length(wnew)<length(wold)

> then wold:=wnew;

> j:=1;

> fi;

> od;

> for i5 from 1 to 15 do

> wnew:=CFC(DWH(wold, Cset[i5],‘C‘));

12

> if length(wnew)<length(wold)

> then wold:=wnew;

> j:=1;

> fi;

> od;

> fi;

> if j=1 then k:=1; else k:=0; fi;

> od;

> ouput:=wold;

> end:

DPS(Do PermutationS) takes 1 argument, a word wd from the free group
F (a, b, c) where X denotes the inverse of x for all x in {a, b, c}. It returns a set
containing the results of performing each Whitehead Type 1 automorphism
(permutations of letters in wd) on wd.

transpose takes 3 arguments, a word wd and 2 letters x and y. It returns
the word formed by replacing every x occurring in wd with a y and every y
occurring in wd with an x.

> transpose :=proc(wd,x,y) l :=length(wd); w1:=wd;

> for k from 1 to l do

> if substring(w1,k..k)=x

> then w1:=cat(substring(w1,1..k-1),y,substring(w1,k+1..l));

> elif substring(w1,k..k)=y

> then w1:=cat(substring(w1,1..k-1),x,substring(w1,k+1..l));

> else;

> fi;

> od;

> w1;

> end:

II(interchange inverses) takes 2 arguments, a word wd and a letter x. It
returns the word formed by replacing every x occurring in wd with the inverse
of x.

13

> II:=proc(wd, x)

> w9:=transpose(wd,x,inv(x));

> end:

P1,P2,P3,P4, and P5 (”Permutations 1 through 5”) each take 1 argument,
a word wd in the free group F (a, b, c) (where X denotes the inverse of x for
all x in {a, b, c}), and return the word formed by permuting the letters of wd
according to the permutations (in cyclic notation)

• (a b)(A B) for P1,

• (a c)(A C) for P2,

• (b c)(B C) for P3,

• (a b c)(A B C) for P4,

• (a c b)(A C B) for P5.

>P1:=proc(wd) w1:=wd; w1:=transpose(transpose(w1,’a’,’b’),’A’,’B’); end:

>P2:=proc(wd) w1:=wd; w1:=transpose(transpose(w1,a,c),A,C); end:

>P3:=proc(wd) w1:=wd; w1:=transpose(transpose(w1,’b’,’c’),’B’,’C’); end:

>P4:=proc(wd)w1:=wd;

>w1:=transpose(transpose(transpose(transpose(w1,’a’,’b’),’A’,’B’),’a’,’c’),

> ’A’,’C’); end:

>P5:=proc(wd) w1:=wd; w1:=transpose(transpose(transpose(transpose(w1,’a’,’c’),

> ’A’,’C’),’a’,’b’),’A’,’B’);end:

> Permls:=combinat[powerset]({a,b,c});

> DPS:=proc(wd) ls:={wd};for k from 1 to 8 do if Permls[k]={} then ls:=ls

> union {P1(wd)} union {P2(wd)} union {P3(wd)} union {P4(wd)} union {P5(wd)};

> else wd9:=wd;for m from 1 to nops(Permls[k]) do

> wd9:=II(wd9,Permls[k][m]); od; ls:=ls union {wd9} union {P1(wd9)} union

> {P2(wd9)} union {P3(wd9)} union {P4(wd9)} union {P5(wd9)};fi;od;ls; end:

14

2.3 EWL(Equivalent Word List)

EWL takes 1 argument, a reduced word wd from F (a, b, c). It returns the
list of all reduced words that are Whitehead equivalent to wd. It uses the
results of Lemma 2.1 and Lemma 2.3 to reduce computation time.

EW1L(Equivalent via a Whitehead Type 1 automorphism (allowable per-
mutation of letters)) takes 1 argument, a set of reduced words wdls from
F (a, b, c). It returns the set of all reduced words equivalent to a word from
wdls under a Whitehead Type 1 automorphism.

> EW1L:=proc(ewl::set) wl:=ewl;

> for k from 1 to nops(ewl) do

> wl:=wl union DPS(ewl[k]);

> od; end:

EW2L(Equivalent via a single Whitehead Type 2 automorphism List) takes
one argument, a reduced word wd from F (a, b, c) and returns the set of all
reduced words equivalent to wd under a single Whitehead Type 2 automor-
phism.

> EW2L:=proc(wd) global w5;w5:=0;

> w4:=wd; l:=length(w4); ewl:={};

> ps:=combinat[powerset]([’a’,’b’,’c’,’A’,’B’,’C’]);

> for k from 1 to 64 do

> if ps[k]=[] then ps:=ps; else

> for i from 1 to nops(ps[k]) do

> if member(inv(ps[k][i]),ps[k]) then ps:=ps;

> else w5:=CFC(DWH(w4,ps[k],ps[k][i]));

> if length(w5)<=l

> then ewl:=ewl union {w5}; fi; fi; od;fi; od; ewl;end:

CWL(Complete Word List) takes 1 argument, a set of reduced words wdls
from F (a, b, c). It returns the list of all reduced words that are Whitehead
equivalent to a word from wdls.

15

> CWL:=proc(wdls)

> w7:=wdls; w8:=wdls; j:=0; while j<2 do

> for k from 1 to nops(w7) do

> w8:=w8 union EW2L(w7[k]); od;

> if w8=w7 then p:=EW1L(w7); j:=9; else j:=0; w7:=w8;

> fi; od;p; end:

> EWL:=proc(wd)

> CWL({wd}); end:

2.4 EQW(EQuivalent Words)

EQW takes 2 arguments, each a (possibly unreduced) word from F (a, b, c). It
returns ”equivalent” if the 2 words are equivalent under some automorphism
of F (a, b, c), and ”not equivalent” if they are not equivalent under any auto-
morphism of F (a, b, c). Due to the limitations of Maple V’s computational
engine, it is sometimes necessary to use the functions ”minwd” and ”EWL”
instead of ”EQW” to make the determination of equivalence when words are
of longer length.

> EQW:=proc(wd1,wd2)

> if member(oldminwd(wd2),EWL(oldminwd(wd1))) then ’equivalent’;

> else ’not equivalent’; fi;

> end:

3 Applications to Minimal Words of Length

at most 6

Using the programs constructed in Section 2, it is possible to write sim-
ple functions to find the minimal words in F (a, b, c) (i.e. words of minimal
length in their equivalence class) of length at most 6, and then partition them

16

into equivalence classes. After making the trivial observation that White-
head’s Theorem guarantees that minimal words of different length are non-
equivalent, the approach becomes straightforward. Unfortunately, programs
relying on “brute force” to perform these tasks soon encounter prohibitively
long run-times. Examples of straightforward “brute-force” programs (which
we used for words of length at most 5) and a slightly more complex ap-
proach(used for length-6 words)5 may be found in the Appendix.

Though lists generated in this manner are complete, they do not easily
lend themselves to analysis, since many of their equivalence classes are quite
large.6 For this reason, it is helpful to introduce a new notion of equivalence,
by which we will further categorize elements within each equivalence class.

Definition 3.1 Suppose w, v ∈ F (a, b, c) with w = w1, . . . , wn for some wi ∈
{a, b, c, a, b, c}. We say that w and v are cyclically equivalent if v =
wk+1wk+2 · · ·wnw1 · · ·wk for some k ≤ n.

Definition 3.2 Two words w1, w2 ∈ F (a, b, c) are said to be CP-equivalent7

if there exists a Whitehead Type I automorphism ψ such that ψ(w1) is cycli-
cally equivalent to w2.

Definition 3.3 Given a minimal-length word w ∈ F (a, b, c), we say that w
is in reduced-CP (R-CP) form if it is the first word of its CP-equivalence
class to occur in the natural lexicographic ordering given by the ordered (first-
to-last) set {a, b, c, a, b, c}.

Example 3.1 The words abacbc and bcabac are cyclically equivalent.

Example 3.2 The word cababc is CP-equivalent to aabcbc. Moreover, aabcbc
is in R-CP form.

Notation w
CP∼ v will indicate that w and v are CP-equivalent.

Remark 3.1 CP-equivalence implies Whitehead equivalence. That is, if

5In our “length-6 computations,” we make use of the fact that we can generate all
length-6 minimal words by applying Whitehead automorphisms to words whose first letter
is “a,” whose second letter is “a” or “b,”and contain no occurrences of xx or xx.

6In fact one such equivalence class(for words of length 6) contains 1968 members.
7Cyclically equivalent after Whitehead Type I automorphisms (Permutations)

17

w
CP∼ v, then w ∼ v.

Proof If w = w1 · · ·wn ∈ F (x1, . . . , xn) and w1 = xj then
w({x1, . . . , xn, x1, . . . , xj−2, xj−1, xj+1, xj+2 . . . , xn}, xj) = w2 · · ·wnw1. The
result now follows by induction.

Remark 3.2 R-CP words always begin with a string of one or more consec-
utive “a’s”. Moreover, this string is always maximal, in the sense that no
longer strings of consecutive occurrences of a single letter can occur in the
same CP-class.
Proof If an R-CP word w did not begin with a maximal string of a’s, a
permutation (which could easily be chosen to be inverse-preserving) could be
applied to any cyclically-equivalent word beginning with a maximal same-
letter string to get a word CP-equivalent to w and occurring ahead of it in
the lexicographic ordering.

We can now proceed with our classification.

Equivalence Classes of Minimal Words of Length at Most 6

Length Class Card. of Class R-CP elements

1 1 6 a

2 1 6 aa

3 1 6 aaa

4 1 6 aaaa

2 24 abab
3 96 aabb

abab

5 1 6 aaaaa

2 120 aabab

3 120 aabab
4 240 aaabb

aabab

18

Length Class Card. of Class R-CP elements

6 1 6 aaaaaa
2 72 aaabbb

3 72 aabaab

4 72 aabaab

5 144 aaabab

6 144 aaabab

7 144 aabbab
8 144 aabbab

9 144 aabbab
10 360 aaaabb

aaabab
aabaab

11 1968 aabbcc
aabcbc
aabccb
aabcbc
aabcbc
abacbc
abacbc
abacbc
abcabc

The first column in the table gives the length of the minimal words we
are considering, the second column is simply a numbering of the equivalence
classes (under automorphisms of F (a, b, c)), the third gives the cardinality
of the appropriate equivalence class, and the rightmost column gives the
R-CP element of each CP-equivalence class in the appropriate Whitehead
equivalence class.8

The information in the table suggests several questions. Why are there
no minimal words that are not of the form xn (x ∈ {a, b, c, a, b, c}) for
n < 4? Why are there no “c’s” and “c’s” in R-CP words of length < 6? Is
the number of occurrences of a letter x and its inverse x in a minimal word

8Observe that it is very easy to generate all minimal-length elements of a Whitehead
equivalence class using only its R-CP elements–simply write the words cyclically equivalent
to the R-CP element(if the R-CP element is of length n, then there are n such words),
and then apply the Whitehead Type I permutations (48 of them for F(a,b,c)).

19

always constant (up to allowable permutations of letters) for all words in its
Whitehead equivalence class? Can we generate R-CP elements recursively by
appending “a’s” to R-CP elements of shorter length? We will discuss these
and further questions in the sections that follow.

4 Results

Definition 4.1 Suppose w ∈ F (x1, . . . , xn) and x ∈ {x1 . . . , xn}. The sum
of the number of occurrences of x and the number of occurrences of x in w
is called the weight of x in w.9

Theorem 4.1 If a letter x has weight 1 in a word w, then w has minimal
length 1.

Proof Suppose w = w1w2 · · ·wn is a word in which a letter x = wk has
weight 1. Apply the Whitehead automorphism T1 = ({wk−1, x}, wk−1) to w.
This gives wT1 = w1w2 · · ·wk−2xwk+1 · · ·wn. A pair of simple inductions on
k now completes the proof.

Corollary 4.1 Suppose w is a word of length n > 1. Then w contains no
more than

⌊
n
2

⌋
letters of nonzero weight.

Note that Corollary 4.1 settles the question of why all minimal words of
length < 4 are powers of some letter, and why there are no “c’s” and “c’s”
in R-CP words of length < 6.

Theorem 4.2 (Rapaport)10 Suppose that w is a minimal word in F (x1, . . . , xn),
and that x1, . . . , xn have weights k1, . . . , kn, respectively, in w. Then the let-
ters x1, . . . , xn have the same weights in any minimal word v equivalent to
w, up to permutation of subscripts.

Proof By Whitehead’s Theorem, there exists a sequence of level (i.e. length-
preserving) Whitehead automorphisms taking w to v. Whitehead Type II

9The weight is undefined and assumed not to exist for inverses of generators.
10This appears as “Theorem 4” in [2].

20

automorphisms act by introducing occurrences of a “special letter” x or its
inverse x. In doing so, they sometimes cause cancellations of previously-
existing occurrences of x or x. No other cancellations can result. If an auto-
morphism is length-preserving, then the introduction of each new x or x must
be balanced by a cancellation of a previously-existing x or x, thus preserving
weights. Type I automorphisms are just inverse-preserving permutations, so
they obviously preserve weights up to permutation of subscripts.

The contrapositive of Rapaport’s Theorem is clearly a valuable criterion
for non-equivalence, and could potentially be exploited to speed up some of
the code presented in Section 2.

5 Questions for Further Research

It would be especially nice to find some recursive relationships (with respect
to word length) between minimal words. The following unproven conjecture
would be a step in this direction.

Conjecture 5.1 Suppose w, v ∈ F (a, b, c) such that w and v are nonequiva-
lent words in R-CP form. Then aw and av are nonequivalent words in R-CP
form.

If proven, this conjecture would guarantee that the number of equivalence
classes is monotonically increasing with respect to word length. Addition-
ally, it would give a nice recursive criterion for non-equivalence. One might
also hope that if w ∼ v and w and v are both R-CP, then aw ∼ av, but
unfortunately, the R-CP elements aabb ∼ abab provide a counterexample,
since aaabb 6∼ aabab.

Another useful result would be a “nice” upper bound for the minimum
number of Whitehead automorphisms required to map a given word w of
length m to an equivalent and minimal word v of length n. The number of
Whitehead automorphisms required to reduce w to minimal length is clearly
at most m−n by the strict monotonicity property in Whitehead’s Theorem,
but we know of no good upper bound for the number of length-preserving
automorphisms that must follow. An obvious, though poor, upper bound
is the number of minimal words in the equivalence class of v, but it seems
intuitively implausible that such a large number of automorphisms should be

21

required. One possible approach to this problem would be an analysis of the
minimum number of Whitehead automorphisms required to map a given R-
CP word of length n to a word in another given CP-equivalence class.11 One
could then use a series (of length at most n) of Whitehead automorphisms
like the one described in the proof for Remark 3.1, followed by a single Type
I automorphism to map any CP-class representative to any other word in its
CP-class.

Finally, it is hoped that the computer-based classification of minimal
words in F (a, b, c) can be extended to words of longer length and free groups
of larger rank. Corollary 4.1 gives the information required to decide how
large a rank it is necessary to consider to avoid losing generality, and the
notion of CP-equivalence gives an attractive and useful way of representing
minimal words. It may be possible to improve efficiency by writing code
to generate all R-CP words, and then use the programs from Section 2 to
partition them according to equivalence class. If this is significantly faster,
it may be possible to greatly expand the classification.

While the computer programs and applications given in this paper should
not be regarded as ends in themselves, they illustrate the interplay between
technology and mathematics, and it is hoped that the programs, data, and
results presented will be of use to other researchers.

11We used the programs (particularly EW2L(page 15)) from Section 2, and applied this
approach to the R-CP elements found in the table on pages 18-19. The greatest number of
such automorphisms that was ever needed was 3, which occurred in the case of searching
for a sequence of Whitehead automorphisms taking aabbcc to any member of the CP-
equivalence class of aabcbc. This was much smaller than 1968, the number of minimal
words in their equivalence class.

22

Appendix

The following series of programs finds all minimal words of lengths 3,4,
and 5 in F (a, b, c).

> mk3list:=proc() ls:={’a’,’b’,’c’,’A’,’B’,’C’}; ls3:={};

> i:=1; j:=1; k:=1; while i<7 do

> ls3:=ls3 union {cat(ls[i],ls[j],ls[k])};

> k:=k+1; if k=7 then k:=1; j:=j+1;fi; if j=7 then j:=1; i:=i+1;

> fi;od;ls3;end;

>ls3:=mk3list();

> min3ls:=proc()

> lst:={};

> for p from 1 to nops(ls3) do

> x:=oldminwd(ls3[p]);

> if length(x)=3 then lst:=lst union {x};

> fi;od;lst;

> end;

> mk4list:=proc() ls:={’a’,’b’,’c’,’A’,’B’,’C’}; ls4:={}; i:=1; j:=1;

> k:=1;l:=1; while i<7 do

> ls4:=ls4 union {cat(ls[i],ls[j],ls[k],ls[l])};

> l:=l+1; if l=7 then l:=1; k:=k+1;fi;if k=7 then k:=1; j:=j+1;fi;

> if j=7 then

> j:=1; i:=i+1; fi;od;ls4;end;

> ls4:=mk4list();

> min4ls:=proc()lst:={};

> for p from 1 to nops(ls4) do

> x:=oldminwd(ls4[p]);

> if length(x)=4 then lst:=lst union {x};

> fi;od;lst;

> end;

> mk5list:=proc() ls:={’a’,’b’,’c’,’A’,’B’,’C’}; ls5:={}; i:=1; j:=1;

> k:=1;l:=1; m:=1; while i<7 do

> ls5:=ls5 union {cat(ls[i],ls[j],ls[k],ls[l],ls[m])};

23

> m:=m+1; if m=7 then m:=1; l:=l+1;fi;if l=7 then l:=1; k:=k+1;fi;

> if k=7 then k:=1; j:=j+1;fi; if j=7 then j:=1; i:=i+1; fi;od;ls5;end;

> ls5:=mk5list();

> min5lsproc:=proc()

> lst:={};

> for p from 1 to nops(ls5) do

> x:=oldminwd(ls5[p]);

> if length(x)=5 then lst:=lst union {x}; fi;od;lst;end;

The next programs generate a list of some minimal words of length 6. While
this list is not complete, all minimal words of length 6 can be generated by
applying sequences of Whitehead automorphisms to words on this list.

> fun6lsproc:=proc()

> ls:={’a’,’A’,’b’,’B’,’c’,’C’};

> ls6:={};

> i:=1; j:=1; k:=1; l:=1; m:=1;

> while i<5 do

> ls6:=ls6 union {cat(’a’,ls[i],ls[j],ls[k],ls[l],ls[m])};

> m:=m+1;

> if m=2 then m:=3; fi;

> if frac(m/2)=0 then

> if m=l+1 then m:=m+1; fi;

> elif m=m-1 then m:=m+1; fi;

> if m>6 then l:=l+1; m:=1;

> if l=2 then m:=2; fi;

> fi;

>

> if frac(l/2)=0 then

> if l=k+1 then l:=l+1; fi;

> elif l=k-1 then l:=l+1; fi;

> if l>6 then l:=1; k:=k+1;

> if k=2 then l:=2; fi;

> fi;

>

> if frac(k/2)=0 then

24

> if k=j+1 then k:=k+1; fi;

> elif k=j-1 then k:=k+1; fi;

> if k>6 then k:=1; j:=j+1;

> if j=2 then k:=2; fi;

> fi;

>

> if frac(j/2)=0 then

> if j=i+1 then j:=j+1; fi;

> elif j=i-1 then j:=j+1; fi;

> if j>6 then j:=1; i:=i+1; fi;

>

> if i=2 then i:=3; fi;

> od;

> ls6;

> end;

> pls6:=fun6lsproc();

> min6lsproc:=proc()

> lst:={};

> for p from 1 to nops(pls6) do

> x:=oldminwd(pls6[p]);

> if length(x)=6 then lst:=lst union{x};

> fi; od;lst;end;

SIEC(Split Into Equivalence Classes) takes one argument, a list ls of words
from F (a, b, c). It returns a list containing the distinct equivalence classes of
minimal words equivalent the words in ls.

> SIEC:=proc(ls)

> ls1:=ls;lsn:={};

> while nops(ls1)>0 do

> x:=EWL(ls1[1]);lsn:={x} union lsn; ls1:=ls1 minus x;

> od; lsn;end;

25

References

[1] P.J. Higgins and R.C. Lyndon. Equivalence of elements under automor-
phisms of a free group. J. London Math. Soc., pages 8: 254–258, 1974.

[2] E.S. Rapaport. On free groups and their automorphisms. Acta. Math.,
pages 99:139–163, 1958.

[3] J.H.C. Whitehead. On certain sets of elements in a free group. Proceedings
of the London Math. Society, pages 41:48–56, 1936.

[4] J.H.C. Whitehead. On equivalent sets of elements in a free group. Ann.
of Math., pages 37:782–800, 1936.

26

