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Definitions:

The unknotting number of a knot projection is the number of crossing changes in that
projection which are needed to obtain the trivial knot.

The unknotting number of a knot is the minimum of the unknotting numbers of the
knot’s various projections.

A minimal projection of a knot is a projection with a minimum number of crossings; such
a projection has no trivial twists.

Conway Notation:

}f‘huroughout this paper we will use Conway Notation [4]. This notation uses the idea of
multiplying tangles to produce a knot. For example, multiplying tangles n, m, and p, for
integers n, m, and p, we obtain the following diagram, which we call knot n,m, p:
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Continued Fractions:

When a knot is written in Conway notation, it can be associated with a continued fraction.
The following shows how we associate a continued fraction to any knot K written in Conway

notation:

K= (Cl, C2,y ... Cj1, C]) — (2] + 1
G + ————
-+

1
¢z + —
(5]
Theorem I: ] 'f the continued fractions of two knots are equal then the knots are equivalent
(Conway).

In analyzing specific cases of different knot classes, we noticed patterns for their continued
fractions and derived the following general formulas for positive integers a, b and c¢:

i. Fore>0,6>1,(—a,b,¢c)=(a—1,1,b—1, ¢).

ii. For 6>2,¢>1, (¢, =b,c)=(a—1,1,6—2,1,c—1).

iii. For a,¢>2, (a,—1,¢)=(a—2,1, c—2).

iv. Fora > 0,¢>1, (a, b, —¢) = —(a,b—1,1, c—1).

A knot in Conway Notation with all positive or all negative components is a reduced
alternating knot and is non-trivial. A projection is alternating if over and under crossings
alternate. A projection is non-reduced if there is a simple closed curve that transversely
intersects the projection exactly once at a crossing. Figure 2 below illustrates these two
concepts for knots with 1, 2, 3, 4, and 5 components.
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Figure 2

In all of these alternating knots, no simple closed curve intersects the knot in such a way
as to make it non-reduced.

Background Information:

It was thought that the unknotting number of a knot was always realized in a minimal
rather than non-minimal projection. However, Bleiler [3] and Nakanishi [6] both produced
an example of a knot that contradicted this belief. The example was the knot 5 1 4 whose
minimal projection requires 3 crossing changes to become unkotted, but which has a non-
minimal projection requiring only 2 crossing changes to become unknotted. Bernhard [2]
then expanded on the work of Bleiler and Nakanishi. Using the knot 5 1 4 as the base case,
Bernhard produced a proof for the infinite class of knots 2k 41,1, 2k for k > 2, showing that
their unknotting numbers come from a non-minimal rather than a minimal projection. In
this paper, we will focus on an even broader class of knots by producing an infinite number
of infinite classes of knots whose unknotting numbers result from non-minimal projections.



There are three important theorems to note which help one understand our proof, as
well as the origins of the proof. This first theorem concerning continued fractions we have

already stated.

Theorem II: any reduced alternating projection is minimal (Kauffman [5]).
Theorem III: any two reduced alternating projections of a knot have the same number
of crossings (Kauffman, Thistlethwaite and Murasugi, see [1]).

As a result of Theorems II and III, if one reduced alternating projection is minimal, all
reduced alternating projections are minimal. Thus, when regarding minimal projections,
one need only consider one reduced alternating projection. The proof we will develop to
generalize this broader class of knots is by induction.

Let the unknotting number of a projection, P, be denoted u(P) and let a minimal

projection of P be denoted (P)min.
Let (N, M) denote the knot K =2N +3,2M + 1, 2N + 2.

Definition: ~ Statement S(NN, M) means that for knot K corresponding to (N, M), where
integers N > 1 and M > 0,

' 2N + 1 changes fN<M
U(I{)mzn > { N+ M + ]_ Cha,nges lfN 2 M )

Consider the following table of knots:

(k,j) j=0 1 2 3 . M
k=1 51,4 5,34 554 57,4 (1, M)
2  7,1,6 17.3,6 7,56 .

3 91,8 9,5,8 . (kM)
N (N0 (N1) (N, M)
Table 1

Notice that when k& = j, the two cases in the definition overlap. The corresponding knots
lie on what we shall call the diagonal, the diagonal line in our table which has 5,3,4 at its
corner.

* We will show that for any knot P on or below the diagonal, the unknotting number of P
is not realized directly from its minimal projection. First, we will generate a non-minimal
projection of P and find its unknotting number. Then we will use an inductive proof to



show that the unknotting number of the minimal projection of P is greater than that of our
non-minimal projection.

For any knot @) above the diagonal, we will find u(Q)min. Because the middle component
of @) has a greater number of crossings than the right component, we cannot use an analagous
non-minimal projection of () to the one we use for P to find the unknotting number of Q).
Nonetheless, we will have generated an infinite number of infinite classes of knots whose
unknotting numbers cannot be found only by considering their minimal projections.

Unknotting the Non-Minimal Projection

Let P be a knot on or below the diagonal of Table 1, so P = 2k 43, 25 + 1, 2k + 2 for
integers j > 0 and & > 1 such that £ > 5. Make j changes to the middle component of P
and we get the knot 2k + 3, 1, 2k + 2. Pull alternating loops in the right component under
the string connecting the middle and right components, as depicted in Figure 3 below, and
we obtain a non-minimal projection of P corresponding to the non-minimal projections of
the knot class 2k + 1, 1, 2k, for k > 2, generated by Bernhard. Writing these knots in the
form 2k + 3, 1, 2k + 2 for k > 1, Bernhard found that these non-minimal projections have
unknotting number < k 4 1. So the unknotting number for the non—mlmmal projection of

2k+3,2j +1, 2k +2is Sk+j+1.

2k+1, 2j+1, 2k+2 2k+1, 1, 2k+2

o R
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Figure 3



Unknotting the Minimal Projection

First we will show that the minimal projections of knots above the diagonal can be
unknotted in 2NV 42 changes and the minimal projections of knots on and below the diagonal
can be unknotted in NV 4 M 4 2 changes. Then by proving S(%, j) for all integers k¥ > 1 and
~j 2 0, we will find the unknotting number for the minimal projection of any knet in our

table.

Throughout this paper, we will call the left tangle of our knot [ and the right tangle r.

Consider knot K =2k +3, 25 +1, 2k +2. If k£ < j, make k£ + 1 changes on both [/ and
r and the resulting knot is 1, 2j + 1, 0 = 0. So for £ < 7, the trivial knot is obtained after
making 2k + 2 changes. Likewise, if £ > j, make £+ 1 changes on [ and j + 1 changes in the
middle and the resulting knot is 1, —1, 2k +2 = 0; so for k£ > 7, the trivial knot is obtained
after making & + j 4+ 2 changes.

To show that S(k,7j) is true for all integers ¥ > 1 and j > 0, that is, for any knot in
Table 1, we will use a proof by induction, with the induction going in two directions: across
rows and down columns in the table.

Bernhard’s proof of S(k,0) leads to our proof of S(k,1), providing us with a base case
for columns in the table, which follows. To generate a base case for rows in the table, we
will prove S(1,7). We will use these base cases to inductively prove S(k, j) for all integers
k>1andj>0.

Prove S(1,7): 1i.e., show that
i) for j =0, 5, 27 + 1, 4 cannot be unknotted in 2 or fewer changes.
ii) for y > 1, 5, 25 + 1, 4 cannot be unknotted in 3 or fewer changes.

The proof of part (i), S(1,0), is completed by Bernhard and is our base case for proving part
(ii). We will use an inductive proof:

Assume: S(1,h) is true for 0 < A < 5.
Show: S(1,j+ 1) is true, i.e., u(5, 25 + 3, 4)min > 3, for] > 1.

Again, we will examine changes to the middle (25 + 3) section of the knot.

0 middle changes

case 1: at least 1 change in both [ and r

Our knot becomes 3, 27 + 3, 2 with < 1 change remaining.

a) 0 changes: we have a knot with all positive components which is therefore reduced
alternating and non-trivial.

b) 1 change I: we have the knot 1, 25 + 3, 2 which is non-trivial by the same reason
as (a).

c) 1 change r: we have the knot 3, 25 + 3, 0 = 3, which is non-trivial.

case 2 0 changes [, 1 <n < 3 changes r
Our knot becomes 5, 27 + 3, 4 — 2n.



a) if n =1, we have a knot with positive components which is reduced alternating and

non-trivial.

b) if n =2, our knot becomes 5, 25 + 3, 0 = 5, a non-trivial knot.

c) if n = 3, our knot becomes 5, 2j+3, —2 = —5, —(2j+2), —1, —1 since their continued
fractions are equal. However, this is a knot with all negative components which is therefore
reduced alternating and non-trivial.

case 3: 0 changes r, 1 <n <3 changes [
Our knot becomes 5 — 2n, 25 + 3, 4.

a) if 1 <n <2, we have a knot with positive components which is non-trivial.
b) ifn = 3, our knot becomes —1, 2j+3, 4 = 2j+2, 4 since their continued fractions are
equal. The latter knot is non-trivial since it is reduced alternating with positive components.

1 middle change

We have the knot 5, 2(j — 1) + 3, 4 with < 2 changes left, which is non-trivial by our
inductive hypothesis.

2 middle changes

We have the knot 5, 2(j —2) + 3, 4 with < 1 changes left to make. Making the changes
on [ or r, we still have a knot with all positive components which is reduced alternating and

non-trivial.

3 middle changes

We have the knot 5, 2(j — 3) + 3, 4 with 0 changes left.
a) if j > 1, the knot is reduced alternating with all positive components.
b) if j = 1, the knot becomes 5, —1,4 = 3, 1, 2, a reduced alternating knot with all

positive components, since their continued fractions are equal.

Thus, we have proven statement S(1,7).

Prove S(k,1):
i.e., show that 2k + 3, 3, 2k cannot be-unknotted in k + 2 or fewer changes, for k£ > 1.

This will be a proof by induction.
Assume: S(h,1) is true for 1 < & < k. Our base case is S(1,1).
Show: S(k+1,1) is true, ie., u(2k+5,3,2k+4 > k+3,for k > 1.

To begin the induction, we need u(5, 3, 4)min > 3. This base case is done in S(1,7). We
will examine changes to the middle (3) section of the knot and will consider all possibilities
of making at most k + 3 changes to the knot.



0 middle changes

case 1: at least 1 change in both [ and r.

The resulting knot is 2k + 3, 3, 2k + 2, with < k + 1 changes left to make. This knot is
non-trivial by our inductive hypothesis.

case 2: 0 changesin [,1 <n < k+ 3 changes in r.
Our knot becomes 2k + 5, 3, 2(k — n) + 4.

a) if £ — n > —2, we still have a reduced alternating projection with all positive compo-
nents.

b) if k —n = —2, we have 2k + 5, 3, 0 = 2k + 5, a reduced alternating projection.

¢) if k—n < —2, then we have a knot in the form K = 2k +5, 3, —c, where ¢ > 1. Since
their continued fractions are equal, K = —(2k + 5), —2, —1, —(¢ — 1). All components of
this knot are negative, making it non-trivial; thus K is non-trivial.

case 3: 0 changesin r, 1 <n < k4 3 changes in [.

Our knot becomes 2(k — n) + 5, 3, 2k + 4.

a) if k —n > —2, we have a reduced alternating projection with all positive components.

b) if £ —n < —2, then £ —n = —1 and we have a knot in-the form @ = -1, 3, 2k + 4.
Since their continued fractions are equal, ) = 2, 2k+4, a reduced alternating and non-trivial
knot.

1 middle change

We are left with the knot 2k+5, 1, 2k+4 with at most k+2 changes left to make. Writing
this knot as (N, M) = (k,0), we know that S(k,0) is true, thus our knot is non-trivial.

2 middle changes

We are left with the knot 2k + 5, —1, 2k + 4 with at most k£ + 1 changes left to make.
This knot is one possible reduction of having the knot 2k + 5, 1, 2k + 4 with at most k4 2
changes left to make. For the same reason as when we made 1 middle change, this knot is

non-trivial.

3 middle changes

We are left with the knot 2k 4+ 5, —3, 2k + 4 and at most k£ changes to make.

Regardless of whether we make changes on [ and/or r, both [ and r are positive, so our
knot is in the form Q = a, —3, ¢, where a,c > 1. Since their continued fractions are equal,
Q=a-1,1,1,1, c— 1. This is a reduced alternating and non-trivial projection since the

components are all positive.

Thus we have proven statement S(k,1).



Prove S(k,j) for k,j > 1:

We will break our proof of S(%,7) into two parts:

i) if k£ < j, show that 2k + 3, 27 + 1, 2k + 2 will not unknot in 2k + 1 or fewer changes.
ii) if k > j, show that 2k 43, 25 + 1, 2k + 2 will not unknot in k+ j +1 or fewer changes.

Part (i):

Assume:
i. S(k,j7), Vj < M, i.e., our statement is true for columns to the left of our current

position in Table 1. Our base case is S(k,1).
ii. S(k,M), Vk < M, i.e., our statement is true for entries in column M above our

current position in the table. Our base case is S(1,7).

Show:
S(N,M) ie., S(k+ 1,7 + 1) from our assumptions. Since N < M, this implies that
2N +3,2M 4+ 1,2N + 2 cannot be unknotted in 2V 4 1 or fewer changes.

We will focus on making changes to the middle, or 2M + 1 section of the knot and will
break our examination into the following cases: 0 middles changes and from 1 to 2V + 1
middle changes, with any remaining changes occurring on the outer tangles.

Case I: 0 middle changes with at least one change on [ and one on r

The resulting knot is 2(V — 1) + 3,2M + 1,2(N — 1) + 2 with < 2(N — 1) 4+ 1 changes
left to make.

i. For N > 2, this case follows by induction from our inductive hypothesis (i).

ii. However, we must also check for N = 1. The result is the projection 3,2M +1,2 . This
projection has all positive components; therefore, it is reduced alternating, and nontrivial.

Case II: O middle changes with < 2NV + 1 changes on ! and 0 changes on r.

Ay

i. Choose k,for 1 <k < N +1
Making k changes on [ results in the projection 2(N — k) + 3,2M + 1,2N + 2. For
N >1,k>1,M > 1, this knot is all positive, reduced alternating, and nontrivial.

ii. For k=N+1

Making N + 1 changes on [ results in the projection 1,2M + 1,2N + 2 For N > 1 and
M > 1 this knot has all positive components, so it is reduced alternating, and nontrivial.

ii. For k=N + 2

Making N + 2 changes on [ results in the projection —1,2M + 1,2N + 2 After checking
the continued fraction for this knot we get the equivalent projection 2M, 2N + 2 which is all

positive, reduced alternating, and nontrivial.

iv. For N+2<k<2N +1
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Making k changes on [ results in the knot 2(N —k)+3, 2M +1, 2N +2. For N—k > -2,
the resulting knot has all positive components and is non-trivial. For N = —2, the resulting
knot is —1, 2M + 1,2N + 2 = 2M, 2N + 2. For N < —2, we have a knot in the form
—a,2M +1,2N+2=a—1,1,2M, 2N + 2, a knot with all positive components which is
nontrivial.

Case III: 0 middle changes with < 2N + 1 changes on r and 0 changes on /.

i. Choose k,for 1 < k< N +1
Making k changes on r results in the projection 2N + 3,2M + 1,2(N — k) + 2, a knot
which is all positive and nontrivial.

ii. For k=N+1 _

Making N + 1 changes on r results in the projection 2N +3,2M +1,0 = 2N + 3, which
has all positive components and is nontrivial.

iii. For k=N +2

Making N + 2 changes on r results in the projection 2V 4 3,2M + 1, —2. After checking
the continued fraction for this knot we find it is equivalent to —(2N +3), —2M, —1, —1 which
is all negative, and nontrivial.

iv. For N+2<k<2N+1

Making k changes on r gives us the knot 2N +3, 2M +1, 2(N —k)+2. For N —k > —1,
we get a knot with all positive components which is nontrivial. For N — k = —1, we get the
knot 2N + 3, 2M + 1, 0 = 2N + 3, a nontrivial knot. For N — k < —1, we get a knot of the
form 2N + 3,2M + 1,—c = —[2N + 3,2M,1,c — 1] for ¢ > 1 after checking the continued

fraction, which is a nontrivial situation.
Case IV: ( middle changes for 1 < < 2N +1

i. Making B = 1 changes in the middle results in the projection 2N+3,2(M —1)+1,2N42
with < 2N changes to make. This case is non-trivial by inductive hypothesis (i).

ii. Making 1 < B < 2N +1 changes in the middle results in the projection 2N +3,2(M —
B) +1,2N +2. For M — 3 > —1 we get a knot which is all positive and nontrivial. For
M — 3 = —1 we get the projection 2N +3,—1,2N +2. After checking the continued fraction
we find it is equivalent to 2N + 1, 1, 2N which is all positive, thus the knot is nontrivial.

iii. Making 8 = 2N + 1 changes in the middle results in the projection 2N + 3,2(M —
2N) —1,2N + 2. For M — 2N > 0, we have a knot with all positive components which
is non-trivial. For M — 2N = 0, we have the knot 2N +3, —1,2N +2 = 2N + 1, 1, 2N,
a non-trivial knot as we saw in part (ii). For M — 2N < 0, we get a knot in the form
2N +3, —b,2N +2=2N+2,1,b—2,1, 2N + 1, which is positive and non-trivial.

This completes the proof of part (i).

. 1“



Part (ii)
Pick 7 > 1 and let N, M be positive integers such that N > M and M > 1 so N > 2.

Assume:

i) S(4,7), i.e., our statement is true for the diagonal elements, which is proved in part
(i)-

ii) S(k,7), Yj < M, i.e., our statement is true for columns to the left of our current

position in the table. Our base case is S(k,1).
ii) S (k M), Vk < N i.e., our statement is true for elements in the Tow above our current

position in the table. Our base case is S(7,7).

Show:
S(N,M); ie., S(k+1,5+1) from our assumptions. Since N > M, this implies that the
knot 2N + 3, 2M + 1, 2N + 2 cannot be unknotted in N + M + 1 or fewer changes.

We will focus on making changes to the middle, or 2M + 1, section of the knot and will
break our examination into three cases: 0 middle changes, from 1 to 2M middle changes,
and 2M + 1 middle changes, with any remaining changes occurring on the outer tangles. We
will call the left tangle (2N + 3) of the knot, [, and the right tangle (2N + 2), r.

0 middle changes

case I: at least 1 change in both [ and r.

We are left with the knot 2(N—1)+3, 2M +1, 2(N —1)+42 with < N+ M —1 changes left
to make. Write this knot as S(N — 1, M) and by inductive hypothesis (iii), it is non-trivial.

case 2: 0 changes [, 1 <n < N 4+ M + 1 changes r.
We are left with the knot 2V 4+ 3, 2M + 1, 2(N —n) + 2.

a) if 2(N — n) > —2, we have a knot with all positive components which is therefore
reduced alternating and non-trivial. :
b) if 2(N — n) = —2, we have the knot 2N + 3, 2M + 1, 0 = 2N + 3, a non-trivial knot.
c) if 2(N —n) < —2, we have a knot of the form 2N + 3, 2M + 1, —c¢ where ¢ > 1.
Because their continued fractions are equal, this knot is equivalent to the knot —(2NV +
3), —2M, —1, —(¢ — 1), a knot with all negative components which is reduced alternating

~and non-trivial.

case 8: 0 changesr, 1 <n < N+ M + 1 changes [.
We are left with the knot 2(N —n) + 3, 2M + 1, 2N + 2.

a) if 2(N—n) > —3, we have a knot with p051t1ve components which is reduced alternating

and non-trivial.
b) 2(N — n) will not equal —3 since N and n are integers.
c) if 2(IV — n) < —3, we have a knot in the form K = —a, 2M + 1, 2N + 2. We will use
the equality of continued fractions to find a knot to which K is equivalent.
i.ifa=1,K =2M, 2N + 2, a reduced alternating and non-trivial knot.
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i.ifa>1,K=a—-1,1, 2M, 2N 4+ 2, again, a reduced alternating and non-trivial
knot.

1 < n <2M middle changes

Our knot becomes 2N + 3, 2(M —n) + 1, 2N + 2 with < N 4+ (M — n) + 1 changes left
to make on [ and r. '

casel:lSnSM—l.‘ ~
Write this knot as (N, M — n) and by inductive hypothesis (ii), it is non-trivial.

case 22 n = M.
Our knot becomes 2N +3, 1, 2N +2 with < N + 1 changes left to make. Write this knot

as (IV,0) and we know that S(NV,0) is true, so our knot is non-trivial.

case & n =M + 1.
- Our knot becomes 2N + 3, —1, 2N + 2 with < N changes left to make. This knot is one
reduction of having the knot 2N + 3, 1, 2N + 2 with < N + 1 changes left. For the same

reason as case (ii), however, it is non-trivial.

case 4: M +2<n<2M.

Our knot will have a negative middle component and we will use similar reasoning as in
case (ii) to show it is one reduction of a knot with all positive components whose unknotting
number we know to be greater than the number of possible changes we have left to make.

Let L = M —n. Thenfor M +2 < n <2M, 2 < L < M. So our knot becomes
2N +3,—(2L — 1),2N + 2 with < N — L + 1 changes left. This knot is one possible
reduction of the knot 2N +3,2(L - 1)+ 1,2N +2with < N—-L+14(2L-1)=N+1L
changes left to make. Write this knot-as (N, L — 1) and by inductive hypotheses (ii) and
(iii), it is non-trivial.

2M + 1 middle changes

We are left with the knot 2N+3, —(2M +1), 2N+2 with < N+ M+1-(2M+1) = N-M
changes to make. Suppose we make n changes on [ where 0 <n < N — M and ¢ changes on
r where 0 < ¢ < N — M — n. Our knot becomes 2N + 3 — 2n, —(2M +1), 2N + 2 — 2q.

By substituting the upper bounds of n and ¢ into the left and right sections of this knot,
we see that these sections always have more than 1 crossing. Since M > 1, the middle
section has more than 2 crossings. Thus, since their continued fractions are equal, our knot
is equivalent to 2N +2 —2n, 1, 2M —1, 1, 2N + 1 — 2q, a reduced alternating knot with all
positive components which is therefore non-trivial.

Therefore, 2N + 3, 2M + 1, 2N + 2 cannot be unknotted in < N + M + 1 changes when
N > M, so we have proved S(N, M) where M # 0.

Including the result of Bernhard’s proof of S(N,0), we can find the unknotting number
for the minimal projection of any knot in our table, so for any integers ¥ > 1 and j > 0, if

13



knot K =2k+3,2j +1, 2j + 2,

~_ J -2k +2 changes ifk<y
U(K)mzn—{ kE+j+2changes ifk>j°

We also know that for any knot @ on or below the diagonal, (@) < ©%(Q)min — 1. '

KNOTS OF THE FORM q,b,c

We will now begin an analysis of the unknotting number of knots with Conway notation
a, b, c. The knots we will examine will all have an odd middle component. We will say that a
knot P displays the Non-Reduced Unknotting Property (NRU Property) if the unknotting
number of P results from a non-minimal projection of P. Let the gap of P (gap(P)) be the
difference between the unknotting number of a minimal projection of P and the unknotting
number of P. Our analysis will consider 3 knot classes. Let @), R and S represent knots of

the form:
Q = odd, z, even = even, z, odd for any odd integer z.

R =o0dd, 1, odd
S = even, 1, even
I) odd, odd, even
We have shown that for any knot @ given above, the NRU Property holds if z > even
and fails otherwise, if |odd — even| = 1. When the property holds, gap(Q) > 1.
IT) odd, 1, odd

For any knot R given above, the NRU Property fails for the specific non-minimal projec-
tion we consider.

Unknotting the Minimal Projection

Let K =z, 1, y be a knot for odd integers z,y > 5.

Assume z < y. Then u(K)min < 2 since by changing 2t crossing on [, the resulting
knot is —1, 1, y = 0. _

We will show that u(K )non—min = Z£%; i.€., Knon—min cannot be unknotted in < g_1=
1’;2‘—1 changes and the NRU Property fails.

Unknotting the Non-Minimal Projection

If z = y, we may pull over the loops for our non-minimal projection on either outer tangle

for the same result, so we will choose side z.
If z < y, we will pull over loops on side z for an analagous non-minimal projection to
the one previously used in which we pull over loops on the outer tangle having the fewest

crossings.

After making 1 change to the middle component, we have < 3-2"—3— changes left to make.
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On side z we have z — 1 loops. Changing 1 crossing on each pulled over loop, as we did in
previous cases, we will make changes on < £:2 loops. Thus, there will be at least 2 adjacent
loops which are not pulled over and whose crossings will not be changed, whereas when we
begin with an even number of crossings, as with knots of the form odd, odd, even, we pulled
over alternating loops and had no 2 adjacent loops not having been pulled over. This leaves
us with at least 1 extra crossing on the z side needing to be changed to obtain the unknot.

We saw that any knot of the form odd, odd, even reduced to 3,—1,2 = 0 using our
non-minimal projection. However, for odd, 1, odd knots, using an analagous non-minimal
projection reduces to the knot 3, —1,3 = 3, so we have not achieved the unknot in < 5%'—1- -1

changes.

Therefore, for the proposed non-minimal projection, the NRU Property fails for knots
of the form odd, 1, odd. We conjecture that the property fails for any knot of the form

odd, odd, odd.

IIT) even, 1, even

Any knot S = 2k, 1, 25 is a 2 link knot. We will show that the NRU Property holds
for all such S where £ > 7 > 2, and that gap(S) = j — 1. This means that we can find an
arbitrarily large difference between the unknotting number of a minimal and non-minimal
projection for an infinite number of 2 link knots, as depicted in the following table:

4,1,4
6,1,4 61,6
81,4 81,6 81,8
10,1,4 10,1,6 10,1,8 10,1,10
12,1,4 12,1,6 12,1,8 12,1,10 12,1,12

%, 1,2j : . .. 2%k 1,2k
Min = Min = Min = Min = ] . Min =

Non+1 Non+2 Non+3 Non+4 . . Non+j3-—1

Table 2

Unknotting the Non-Minimal Projection

We will use an analagous non-minimal projection to the one we used for knots 2k +
3,27 + 1, 2k + 2. Whereas these knots eventually reduce to 3,—1,2 = 0 in &k changes, knots
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of the form 2k, 1, 25 reduce to 2,—1,2 = 0,0. If £ > j, make & — j changes on [ and the
resulting knot is 27, 1, 25. Make 1 middle change and j — 1 changes on pulled over loops of
r. Then the unknotting number for this non-minimal projection is k.

Unknotting the Minimal Projection

We claim that for S = 2k, 1, 25, where £ > j > 2, u(S)min = k+ 7 — 1. Notice that
if we make 1 middle change, £ — 1 changes on [ and 7 — 1 changes on r, we get the knot
2,-1,1=0,0, so u(S)min < k+7—1. Our conjecture is that no fewer than k+ j — 1 changes
unknot 2k, 1, 25. What follows is the beginning of this proof; we will generate base cases of
the left column and the diagonal in Table 2 which we believe lead to an inductive proof that
u(S)min = k + 7 — 1. Our base case for both the left column and the diagonal is 4,1,4.

Let (N, M)’ denote the knot 2N, 1, 2M.

Definition: Statement S(N, M) means that for knot K corresponding to (N,M),
WK )min =N+ M — 1.
Prove S5(2,2)": 1i.e., show that u(4,1,4)min = 3.

By making 1 middle change and 1 change on both [ and r, we gef the knot 2, —1,2 = 0, 0;
thus we know that the minimal projection of 4,1,4 can be unknotted in 3 changes. We will
show that it cannot be unknotted in fewer than 3 changes.

0 middle changes

case 1: at least 1 change both [ and r
We are left with the non-trivial knot 2,1,2 with < 1 change left. Making this change on
either / or r, we are left with the two link knot 2, which is non-trivial.

case 2: 0 changes [, 1 <n <2 changes r
(This is equivalent to making 0 changes r, 1 < n <2 changes [.)

a) for n = 1, the resulting knot has all positive components and is non-trivial.
b) for n = 2, the resulting knot is 0,1,4 = 4, which is non-trivial.

1 middle change
We are left with the knot 4,-1,4 with 0 or 1 changes left to make.

case 1: making 0 changes, 4,—1,4 = 2,1,2, a non-trivial knot.

case 2: 1 change [, which is equivalent to making 1 change r.
The resulting knot is 2, —1,4 = 0,1,2 = 2, which is non-trivial when we have 2 links.

Thus we have proven S(2,2)".

Prove S(k,k)": i.e., show that u(2k, 1, 2k)pmin = 2k — 1

Assume: S(h, )" is true for 2 < h < k. Our base case is 4,1,4.
Show: S(k+ 1,k + 1) is true, i.e., u(2k + 2,2k + 2)pin, = 2k + 1.

We see that 2k + 1, 1, 2k + 1 can be unknotted in 2k 4+ 1 changes by making 1 middle
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change and k£ changes on both [ and r to obtain the knot 2, —1,2 = 0,0. We will now show
that making < 2k changes does not produce the unknot. .

0 middle changes

case I: at least 1 change both [ and r
We are left with the knot 2k, 1, 2k with < 2k — 2 changes left to make. From our

inductive hypothesis, this knot is non-trivial.

case 2: 0 changes r, 1 < n < 2k changes [
This is equivalent to making 0 changes [ and 1 < n < 2k changes r.
g

We are left with the knot 2(k — n) + 2, 1, 2k + 2.

a) if K —n > —1, our knot has all positive components and is non-trivial.

b) if £ — n = —1, the resulting knot is 0, 1, 2k + 2 = 2k 4 2, a non-trivial knot.

c) if k —n < —1, the resulting knot is in the form —a, 1, 2k +2 =a — 1, 2k + 3, a knot
with all positive components which is non-trivial.

1 middle change
The resulting knot is 2k + 2, —1, 2k + 2 with < 2k — 1 changes left.

‘ case I: at least 1 change on both [ and r.
We have the knot 2k, —1, 2k with < 2k —3 changes left. This knot is one possible reduction
of having the knot 2k, 1, 2k with < 2k—2 changes left, which is non-trivial by our hypothesis.

case 2: 0 changes [, 1 <n < 2k —1 changes r.
(This is equivalent to making 0 changes r and 1 < n < 2k — 1 changes [.) We are left with
the knot K =2k +2, —1, 2(k —n) + 2.

a)if k—n >0, K is in the form 2k 4+ 2, —1, ¢ = 2k, 1, ¢ — 2, a reduced alternating and
non-trivial knot. »

b)if k—n =0, K =2k+2, —1, 2 = 2k, a non-trivial knot.

c)if k—n=-1, K =2k+2, 1,0 = 2k + 2, a non-trivial knot.

d) if k —n < —1, K is in the form 2k 4+ 2, -1, —¢ = —(2k 4+ 1), —(c + 1), a reduced
alternating and non-trivial knot.

This completes our proof of S(k, k).

Prove S(k,2)': i.e., show that u(2k, 1, 4)min =k +1
Assume: S(h,2)" is true for 1 < & < k. Our base case is S(2,2)".
Show: S(k+ 1,2) is true, i.e., u(2k + 2, 1, 4)pmin = k + 2.

We see that the minimal projection of 2k + 2, 1, 4 can be unknotted in k£ + 2 changes
by changing the middle crossing, 1 on r and & on [ to obtain the knot 2,—1,2 = 0,0. We
will now show that no fewer than k 4+ 2 changes unknot this projection by checking the
possibilities of making < k + 1 changes on our knot.
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0 middle changes

case 1: at least 1 change on both [ and r.
We are left with the knot 2k, 1, 2 with < k — 1 changes to make. This is one possible
reduction of having the knot 2k, 1, 4 with < k changes left to make, which is non-trivial by

our hypothesis.
case 2: 0 changes [, 1 <n < k+ 1 changes .
The resulting knot is 2k + 2, 1, 4 — 2n.
a) if n < 2, we get a reduced alternating knot with all positive components which is

non-trivial.
b) if n = 2, we get the knot 2k + 2, 1, 0 = 2k + 2, a reduced alternating and non-trivial

knot.
c) if n > 2, we get a knot in the form 2k + 2, 1, —¢ = —(2k 4 3), —(c —1). Such a knot

has all negative components and is non-trivial.

case 3: 0 changesr, 1 <n < k+1 changes [.
The resulting knot is 2(k —n) + 2, 1, 4.

a) if k —n > 0, we have a reduced alternating knot with all positive components which
is non-trivial. '

~b) if k—n =0, our knot reduces to 0,1,4 = 4, a non-trivial knot.

c) if k —n < 0, our knot is in the form —a,1,4 =a—1,5, areduced alternating and

non-trivial knot.

1 middle change
The resulting knot is 2k + 2, —1, 4 with < k changes left.

case 1: at least 1 change both [ and r.
We are left with the knot 2k, —1, 2 with < k — 2 changes to make. This knot is one

possibie reduction of having the knot 2k, 1, 4 with < k changes to make, which is non-trivial
by our hypothesis.

case 2: 0 changes I, 1 <n < k+1 changes r.
We are left with the knot K =2k +2, —1, 4 — 2n.

a)ifn=1, K =2k +2, —1, 2 = 2k, a reduced alternating and non-trivial knot.
b)ifn =2, K =2k+2, —1,0 = 2k + 2, again, a reduced alternating and non-trivial

knot.
c¢)if n > 2, K is in the form 2k + 2, —1, —c = —(2k + 1), —(c + 1), a knot with all
negative components which is reduced alternating and non-trivial.

case 3 0 changes r, 1 <n <k +1 changes .
We are left with the knot K = 2(k — n) + 2, —1, 4.
a)if k—n >0, K is in the form a,—1,4 = a—2,1, 2, a knot with all positive components

which is non-trivial.
b)if k~n =0, K =2,—1,4 = 4, a non-trivial knot.
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c)ifk—n=-1, K=0,-1,4 =4, a non-trivial knot.
d)if k—n < —1, K isin the form —a,—1,4 = a+1, 3, a knot with all positive components
which is non-trivial.

This completes our proof of S(k,2)’ for any integer £ > 2.

Using these base cases, we believe one can prove S(k,j) for integers £ > j > 2. The
proof will be inductive and will be quite similar to the proof of S(k,7j) for integers & > 1
and j > 0. It will then follow that for S = 2k, 1, 2j, gap(S) =k + 7 — 1.

UNANSWERED QUESTIONS

The work we have done leaves many unanswered questions. We would like to be able to
provide a full analysis of the unknotting numbers of knots written a, b, ¢ in Conway notation.
Thus we must examine all remaining cases where b is an odd integer, as well as the knots
for which b6 is an even integer. For b= odd integer, our analysis of knots having 1 odd and 1
even outer component only consisted of knots in which the outer components differed by 1.
We feel that completion of this analysis is well within reach.

There are also open questions relating to the topics discussed in this paper. Is there a 1
link knot which generates a class of knots, a component of which we will call @, for which
gap(®) > 1 7 Can gap(Q) be arbitrarily large? Are there different non-minimal projections
than the ones we use which will lead to other knots exhibiting the NRU Property? We think
it likely that after further study, one will find the answers to these questions to be yes.
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