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Abstract

The solutions to partial differential equations can be modeled in several
ways. As an example, we will investigate the solution of the convection-
~ diffusion equation. Unfortunately, the approximations used to study these
often yield highly non-normal matrices. Consequently, we will look at the
eigenvalues of the continuous problem and compare them to those of the
_ matrix approximations based on the method of finite differences. Next, we
present numerical evidence to show that the forward approximation provides
' " a better model for computer based calculation than the continuous solution.

The problem
Imagine that a uniformly dense rod of length 1 is placed on the z-axis at
. the origin. Further imagine that an initial temperature distribution is placed
 on the rod and that the ends are kept at 0°. The diffusion of the heat through
the rod is modeled by the equation

w(0,t) =u(1,t) =0, u(z,0) = f(z)

which has solutions of the form

(o]
u(z,t) = cne” ™™ tsin(n z)
n=1

where ¢, is given by 2 [y f(z)sin(n 7 z)dz; see Braun[4].
The situation becomes more complicated when the possibility of convec-
tion is taken into account. The equation for this problem is

Ut = Ugy + Cug for Ce€lIR
u(0,?) = u(l,t) =0, u(z,0)= f(z).



We solve this problem by using the method of separation of variables, which
assumes that the solution can be written as the product of two functions

u(z,t) = X (2)T'(t).

The derivatives become u, = X'(z)T'(t) yuze = X" (2)T'(t) and uy = X (2)T'(%).
This leads to the reformulation of the above differential equation as

XT'=X"T+CX'T

or, equivalently

T/ 3 XI/ + C XI

T X
Since the left hand side is a function of ¢ alone and the right hand side is a
function of z alone, we have that these functions are equal to a constant,

_IL_A_X”‘I‘CX’

T X
which allows us to write them as two ordinary differential equations
T'=M and X"+ CX' —AX =0.

The solutions of these equations are of the form

T =¢e" and X = ae™®+ B

where r1,r5 are the roots of the characteristic equation B> + CR — X =
0 and a, B are constants. The roots ry and ry satisfy

ry+r9g =-C (1)
1Ty = —A (2)
Imposing the boundary conditions X (0) = X (1) = 0 gives
a+ =0

ae™ + Be™ = 0.

Therefore, e = € and so r; — rp = 2min for n an integer. Squaring this

yields
rE—2rirg + 72 = —4nn’.



On the other hand, squaring (1) gives
r 4 2riry + 13 = C2.
Upon subtraction we get
Arirg = C? + 47
aﬁd from (2) we conclude that
Ap = =C?/4 — 7?02, (3)

are the eigenvalues of X"+ CX'— X = 0,X(0) = X (1) = 0. To obtain the
corresponding eigenfunctions, we recall from the equation R? + CR— A =0

that

N TN _ —C+V/0T+ax
2

~ or after using (3),

ry = —— + min, ro = -5~ TIN.

2

- Thus

X(z) = ae"® + B = e’/ ?sin(nrz)

for any constant . Therefore, a solution of the convection-diffusion equation
has the form

Un(z,t) = Xpo(2)Tn(t) = cne e 2 sin(nrx) for n € IN.

By taking linear combinations of these, we arrive at the following series

solution,
u(z,t) = X(2)T'(t) = Z ene?te” 0% 2 sin(nrz)

where the c¢,’s are obtained from the initial condition. By setting t=0 we

have

f(z) = i cne” " sin(nwz).

n=1

Proceeding as in Braun [p. 457] we conclude that

1
Cp = 2/0 f(z)e~*/?sin(n 7 z)dz.



Unfortunately, for large values of C, the eigenfunctions are close to being
dependent as. figure 1 shows below. Consequently, the coefficients ¢, may
be large for large values of C, making it difficult to represent the solutions
accurately on a computer.
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For example, with initial heat distribution given by f(z) = z(1 —=z) and con-
vection coefficient C' = 75, the continuous problem requires 80 basis eigen-
functions to produce the 3-D surface shown in figure 2.
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figure 2
Therefore, we look for numerical approximations to the above equations that
may provide a better basis for representing the solutions of these equations.
In particular, we will implement the method of finite differences which gives
three separate estimates to the first derivative. To facilitate our study of
these approximations, we will first calculate the eigenvalues of each and then



compare them to those of the continuous equation.

The matrix eigenvalues

The method of finite differences first requires us to subdivide the interval
(0,1) into n + 1 equally spaced intervals of length h. The forward approxi-
mation to the derivative at each point z; € (0,1) is given by

= 1 (ua53) = u(2) = i — )

The backward and central approximations are
! 1 ! 1
uz = 7(uj —ujm1) and ue = o (g — Uj-1)
respectively. To compute the second derivative we will use the forward and
backward approximations giving
e Y m (i — ) — (w5 —wien) | g = 2u5 4w
h h h? )

These approximations combine to give three estimates

Uze + Cugy = v’ + Culy

Uzz + Cu_q; ~ u" + CUIC
Ugg + Cug = u” + Cul

to the above differential equation. The eigenvalues of the forward or upwind
estimate are computed by setting

u" + Cul, = du

S0,
Uirg — 2U: + Ui C
= h; =+ X(UHI —u;) = u;.

Multiplying by A% and collecting like terms leads to

The substitution u; = r? leads to the equation
r2(1 4+ hC)+r(2+hC +A*XN) +1=0,
which has roots 71,7, such that

d ridr 24+ hC+ A%
1+rC *°C TRTTIRC

T2 =



- Consequently, by taking linear combinations of these roots, we get that
u; = arl + fr} a,B € IR

up=a+=0

which implies that
Uns1 = a(rgn-i-l) _ Tgn-i'l)) —0

n+1
<E> — Tf(“"'l)(l + hC)n+1 =1

T2

Which, by finding the 2(n + 1)** roots of unity, give

kr )+isin( kn )) k=1,2,3..n
1 n 41
and

_1 km .. kr
ro = (14 hC)72 (cos (n—{—l) — isin (n—l—l)) k=1,2,3...n.

However, the conditions above imply that

kr _ 2+ hC + k%X
n+1/)) 1+hC

r=(1+ hC)~3 (cos (
n

ri+re =2(1+ hC’)‘% (cos (
This equation when solved for A yields

2v/I+hC cos (£2) — (24 &C)

- 5 E=1,2,3..n

as the finite difference approximation to the eigenvalues using the forward
estimate for the first derivative. Similar calculations for the center and back-
ward difference approximations give

V2 —hCv/2+ hC cos (£%) —2

Mo = - E=1,2,3..n
and 24/1 — hC cos (—]ﬂ) — (2 —.hC’)

Dpe = }:2“ k=1,2,3..n
respectively.
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Upon examination of these values we notice that the central and back-



wards approximations will give complex eigenvalues for large C. This is
unfortunate since the true eigenvalues are never complex. The effect is no-
ticeable when these different approximations are implemented on a computer.
For example, consider the matrix approximations with convection term C
equal to 75. Then, as the graphs in figure 3 demonstrate, both the back-
wards and central approximations are inaccurate for matrices of size 30 x 30.

On the other hand, the forward approximation does quite well when com-
pared to the actual solution in figure 1. To understand this, we compare the
coefficients of the approximation to those of the actual solution.
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Examination of the basis coefficients
When evaluating the series solution of this differential equation it is nec-

essary to compute the coefficients ¢, in the expansion

flz)=>" cne” %/ sin(nwz). (4)
n=1
Similarly, the discrete case corresponds to expansions of the form

- N —
F=>2 eV (5)

n=1



where V,, are the eigenvectors of the discrete approximation. In this section
we demonstrate numerically that the coefficients ,c,, corresponding to the
continuous solution (4) are in general larger than the coefficients of the up-
wind approximation (5). This leads us to believe that upwind discretization
provides a better conditioned basis for numerical work than does the analytic
solution. A

In figure 4 we show the norms of the coefficient vectors as a function
of C for N = 50. As the figure demonstrates, the central and backwards
approximation have coefficients that grow even faster than the continuous
case and become infinite at the point where the eigenvalues become complex.
This causes their coefficients to become complex as well. Consequently, these
approximations are no good for computational use and we will focus our
attention to the upwind estimate from now on.
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The striking behavior in figure 4 of the upwind approximation is rep-
resentative of the conditioning for this basis. This figure clearly shows the



exponential growth of the coefficients and what looks like e“™, growth for the
upwind approximation with 0 < m < 1. This, in addition to the behavior of
the upwind eigenvalues, leads us to believe that this method provides a bet-
ter basis for modeling the solution. Confirmation of this is given empirically
by figure 5 which show linear combinations of N basis functions and basis
vectors to approximate the initial condition f(z) = z(1 — z).

In each of these pictures,the bigger oscillations correspond to the eigen-
functions of the continuous problem and the smaller oscillations to the eigen-
vectors of the upwind approximation. A better estimate of the initial condi-
tion is provided by the eigenvectors rather than the eigenfunctions, which is
a direct consequence of the smaller coefficients necessary to represent the so-
lution in the upwind case. We therefore conclude that because the degree of
non-normality is much less severe in the discrete case than in the continuous
case that the upwind numerical approximation gives a better representation
for computational work.
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