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ABSTRACT. Let ®,(X) be the n-th cyclotomic polynomial, which has as its roots the
primitive n-th roots of unity. For any n > 1, fix an odd prime g and let { be the highest
power of ¢ dividing n. Let p be a prime of the form p = ®,(gz). Then all integers dividing
z are [-th powers modulo p.

The author will prove this statement and several generalizations. For instance, the fol-
lowing claim will be proven. Let (; be a primitive i-th root of unity and A; = 1 — (; for
each ¢ > 0. If m € Z[(}] is such that 7 = y mod A\ Aqa for some rational integer y relatively
prime to ga, then (a/7); = 1. Proofs of special cases will be also presented. Furthermore,
the author will state further conjectures.

Author’s Note. Some of the “theorems” presented in this paper have incomplete proofs
and so should more properly be called conjectures. However, I am taking an optimistic
outlook on matters and have merely noted any holes in “proofs” where they are found. It is
my intention to fill in these holes as soon as possible, and I am already working hard to do
this. Logical gaps, however, tend to show themselves when and where one does not expect
to find them. For now, I warn the reader to be wary of every statement made herein.

Notation. Lower case letters refer to integers and to the ideals they generate where appro-
priate. Lower case Roman letters, in particular, denote rational integers. For any positive
integer n, (, denotes a fixed primitive n-th root of unity. Let A, =1 — (,. For a Galois
extension K of a field F', denote by Gg/r its Galois group, by Nk, its norm, and by Tx/r
its trace. If the ground field F = @Q, it shall be left out of the notation. For example, the
Galois group of K over Q is denoted by Gk. In addition, Of will denote the ring of integers
of a field F', and F* will denote the multiplicative group of the integral units of F'. -

It all started in August 1992 with the discovery of the following interesting fact. If p is
a prime of the form 3622 + 6z + 1 for some z, then 2 is a cubic residue modulo p. That is,
2(°~1)/3 = 1 mod p. A quick test suggested that if p is a prime of the form (10z)* + (10z)° +
(10z)? + 10z + 1, then 2 is a fifth power modulo p. A pattern emerged, and on the basis
of numerical evidence a conjecture on power residues and cyclotomic polynomials was born.
The conjecture, now turned theorem, generalized significantly over time. It will be stated,
and proven, in many forms in the followmg paper.

The n-th cyclotomic polynomial is the irreducible polynomial ®,,(X) which has as its roots
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the primitive n-th roots of unity. The following two formulas show how to generate them:

0.(X)= I (X-¢),

(dyn)=1
X —1
¢, (X)=——7——.
) = om0
d<n

See [7, pp. 279-80] for further formulas dealing with these polynomials. Note that for a prime
p congruent to 1 modulo n, the following are equivalent definitions for an integer a to be
an n-th power residue modulo p: a~9/* = 1 mod p and a = 2" for some z € (Z/pZ)*, the
multiplicative group of the field with p elements. We now make the following claim, which
will be deduced later from more general theorems.

Theorem 1. Let g be an odd prime and n a pdsz’tive integer. Choose s nonnegative such
that | = ¢° divides n. Let p = ®,.(qz). If p is a prime number, then for any a dividing z, a
is an l-th power residue modulo p.

The following theorem shows how the same kind of idea as in the theorem above can
be applied to the special case of quadratic residues. Though the results it gives are not
essentially new, the use of quadratic reciprocity in the proof is quite illuminating with
respect to the general situation. Note that any odd prime can be expressed in the form

given in this theorem.

Theorem 2. Let m be an odd even integer. Let p be a prime number of the form p =
|®,.(4z)| for some integer z. Then for any positive a dividing =, a is a quadratic residue
modulo p.

Proof. We have, a priori, that p is of the form p = 4az + 1 for some z € Z. Let us recall
three important rules of quadratic reciprocity, where (- /-) is the Legendre symbol. Let ¢
and d be odd and positive. Then

) () = e,

@) (3) = e

(3) | (Zc'i) (‘_cl) = (—1)DE-D/,

We shall prove the theorem for all prime q first. If a = 2 then, using (2),

(?_) — (_1)((8zil)2—1)/8 — (_1)(64:;2:!:162)/8 — (_1)2(47.2:&1) =1.
p

If a is an odd prime and p is of the form p = 4az + 1 then from (3) we have

(%) = (—1)e-DE-1/4 (ZL) = (—1)leDsz (i‘%ﬂ)
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But a — 1 is even and 4az + 1 = 1 mod a, so this equals (1/a) = 1. In the same manner, if
a is an odd prime and p is of the form p = 4az — 1, then

a\ _ o \e-e-0/4[P) _ _q\@-DEe-nz(4a2 1) _ @21
() = - ) - (-1) 1) = e (D)

‘Recalling equation (1), this becomes (—1)*~! = 1, since a is odd.
Now if a is composite, then ¢ = aja, - - - a, where the a; are prime for 1 <: < r. Then we
have, using multiplicativity in the “numerator” of the Legendre symbol, that

9-6)e)- )

We conclude by noting that the Legendre symbol (a/p) is 1 if and only if a is a square modulo
p- See for instance [5] for a full description of the Legendre symbol and its properties. [

The n-th homogenous cyclotomic polynomial is the irreducible polynomial in two variables
®,(X,Y) which is defined as follows:
(dn)=1 ‘
These polynomials have the obvious properties ®,(X,Y) = ®,(Y, X) and 9,(X,1) = ¢,(X).
Theorem 1 generalizes to the following statements, which use the same notation as before.

Theorem 3. Let p = @,(qz,y). If p is a prime number, then for any a dividing z, a is an
[-th power residue modulo p. :

Conjecture 1. Let t be a nonnegative integer. Let p = ®,((qz)%a,y?). If p is a prime
number, then a is a ¢°T*-th power residue modulo p.

Nqﬁe that Conjecture 1 directly implies Theorem 3, which directly implies Theorem 1.
Theorem 3 will be deduced from more general claims further on. Let us take a diversion,
however, to do an elementary proof of Theorem 3 in the cubic case of n =1 =¢ = 3.

Proof of cubic case. We shall use the criteria for cubic residuacy which can be found for
instance in [8]. Let r be a prime number congruent to 1 modulo 3. Then r has a unique
expression in the form (up to sign of ¢) 4r = b* + 27¢* such that L = 1 mod 3. If w is an
odd prime, the criteria are then

(4) _ ‘2(7_1)/3 =1 modr <= band c are both even,

(9) be=0mod w => w13 =1modr.

Now, in our case, the prime is of the form p = ®3(3z,y) = 922 + 3zy + y*> = 1 mod 3
(since y is relatively prime to 3). Thus 4p = 3622 + 12zy + 4y? = (3z + 2y)? + 27z>. Now
set b = z, and ¢ = 3z + 2y or —3z — 2y according to whether y is congruent to 1 or —1
modulo 3, respectively. In this manner, b will be congruent to 1 modulo 3 and we can apply
the criteria given above. As in the proof of the theorem on quadratic residues, we shall first
assume «¢ is a prime number.

If ¢ = 2, then 2 divides z = ¢ and +(3z + 2y) = b so a is a cubic residue modulo p by
(4). If a is an odd prime, then a divides z = ¢ and so bc = 0 mod a. Again, by (5), a is a
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cubic residue modulo p. Now we note that any a dividing z is a multiple of primes dividing
z and possibly —1. But all of these primes have been shown to be cubes in that the fact
that a is a cubic residue of p implies that it is a cube modulo p, and —1 is the cube of itself.
Thus, a itself must be a cube modulo p. Since a is relatively prime to p and p =1 mod 3, a
is necessarily a cubic residue modulo p, and we are done. [J

In the following, let ¢ be an odd prime. Let K = Q((,), the cyclotomic field of the
g-th roots of unity over the rationals. Note that the Galois group Gx = {o | o({;) =
(’ for some 0 < 7 < q} Let (-/-), denote the g-th power residue symbol in K. If 7 is a
prime not dividing ¢ in Z[({,], the integers of K, then this symbol is defined for v & (7) as
the unique ¢-th root of unity such that

(%) = yNVxrem=1)/7 mod .
q .

We shall refer to the upper and lower parts of this symbol as the “numerator” and the “de-
nominator,” respectively. The power residue symbol extends multiplicatively in the denom-
inator, and is by definition multiplicative in the numerator. We shall require the following
lemma.

Lemma 1. Let = € Z[(,] be such that # =1 mod gAZ. Then (¢/7) =1.

Proof. We shall use an explicit formula which can be found for instance in [11]. It reads

T a—1
(6) (ﬂ_) = (, xre(55) for @ = 1 mod g¢),.
o _
q .
Let us determine the condition for (¢/a); = 1 when a is of the above form. Set 8 =

(o — 1)/(g)g). Then 8 = YI0 b; ¢} for some b; € Z, 0 < ¢ < g. Now we are interested in
determining the trace of 8. By deﬁmtlon we have

g—1 g—1lg-—1
TreB)= Y, of= Y, oD b)) = ZZbva =32 b
ce€Gx ceGg =0 o€eGx 1=0 7=1 =0

for which in the last step we have used the definition of the Galois group of K over Q. Now
we can switch the order of summation and recall that each ¢} for 0 < ¢ < ¢ is a primitive
g-th root of unity. Thus, the sum of ; “ over j runs through the primitive g-th roots of unity.
This sum is known to be —1, since the primitive g-th roots of umty are exactly the roots of
the cyclotomic equation X7~ -1 + ...+ X +1, and so (77 14 ...+ (, = —1. Writing this all
out, we obtain

—-1g~-1 ) g—1 g-1
ZZbC”_ (g— )b+ > bi(—1) =qbo— > bs.
=0 j=1 =1 =0

We wish to find when this expression is congruent to 0 modulo g so that ¢, raised to the
power of it will be 1. But this is clearly exactly when 472 b; = 0 mod ¢. Thus, the condition
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is that the sum of the coeflicients of the powers of (; in 8 be divisible by ¢. In this case, we
have

T ?—1 b;
(7) (2) = (g x1alf) G =" " =1.
q

«

We have by definition that 7 = 1 mod q)\g. Thus, we can apply (6), replacing a by «. Let
B = (m—1)/(g)q)- Since 7 —1 is divisible by ¢AZ, § is divisible by A,. But A, =1 —(;, and
" so the sum of the coefficients of the powers of (, in it is 0. Hence, the sum of the coeflicients
of the powers of (; in 8 is 0. Recalling (7), we see that (¢/7), =1. O

Theorem 4. Let m € Z[(,] be such that there exists an integer y relatively prime to ga for
which m = y mod A2a. Then (a/7), =

Proof. We have first that qa is necessarily relatively prime to 7, since if not, it shares with
7 some common divisor whose norm over Q will divide both p = Ng/g(7) and (ga)?™' =
Ngkjo(ga). This implies that p and ga are not relatively prime, an impossibility since p =
y?~! mod ga and y is relatively prime to ga.

Let us evaluate first (¢/7),. Since y is relatively prime to g, it has a multiplicative inverse
y~! in Z/qZ. Using multiplicativity of the power residue symbol in the denominator, we

e [9) - (;_) ).~ (5, @),

where we have set 7/ = y~'x and now n’ = 1 modg)]. By Lemma 1, we know that
(¢/7")y = 1. Thus, it remains only to evaluate (g/y),.
Let v be an integer relatively prime to ¢. We know that (1 — (,/v), = (] for some j by
definition of the power residue symbol. Now let o be the unique element of the Galois group
Gk which sends ¢, to ¢}, for a fixed ¢ such that 0 < i < ¢. The Galois group acts transitively
on the g-th power residue symbol in the sense that o: (- /) — (¢(-)/ o(:)). And so we see
that since v lies in Q, the fixed field of Gk,

: (1 —C;) — (0(1_€9)> — U(l“CQ) — U(J C’LJ

Applying this fact, and noting that ¢ = Ng (A ) s —¢ z') we have

S B

v i=1 =1

Setting v = y~!, and continuing our argument from the previous paragraph, we have

(-6, -

Let us now rid ourselves of the case for which a is divisible by ¢ by setting a = ¢*a’, where
k is the highest power of ¢ dividing a. Using multiplicativity of the power residue symbol in
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the numerator, we have

0 ().~ ().65),- ),

- where the last step follows from (9). If ¢’ = 1, (a/7), = 1, and we are finished. So we shall
assume this is not the case, and thus we must still evaluate (a’/7),.

We have that 7 is primary as defined in [5, p. 206], since in order to satisfy the definition,
it is necessary only that = be congruent to an integer modulo )\g, but this is by our definition
the case. Also, we have that 7 and a’ are relatively prime to each other and to ¢. Hence we
can apply Elsenstem reciprocity as stated in [5, p. 207]. Noting that 7 = y mod a’, we have

(£),-G).- (),

Since g is odd, we can assume that y and o’ are positive. But note that for any two positive
numbers, ¢ and d, relatively prime to each other and to ¢, we can always perform the following
process using Eisenstein reciprocity:

§.-6.-6),

where d’ denotes the remainder of d upon division by c.

Upon the completion of this process, we have two possibilities, either ¢ divides d’ or it does
not. In the latter case, ¢ and d' are still necessarily relatively prime to each other, so we can
apply Eisenstein reciprocity in the same manner recursively until either we reach the former
case, in which the numerator of the power residue symbol is divisible by ¢, or the numerator
of the symbol is reduced to 1 through our effective use of the Euclidean algorithm in (11).

Let us assume we must deal with the former case at some point. In this case, we must
evaluate a power residue symbol of the form (gu/v),, for some u, v, j > 0 such that ¢ does
not divide u. We apply multiplicativity of the power residue symbol and (8) as in (10) to
see

©)-6)

Hence, we can apply (11) recursively, using (12) at each step in which we find the numerator
divisible by ¢ to remove the problem. Noting that at each step in which we apply (12),
¢v > u and u is by definition relatively prime to gv, we see that our effective use of
the Euclidean algorithm in (11) will eventually reduce the numerator to 1. From this we
can conclude that (c/d), = 1. Now, letting y and o’ be ¢ and d, respectively, we see that
(y/a’), = 1. Since we have shown that (a/7), = (y/a’),, we can conclude that (a/7), =1. O

We begin with a generalization of a theorem which can be found in [10, Ch. XIV, Prop.
9]. We follow the proof found therein closely.

Theorem 5. Let F, be a local field with unique prime p, which will also denote its associated
valuation. Assume in addition that F, has characteristic zero and its residue class field F,
has characteristic p # 0. Let e = p(p) which is called the absolute ramification index of
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K. For all m > 0, let U, denote the multiplicative group of all units x in K such that
z = 1modp™. Lett > 0. Then form > e/(p—1), the map = — ¥ is an isomorphism
from Uy, to Uptse-

Proof. Let 8 € Uppte, so that we can write it in the form 8 = 14 §p™**, for some ¢ € Op,.
We know p = pp® for some p € Fy. Now we wish to find v € Uy, such that ~?" = B. Let
v =1+ €p for some € € Op,. Raising both sides to the p’-th power, we obtain the following
equation for e:

~ pt t .
(13) 1+5pm+e=2(p') P=1+plepT - pm7
2

=1

Now let us look at the powers of p dividing each of the coefficients. Let ¢ > 0 be such
that p’ exactly divides ¢ for 0 < 7 < . Then p*~? is the highest power of p dividing (pz.t).
Thus, the i-th coefficient is such that, disregarding powers of p in ¢, the highest power of
p dividing it is p*(t=9+™  We wish to choose m such that, for each ¢ > 1 with j as before,
e(t — j) +im > te + m. Since this must hold for all = > 1, it suffices to show that it
holds for ¢ = p’ for each 5 > 0, in that these values of i make the left-hand side of the
inequality as small as possible for each respective j. Thus we need e(t — j) + p’m > te + m,
or p’m > je+m, which tells us that it is sufficient that pm > e+ m, or that m > e/(p —1).

So now we have that all of the terms on the right-hand side of (13), except by our inequality
for the first two, have some power of p greater than with exponent greater than m-te dividing
them We thus rewrite our equation first as

6pm+te — #6pm+te + g(e)pm+te,

Where g(€) is a polynomial which has all of its coefficients divisible by p. We now divide out
by pm"'te and reduce modulo p to obtain § = € in F,. But z # 0, so that this equation has
a umque solution. This tells us by a corollary to Hensel’s Lemma [10, Ch. II, Prop. 7] that
B = ~*" has a unique solution for 7 as well, proving the theorem. [J

Lemma 2. Let g be a prime number, and let @ = 1 mod q. Then a is a ¢*-th power in Q,
if and only if a = 1 mod ¢**! for any u > 0.

Proof. First we apply Theorem 5, letting Q, be the field and ¢ be the prime. Note that
e=1, and so we can set m =1 > 1/(¢—1). Then m +ue = u+1, and so if @ = 1 mod ¢***
then a is a g“-th power. As for the other direction, assume 37" = a for some 8 € Z,. Then
note that 8 = y mod g for some y € Z implies y? = a = 1 mod g, so that y = 1 mod ¢
is necessary. Thus, # = 1mod ¢ or 8 € Uy = U,, which by Theorem 5 tells us that
a= B9 € Upyue = Uyy1. That is, a = 1 mod ¢**'. O

Lemma 3. Let q be an odd prime number, and let F' be a field not containing the g-th roots
of unity. Then for each t > 0, let Fy = F((;). Let o € F and u > 0. Then o is a g*-th
power in F if and only if it is a g*-th power in F; for any t > 0.

Proof. The forward implication is directly obvious, so we show the reverse direction. Choose
t > 0. Set 8 € F; be such that 89° = a. Then note that for any ¢ € Gp/r we have
a=o(a) = o(B7) = o(B)?, so each automorphism sends S to § times some ¢“-th root of
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unity. That is, o(8) = Céu B for some i. (Note that ¢ may have to be a multiple of ¢ for this
to lie in K;.) o

Fort =1, o(B) = C;B for some i, and thus Ng, /r(B) = qu,@q_l for some 7. But the norm
and the ¢“-th power of 8 must both be in F' and ¢* = 1 mod ¢ — 1, so taking the norm to ‘
the power of (¢* —1)/(¢ — 1) and dividing this into c, we have (77" ~1/(e-1)g ¢ K as well.
But this taken to the ¢*-th power is «, which tells us that o has a g-th root in F'.

Now we look at the case t > 1. Let o be the element of G, /r sending (+ to (%. Thisis a
generator of the Galois group. Furthermore let ¢ be such that o(8) = C;u B. Now we look at

Cgu [ for some j. We have that
o () = o(Ch)o(B) = CHCLB = (FYB.
But the equation z 4+ 2j = 0 can be solved modulo ¢*, since g is odd. For such a 7, we have

that o fixes Cgu B, and so the whole Galois group does. Thus, (j«f is a ¢*-th root of o in F,
and we are done. []

Let us now define K to be Q(({;), where [ = ¢° for some odd prime number ¢ and s > 0.
The Galois group Gk is now equal to {o | o((;) = (f for some d, (d,l) = 1}. Here (d,!)
means the greatest common divisor of d and [. Note that these are exactly the maps which
send (; to some other primitive I-th root of unity. The I-th power residue symbol (-/-)
is defined in the same manner as the g-th power residue symbol. We have the following
corollary to the previous two lemmas.

Corollary 1. Let q be an odd prime number, and let a = 1 mod ¢q. Then a is a g“-th power
in K, if and only if a = 1 mod ¢*** for any u > 0.

Proof. By Lemma 2, we need only show that a is a ¢*-th power in K}, if and only if a is a .
g*-th power in Q,. The reverse direction is obvious, and the forward direction is proven by

Lemma 3. [

Let F be a field containing the m-th roots of unity for some m > 0. Let (-, -), denote the
local norm residue symbol of F}, and co any real infinite primes. Then we have the following
law of reciprocity for «, 8 € OF relatively prime to each other and to m.

w0 e

Furthermore, if ¥ € OF is such that the set of its prime divisors is contained in the set of
prime divisors of m and 8 € OF is again relatively prime to m, we have

s (%)m = I (5

plmeo

Let & = “ 1/a, and set L = K(c). We are now ready to “prove” the following theorems
(see author’s note). ' '

Theorem 6. Assume a is relatively prime to q. Let v € Z[({]] be such that v = y mod A, A,
for some y relatively prime to q. Then (a/v)i = (v/a).
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Proof. We wish to work in both L,, the local field of a prime v lying over ¢ in L, and K),.
Knowing that K,/Q, is almost by definition totally ramified, we see that K, has the residue
class Z/qZ. Now Z, contains the (¢ — 1)-th roots of unity, so that for any unit 4 € Ok, , we
can clearly multiply it by the appropriate (¢ — 1)-th root of unity to get 4 =1 mod ;. We
let w be the Teichmiiller character whose value on a unit of Ok, is just the appropriate root
of unity which we must factor out. Define ¢’ = w™'(a)a. By bilinearity of the norm residue
symbol, we have that

(16) (a,7)y = (', 7)u(w(a),7)s-

But for any (¢ — 1)-th root of unity ¢ we have {* = ( so that the value of w is always a [-th
- power and the rightmost symbol in (16) is trivial. As with a let v/ = w(y)™'y =1 mod »’.
Then we have again by bilinearity as in (16) and the fact that w(y) is an {-th power that
(a',79), = (a',7"),. Since our extension L, will be the same whether we are taking a root of
a or a’, we can and will assume from now on that @ = 1 mod ¢ and v =1 mod A ;.

Let u now be the largest integer such that a = 1 mod ¢“*!. This tells us that a is exactly
a g“-th power in K, by Corollary 1. We consider only the cases for which u < s, noting
otherwise we have immediately that (a,v), = 1. Thus [L, : K),] = ¢°7*.

For each 7 > 0, denote by U; the group of units of K}, such that for each p € Uj,
p =1 mod M. Let g; = 1 — Al for each ¢ > 0. We claim that for any ¢ > 0, 7, generates the
quotient group U,/U.41. To prove this, we note that U, /U,+1 = {1+bAi+(A1!) | b € Z/qZ}.
Now note that 72 = (1 — X§)> = 1 — bX¢ + --- — AP, so that in U./U,41, this becomes
1 — bA§ + (\§™), and since b is arbitrary, we are done. Furthermore, we have that Uy is the
product of the images of the n.’s for all ¢ > d. But any such infinite product of powers of
n.'s converges Aj-adically, since . — .41 = Af(A; + 1), and the A\-adic norm of this element
is then ¢~¢, which tends to zero as c¢ goes to infinity. And so we have that U; has as a
generating set {n. | ¢ > d}.

The valuation associated with ); is defined as (1/f)|| Nk, q,( - )|ls» Where || -||4 is the g-adic
valuation of Q, and f is the residue degree of K, over Qq, which we know to be 1. Now
letting e denote the absolute ramification index of L, over Q,, we compute

S—1(H s5—
e = | Niy /0,(@)lle = @Vl = ¢ Mg - 1).

We now wish to evaluate the local norm symbol (a,7),. But note that a € Ufy41)e and
B € Uy, so that by bilinearity of the local norm symbol and our knowledge of the generators
of each U; that we must only evaluate a product of symbols of the form (7.,74), where
¢ > (u+1)e and d > m. Now we remark that the following formula holds [1, p. 161]:

(17) (7707 nd)V = H (T]’Uc-l'wd; Al);(v'c-l-w’d),

v,w>1
(v,w)=1

where for each v, w we have that v’, w’ are any two positive integral solutions of vw'—wv’ = 1.
Thus (17) tells us that this comes down to evaluating a product of local norm symbols which
each have one term of the form 7.4, where ¢+ d > m + (u + 1)e. But et € Upnt(utie,

which tells us by Theorem 5 that .44 € K7} qu+1, and thus 7,44 € quuH, so all of the local
norm symbols are ¢°~*~1-th roots of unity.
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Now here is where we make an assumption and the first of the “holes” mentioned in the
author’s note appears. We assume that A; = Nz, /xk, (v). That is, \; and the primes lying
above it either split or are totally ramified at each extension of degree ¢ in L, /K},. It is the
author’s belief that ); is totally ramifies in L,, but we will not assume that here. Thus, we
have that .

(erds M)y = (Metds NLu ks, (V))y = NLyjx5, () ((Metd; V) )
since the Galois group acts transitively on the norm residue symbol, and 7,44 is in its fixed
field. But now we are taking the norm of a ¢°*~*~!-th root of unity, which lies in the fixed
field K,. But the extension has degree ¢°™"! in that a was already a ¢*-th power in K,
and that we are adding the ¢°~*-th root of it to obtain the field L,, which tells us that the
norm is just 1. '

We have now seen that (7c44, A1), = 1 for all ¢ > (u+1)e and d > m. Therefore (a,7), =1
as a product of these. Now for the second hole. We have shown (a,7), = 1. Now we note
that the above proof works for any v lying over [. We assume that from this we can obtain
(a,7)x = 1. The best way I can see to do this right now is to note that we can show locally

that (K( q{/c_z) JK(9/a),n) = 1 for each 1 <t < s by the exact argument we have just
given. One must then recursively show that this implies that the “whole” local Artin map
(K(y/a)/K,n) = 1. Working then in K}, (a,7)y, is essentially the only term in the product
formula (14) since the oddness of [ tells us that the everything is an [-th power in the local
field of the real infinite prime. Thus, (a/v); = (y/a): by (14). - O :

Theorem 7. Let v € Z[(]] be such that v = y mod gA A;, for some y relatively prime to g.
Then (g/v); = 1.

Proof. We let a = ¢, so we can define L as before. Now, however, we know that L, is
a totally ramified extension of K, by [2, Lemma 6, §II1.2]. Anyway, it is now clear that
(q,7)y = (0,7)¢"", where « is the root of a in the notation given above. But 7' € Upnqe
with the notation of the last theorem, so v € L}?, and so as a ¢°-th power of a ¢°-th root
of unity our symbol is 1. Using the same assumptions as at the end of the last theorem, we
have (g,7)x, = 1, and as this is the only term in the product formula (15) we conclude that

(¢/vh=1. O
Theorem 8. Let © € Z[)\|] be such that there exists an integer y relatively prime to ga for
which # = y mod A A\a. Then (a/7); = 1.

Proof. We have that 7 is by definition relatively prime to ga since it is congruent modulo
AgAia to an integer that is. Now let a = a'q®, where k is the smallest integer such that ¢
does not divide a’. Setting v = 7 in Theorems 6 and 7, we have that since 7 = y mod gA A,

if k>0,
a\ (g Flal T\ _(y
£),-0.6,-6)-6)
where the last step follows from the fact that 7 = y mod a.
Let M = K(v/a'). We need only to evaluate an Artin symbol of the form (M/K,y). But
note that K is the maximal abelian subextension of M over Q. Now we look at the Transfer

map from Gg/q to Guyyx which takes (K/Q,y) to (M/K,y). But Gumo/Guix = Grjo,
and the group we are taking the quotient by on the left, Gk, is the commutator subgroup
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[7, p. 300-1] of Gs/q. But as noted in [10, p. 122], the fact that this commutator subgroup
equals the group in the image Ga/x modulo its commutator subgroup (which here is trivial
since the extension M/K is abelian) implies that the transfer map is trivial. That is, the
Artin symbol (M/K,y) is the identity. And so we have shown that (a/y); =1. O

Denote by Px(m) the group generated by all principal fractional ideals of K which are
congruent to 1 modulo the modulus m. Let M = K(y/a).

Corollary 1. The conductor § of the Kummer extension M/K divides A \a.

Proof. The conductor § is by definition the smallest modulus such that Py (m) is contained
in the kernel of the Artin map (M/K, -). See [3, p. 160], for instance. Theorem 7, however,
directly implies that Px(A;Aa) is a contained in the kernel of the Artin map by setting
y = 1. Thus, in this case, the conductor must divide A;\a. O

In what follows, regard n as a positive multiple of [, and set K’ = Q((,). Note.that
Gryx = {0 | 0(¢) = (¢ for some d, (dl,n) = 1}. We shall now give a proof of an earlier
theorem on cyclotomic polynomials. Let ¢ denote the Euler phi function. -

Proof of Theorem 3. Fix a dividing z. We have by definition of our polynomial that p =
Ng(y — gz(,). If y and ga are not relatively prime, they share some non-unit as a common
divisor whose norm will divide, but not equal, the norm of n over Q, since 7 # y in that
p is prime. But then this contradicts exactly the primality of p, which tells us that y and
ga are relatively prime. Let 7 = Ngv/k(y — ¢z(»), and note that by definition of Gx//x
r = y?/¢() mod ga, since a divides z. Since A,)\; divides g, the theorem then follows
immediately from Theorem 8. (That is, a1/ = 1 mod 7 for all primes = lying over p in
K, and thus a® /¢ =1mod p.) O

We:note that to prove Conjecture 1 takes a slight generalization of above theorems. I am
‘not ready at this point to state such a generalization with much certainty of it being true,
so I will leave this out for now. Much depends on how a ramifies (or doesn’t ramify) in L.
Clearly, though the primes lying above p in L have in this conjecture the form 7 = y — gz
with the notation used previously, and so a more general reciprocity statement should include
such primes.
For completeness, we now consider the case for which ¢ is replaced by 2 and [ = 2°. From
numerical evidence we have the following conjecture:

Conjecture 2. Let t be a nonnegative integer. Assume it is not the case that | = 2 and
t =0. Let p = ®,((22)%a,y*) if |l # 2,4, l =2 andt > 1, orl =4 and t > 0. Let
p = ®,((4z)%a,y*). If p is a prime number, then a is a 2°7*-th power residue modulo p.

An analagous theorem can be used to prove the general case of this corresponding to
Theorem 3. The theorem is as follows. The proof will be left to the reader due to time
constraints on the typing of this report. It requires a lemma for ¢ = 2 which is weaker than
but similar to Lemma 3. One must also use the fact that v/2 € Q((s) but v/2 ¢ Q(:). The
“proof” of the rest of the theorem is virtually identical to, and just as incomplete as that of
Theorems 6, 7, and 8.
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Theorem 9. Let s > 0.
(i) Assume a is is odd. Let v € Z[(j] be such that

2\, [#£4
= d

for some odd y. Then (a/v) = (y/a)i.
(i1) Let v € Z[(j] be such that

4N, 144

= d
1= ymo {87 174,

for some odd y. Then (2/v); = 1.
(71i) Let w € Z[A)] be such that there exists an odd integer y for which

7 = y mod 2ha, 1#4.
4a, =4

Then (a/7); = 1.

Thanks go to Robby Robson for his good advice and guidance throughout the project,
to Tom Schmidt for answering my questions and suggesting techniques such as Eisenstein
reciprocity and the Teichmiiller character that were useful in proving the theorems, to Joe
Buhler for the questions he answered and his suggestion to use the Transfer map instead
of the Euclidean Algorithm, and to Peter Montgomery for guessing that I might be able to
make the cyclotomic polynomials homogeneous and still have my original conjecture work.
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