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Abstract

This paper uses an experimental approach to analyze the expected cycle lengths of
completely random nets with small connectivities. Using a “0 - 1” threshold law, the
results gave reason to expect that the transition point between nets with small cycles
and nets with large cycles is between the connectivities of 2 and 3 where the probability
of finding a long cycle length in a large size net will be 1 for all connectivities greater
than the transition point and 0 for all connectivities less than the transition point.

1. Introduction

The topic of neural nets was one of great popularity twenty years ago, and has once again
become a hot topic in the scientific community. Much of the present interest is in neural
nets as learning devices, but there are also many questions about the dynamics of neural
nets which have remained unanswered. This paper will address one of these unanswered
questions.

Kauffman(1969,1993) speculated on the basis of some simulations that there is a signif-
icant difference between the behavior of neural nets with two inputs per neuron and nets
with-more than two inputs per neuron. In particular, he suggested that the expected cycle
length of state cycles should be about y/n for a net with n neurons and connectivity 2, and
that the expected cycle length of state cycles should be about 2*/2 for nets with n neurons
and high connectivity. While the expected state cycle length could be calculated for nets
with connectivity n as shown by Rubin and Sitgreaves(1954) and confirmed by Cull(1978)
and Gelfand(1982), calculations of the expected cycle length for other connectivities has not
yet been accomplished.

Based on some results of Fagin(1976), we speculated that the expected cycle length might
follow a “0 - 1”7 threshold law, so that the probability of finding a long cycle might be small
(near 0) for low connectivity, and then at some value of connectivity this probability might
jump to become nearly 1. We set out to experimentally determine if these speculations were
reasonable, and this paper describes what we found and how closely the results matched
our speculations. The paper is divided into three main parts: part II consists of the basic
definitions needed in understanding the construction of neural nets, part III contains an
explanation of how the experimental data was produced, and part IV compares the results
of the experiment with the initial conjectures made at the beginning of the experiment. In
addition, an appendix at the end of the paper includes one version of the Pascal program
used to produce the experimental data.
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Cull for his helpul guidance and encouragement.



II. Terminology and Notations

A neural net consists of a finite set of n neurons which are connected so that some neurons
give inputs to other neurons and some neurons receive output from other neurons. We are
going to be dealing with autonomous systems in which there is no external input coming into
the net from outside of the net. The state of a neuron when there is binary output will be
either “on” or “off,” denoted by either 1 or 0. In an autonomous net, the state of a neuron
at time (£ + 1) is a function f of the states of the input neurons at time ¢. Every next state
function representing the state of a neuron at time (¢4 1) can be written in polynomial form.
For example, given a net of two neurons with states X; and X, respectively, the function
representing the state of X at time (¢ 4+ 1) can be written as the polynomial

X]_(t + 1) = f((X]_,Xz)t) = Cp + 61X1 + Cng + C3X1X2 (mod?) 'whcre c; € {0, 1} (].)

Writen this way, the structure of the net is completely connected where all of the neurons in
the net are inputs into each neuron’s next state function. Note that there are 22" distinct
polynomial functions f in n variables for a binary net. In vector form, we can write the
general form for the state S of the completely connected two neuron net at time (¢ + 1) as

_ | AKX, X2)e) \ _ [ a0+ a1 Xy + a2 Xe + a3 X Xo ‘
S = F(5) = ( X)) | = bot by + boXe 4 BXo X, ) (MeD ()

where a;, b; € {0,1}.

In (2), Se41 is a state vector whose components are the states of each neuron in the net at
time (¢ + 1). In addition, since there are two possible states for each of the neurons, there
will be a total of 2" state vectors in a net of size n. In the case of a two neuron net, the

X3 . 0 1 0 1
state vectors (X2 ) will be ( 0 ), (0 ), ( 1 ),a,nd ( 1 )

The nicest nets to work with are random completely connected nets in which each neuron
computes a randomly chosen function of the states of all the neurons in the net. Such a net
is equivalent to a random mapping from the net’s state set to itself. The reason these nets
are nice to work with is because the statistics for random completely connected nets can be
computed from the statistics of random mappings from the state set to itself. To explain,
we can generate a random mapping from the state set to itself by assigning each neuron
in the net a next state function that is chosen at random from the 22" possible in a net of
size n. By generating a finite set of random mappings, we can calculate the statistics for
that set of mappings which will in turn give us the expected statistics for the entire set of
random completely connected nets. Thus, by looking at several randomly generated nets in
a particular class of neural nets, we can find the ezpected behavior of a certain characteristic
in that class of nets. Rubin and Sitgreaves(1954) and Gelfand(1982) have computed various
statistics for random completely connected nets that characterize such expected behaviors.

Let’s look at a simple example of a random completely connected net: let n = 2, so
neurons X; and X, comprise the net as before. To define a next state function for the net,
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randomly choose two functions out of the 16 possiblé in 2 variables such that

_ X1 [ Xi+Xe+1
sw=r((3),)-(F3%") ®
Now pick an arbitrary state vector and follow its trajectory using the next state function F'.

Let So = ((1]) Then we have ((1))-—-) (8) <—-—-—>(é) and(i) . As you can see,
0 1 2 3

So— 81— 52— 5;, and S3 is mapped to itself.

One characteristic to look at in a random completely connected net is the average cycle
length in the net, which will be defined slightly different than the traditional notion of an
average. In the previous example, if you start at random in any one of the three states So,
Sy, or Sz, you will find a cycle of length 2, and you will find a cycle of length 1 only if you
start in state Ss. So, the “average” cycle length will be 2 - % +1- % = % = 1.75. Therefore,
the average cycle length is dependent on the number of cyclic states in each cycle, as well as
the number of states we choose to start from. Note that the average cycle length is not 1.5,
which is calculated by the more traditional method for finding averages.

The average cycle length in a net is directly dependent on the connectivity (K) of the
net, the number of neurons on which the next state function depends. From (3), you can
see that for our net of two neurons, the connectivity K is equal to the size of the net, 2,
since the next state functions for X; and X, each depend on two inputs. One result which
shows the dependence of the expected cycle length of a random completely connected net
on its connectivity is that as K — n (i.e. the next state function for each neuron depends

‘on inputs from all of the other neurons), the ezpected cycle length— 27/2 or more precisely,
;";/—, and in large size nets the ECL is of order 2n/2 (Cull 1978) and (Gelfand 1982).

Sé given a net of size 30 with 2%° state vectors, as K— 30, the expected cycle length

approaches 51;— 10%. A computer simulation from Cull(1978) verifying the asymptotic

expected cycle length behavior for a net of size 31 when K approaches n is shown in ﬁgure(l),

which shows the cycle lengths beginning to level off near K = 15. :
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Figure 1 Expected cycle length as a func-
tion of connectivity for nets of 31 neurons.



Although this result says a lot when working with large connectivities, it does not give
any information about the expected cycle length when dealing with small connectivities. It
has, however, been suggested that for two-input binary nets of size n with connectivity 2,
the median cycle length will follow a “square root law” where the median cycle length ~ +/n
(Kauffman 1969). Nevertheless, when small connectivities (in comparison to the net size)
are looked at, there appears to be a sharp jump in the expected cycle length for the net. In
particular, Kauffman suggests that this jump occurs between the connectivities of 2 and 3.
Walker(1984) found the results in figure(2) which show the median cycle length as a'function
of connectivity for nets of size 20. Note that his data considers nets with more than binary
outputs. One can see from his data that the expected cycle length when K lies in [2,3] may
in fact signify the transitional area between a net with small cycle lengths and a net with

large cycle lengths of order 2%/2.
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Figure 2 Median cycle length for nets of size 20 as
a function of connectivity for constant output varieties
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Conjecture: As the size of the net increases, the expected cycle length (ECL) in the
net grows at a much faster rate when K = 3 than when K = 2 such that when K = 3,
ECL =~ ¢2*?, and when K = 2, ECL =~ &/n. In addition, there exists some value K
between 2 and 3 which will determine the transition point between a net with small cycles
and a net with large cycles. So the questions to be answered are: 1) How much faster does
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the ECL for a net grow when K = 3 than when K = 2?2 and 2) As the size of the net
increases, does there ezist a value K between 2 and 3 at which the transition point between
large and small cycle lengths occurs?.

II1. Experimental Procedure for Finding the Average Cycle Length of a Net

In order to examine the cycle lengths of random nets between the connectivities of 2
and 3, we have to look at the average cycle length of different size nets when K lies in the
interval [2,3]. We can find the expected cycle length in a net of size n with connectivity K by
calculating one cycle length for each of several randomly generated nets of size n and then
taking the average of those cycle lengths. This process can most efficently be carried out
using a computer program to simulate random nets, and this is exactly what was created to
produce the data. Given a net of size n and a connectivity K, there are a few main tasks
this program had to accomplish:

1. Randomly generate a set of n next state functions f; which correspond to the n neurons
in the net.
fi

II. Once there is a random next state function ' = | : | such that F(S;) = S, it
has to find an arbitrary state vector that is known to be cyclic, and follow its trajectory
while at the same time calculating the cycle length for this trajectory.

ITII. Run steps I and II again to produce another random next state function F' and thus
another random net to find another cycle length for the same net size n and connectivity

K.

IV. Take the average of these cycle lengths to find the average cycle length for a net of
size n with connectivity K.

While steps III and IV are self explanatory, steps I and II deserve more explanation
within the context of the computer program. To address the problem of randomly assigning
next state functions to neurons in the net, it is first necessary to discuss the structure of a
randomly connected net in more detail. The net will consist of n neurons, each of which
will be randomly assigned a next state function f;, i: 1—n. Because we are dealing with
“fractional” connectivities that range between 2 and 3, each neuron in the net will have
probability (K — 2) that its next state function will need three input values from other
neurons in the net. For instance, if K = 2.37, each neuron in the net will have probability
.37 that its next state function will need three inputs and probability .63 that its next state
function will need two inputs. A random number R; will be generated by the computer to
decide whether a next state function f; will have three input values or two. Thus, a next



state function for neuron X; will be

f’ Co+Cl.X +62X +C3XX lf_R., >(K—2)
¢ co+ aXp + 2 Xy + s Xp Xy + ca Xy + e X X + e X Xy + 7 Xp X X, if R; <(K —2)
(4)

where c; € {0,1}, and p,q,r € {1,..,n}.

Note that if R; is greater than (K — 2), then f; will be assigned a connectivity of 2,
otherwise it will have connectivity 3. These next state functions f; will be fixed once random
coefficients ¢; and random input neurons p, g, r are equiprobably picked for each of the f; by
the computer in a similar manner as before. Thus, the entire net structure will be fixed once
next state functions are assigned to all of the neurons by this process. The function F' =

f1
fn
F (St) = Sit1-

For step I, it is first necessary to quickly find an arbitrary cyclic state vector in the net.
This can be achieved by letting the computer pick an arbitrary state X, and iterating the
next state function F' such that at the first iteration, A = F(X) and B = F(F(X)), and
following iterations, Axs+1 = F(Ax) and By = F(F(B))- A cyclic state Sp will be found
when Ay, is equal to Biyi. Given S, the computer can easily count how many iterations of
F it takes to return to Sp, and this number of iterations determines the cycle length for this
particular initial cyclic state in this particular net. Creating several random net structures
for the same net size n will produce several cycle lengths from which to obtain a better
average, as outlined in steps III and IV.

In summary, by following the steps previously outlined, the program created will find the
average cycle length for 200 randomly generated nets for a net of size n with connectivity
K. For even better averages, 10 cycle lengths were found and averaged from each of the 200
randomly generated nets. Thus, a total of 2000 cycle lengths were averaged for each n and K
combination. In addition, the variance from the average cyclelength was calculated at each
experimental point. Finding out how fast the average cycle length grows between K = 2
and K = 3, as well as finding a value K for which the transition between large and small
cycles will occur, is now just a matter of using the program to test nets of different sizes and
varying connectivities within the interval [2,3]. The complete program can be found in the

appendix.

will then describe the transition from state vector to state vector in the net where

TV. Results

In order to verify that there does in fact exist a jump in the average cycle length in a
net between the connectivities of 2 and 3 as Kauffman suggests, the first set of experimental
data produced the average cycle lengths for nets of size 2 through 70 both with K =2 and
K = 3. Due to increasingly long run times, while all net sizes between 2 and 40 were run,
net sizes larger than 40 were only tested at n = 45, 50,...,65, and 70. The results of this
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first run of tests are shown in figure(3), in which the data was plotted on both normal scales

and a log scale to clarify the difference between the average cycle lengths for the varying net
sizes at K =2 and K = 3. :
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Figure 3 Average cycle lengths for varying net sizes at the
connectivites of 2 and 3.

The graphs in figure(3) illustrate the rates of growth when K = 2 and when K = 3 of
the average cycle length in a net in relation to the net size n. Close approximations were
made for these graphs whenever possible and represented by the superimposed dashed lines.
The inconsistencies in the smoothness of the graphs are a result of sampling error, as large
variances from the average cycle lengths in the nets were quite common. Other reasons for
a lack of smoothness are small net sizes and the possible effect of the primeness of n (or the
number of factors of n) in determining the connections and thus the cycle lengths of the net.
Discounting these inconsistencies, it is possible to analyze the general nature of these curves.
It is important to note that these approximations were made solely on the experimental data
available, and that the average cycle length of a net in relation to the net size may behave
slightly differently if nets larger than size 70 are analyzed.

It turned out that the data does not directly support the initially conjectured approxi-
mations for the ECL when K = 2 and when K = 3. When K = 3, we know that the ECL
will approach ¢2™/2 as n grows large where 0 < ¢ < 1. Our data shows that the average cycle
lengths were approaching 2"/6 for net sizes up to 70, which is most likely because the net
sizes tested were not large enough to confirm the expected 2"/2 rate of growth. On the other
hand, the initial conjecture for the ECL when K = 2 was that it approached é/n, which
came from Kauffman’s suggestion that this will occur when n gets large enough. However,
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the data showed that the average cycle length when K = 2 for nets up to size 70 is increasing
faster than /n, but still at a much slower rate than when K = 3. Walker(1984), who was
also unable to confirm Kauffman’s conjecture, suggests that the net sizes tested should at
least be carried out to size 1000. In our case, since the data for K = 2 tended to be more
random than when K = 3, it is not clear whether an approximating function for the average
cycle length when K = 2 is of an exponential or quadratic form. In either case, as n — 70,
the average cycle length of the net when K = 2 is so much smaller than when K = 3, it
is not a great loss that we cannot accurately approximate the behavior of the ECL when
K = 2. Thus, although the data confirmed the large jump in the average cycle length be-
tween the connectivities of 2 and 3, our approximations for the average cycle length of a net
when K = 2 and K = 3 differ from the predicted ECL’s at these two connectivities. The
approximations for the average cycle lengths of the various net sizes that the data did help
to produce are good for the net sizes we are dealing with, yet it is reasonable to assume that
as n increases, the EC L will behave like our original predictions.

Now that it is at least confirmed that there does exist a big gap in the average cycle
lengths of a net when K = 2 and when K = 3, we can start looking at the average cycle
lengths for varying net sizes at connectivites between 2 and 3. The next set of data tested
varying net sizes with connectivities between 2 and 3 in increments of 715. The results are
shown in figure(4) and as before, inconsistencies in the smoothness of the graph are a result
of sampling error and other factors.

. Net sizes 20, 30, 40, 50, 60, and 70 (in increasing order)
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Figure 4 Average cycle lengths for varying net sizes between
the connectivities 2 and 3.



As one can see, the curves for all net sizes start to smooth into straight lines when
K is roughly around the value of 2.7. This indicates that a “critical” value K for which
the average cycle length of a net starts to grow exponentially large may occur around this
connectivity value. However, it first needs to be shown that there actually does exist a Kk
between 2 and 3 that satisfies this property. Intuitively, we need to show that given a large
value L, as the size of the nets increase, the probability that a cycle length for the net at K
will be greater than or equal to L is 1. In other words, we need to show that a “0 - 1” law
holds in large nets with a range of connectivities between 2 and 3. If a critical connectivity
K exists, we want the probability that a cycle length is “large” for all connectivites K and
larger to be 1 and 0 for all connectivities less than K. For our purposes, we can use the

following theorem proved by Fagin in 1978:
Theorem. “0 - 1” Law for Finite Models (i.e. Random graphs)

Let P be a finite set of (nonlogical) predicate symbols, or properties P. By
a P-structure, we mean a relational structure appropriate for P (i.e. (Pz.),
where (Pz.) is an atomic sentence meaning the individual constant r satisfies
property P). Let A;(P) be the set of all P-structures with universe {1,...,7}, or
in other words, with j individual constants to be used in the P- structures (Pz.).
For each first-order P-sentence o (with equality), let uj(c) be the fraction of
members of A;(P) for which o is true, then u;(c) converges to 0 or 1 as

]——+oo

In-order to make this theorem work for our problem, lets first define P. There will only
be one property we need as an element of P, and that property will define what a “long”
cycle length is. Based on the information that the expected cycle length will approach 2%/,
we will want to consider the value “long” to be some function of 2" (i.e. 2%/2, 2"/6  etc.).

Definition 1. Given a net of size n and its next state function F', let

LONGFun(ery = [351 - - - ISpuns] A(S2 # S1) A (S2 = F(51))] A [(S3 # S2) A (S3 # S1)
A(Ss = F(S)I A -+ N(Sruwieny # Srunen-1) A+ - AN(Spunes # S1)A
(Sroery = F(Srunim-1))] |

where the S are state vectors with n components, and LONG is the property that a
cycle has a length of FUN(2").

Definition 2. Given a net of size n, and LONGrypn(an), let
LONGER = LONGFUN(zn) A% LONGFUN(gn)+1 \Y LONGFUN(zn)+2 V---VLONGn

where LONGER is the property that a cycle has a length between FUN(2") and 2”,
the maximum cycle length in a net of size n.

Thus, LON GFUN(gn) is a sentence which defines a “long” cycle length as being one of
length FUN (2") It is important to note that there does exist a problem with this sentence
LONG, as it is not necessarily written in first order logic as the theorem requires. The
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problem lies with the sentence’s use of the next state function F', which is not written in
terms of first order logic. However, this problem can most likely be avoided with some clever
rewriting, and therefore we will disregard it for the remainder of the argument.

As a result of the “0 - 1” Law, we know that the probability that a found cycle length
in a net satisfies the property LONGER at a fixed k will be either 1 or 0 as n — oo.
Unfortunately, this theorem does not guarantee there will be one breakpoint connectivity
over the entire range of connectivities in [2,3]. In other words, it does not guarantee that
the probabilities will be monotonic in certain intervals in [2,3] such that if there does exist a
breakpoint connectivity K the probability that a cyclein a net of size n is of length FUN(2")
or longer will be 0 in [2,K ] and 1 in [K,3]. On the other hand, the experimental data shows
that the average cycle length in relation to the connectivity is an increasing function for all
net sizes tested (see figure(4)), which gives us the belief that the probability will in fact be
monotonically spread over the intervals [2, K ] and [K 3] for some critical connectivity K.
Therefore, we should expect that testing over a range of connectivities between 2 and 3 as
n gets large should zero in on the breakpoint connectivity for which the probability a cycle
in a net of size n is of length FUN(2") or larger is 1 for all k£ greater than the breakpoint,
and 0 for all &k less than the break point.

It is important to note that this theorem holds true for any function we wish to determine
a “long” cycle length. Ultimately, we would like this function to be of order 27/2 since this
is how the cycle length grows for large size nets when the connectivity is large. As we have
seen from the experimental data for nets up to size 70, the net sizes will have to be much
larger before the cycle lengths will be of length 2*/2. Once the net size is increased, we
should expect to see a greater break in the growth rate of the average cycle length over the
interval [2,3].

For the set of data we have, it could be useful to use 2"/¢ as the “long” cycle length
value, and assign probabilities 1 and 0 to all of the 2000 cycle lengths found at each (n, k)
combination which can be done by modifying the computer program used to produce the
original data. In other words, if a found cycle length in a random net of size n at connectivity
k has a cycle length greater than 2*/%, then it will be assigned a probability of 1, and if it is
less than 2%/%, it will be assigned a probablhty of 0. Then a plot could be made for varying
net sizes between 2 and 70 of the probability that a cycle length will be of length 2"/ 6 for
each k € [2,3]. From this graph, it should be more evident of where the critical value K lies,
but the most accurate approximation of K will be found only when cycles in net sizes larger
than 70 are looked at and the “long” cycle length considered is of order 2*/2. Unfortunately,
this requires lengthy computer run times, but Fagin’s theorem gives us reason to expect that
once n is increased, a value K will be found for which the probability that a cycle length is
long at a connect1v1ty kis1forall k> K and 0 for all k < K.

V. Conclusion

While the data produced by the experiment confirmed the comparitively large difference
in average cycle lengths between the connectivities 2 and 3, the size of the nets able to be
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tested were neither large enough to confirm the expected cycle length of order 2™/2 near
the connectivity of 3 nor confirm Kauffman’s “square root law” for the average cycle length
when the connectivity is 2. On the other hand, it was able to be shown via Fagin’s “0—1"
law that there is reason to believe there exists a critical connectivity in [2,3] which will
signify the transition point between a net with small cycles and a net with large cycles,
provided the net sizes analyzed are large enough. It is possible that by defining a value for
a “long” cyclelength smaller than 2%/2, this critical connectivity can be approximated by
modifying the computer program used for this experiment so that rather than finding the
average cyclelength at each (n, k) combination, it could assign probabilites to each of the
2000 cycle lengths found at each experimental point. Therefore, although the existence of
this crictical connectivity between 2 and 3 is strongly expected, the problem of finding it
still remains open, and in order to find it, more experiments need to be done with nets of

very large sizes.
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Appendix

The following is a version of the Pascal computer program used to calculate the average
cycle length for a net of size n with connectivity K. For a constant value K, this program
finds the average cycle length for nets of size 2 through 40. Several adjustments were made to
this program in order to decrease runtime when testing large size nets (for example, function
calls were replace by in-line code). This program was also modified to test more than one

connectivity at a time for each net size.

program cycles(output);
{Given a net size n and a connectivity K, this program randomly
generates 200 nets finding 10 cycles in each net. It then finds
the average cycle length for the net size by taking the average of the
2000 total cycle lengths it finds. Specifically, given one connectivity
value, average cycle lengths are found for net sizes 2 through 40.}

const
N = 1073741824; {N is the upperbound for the number of
state vectors to be used in the program}
K = 3.0; {connectivity}
type

COEFF = array[0..7] of integer;
CONSTANTVECTORS = array [1..40] of COEFF;
ONETWOTHREE = array [1..3] of integer;
INPUTVECTOR = array [1..40] of ONETWOTHREE;
NEURONVECTOR = array [1..40] of integer;
RANDOMNUM = array [1..40] of real;

var .
cyclelnth: array[1..200,1..10] of integer;
¢ : CONSTANTVECTORS;

inp : INPUTVECTOR;

X, V, A : NEURONVECTOR;

n, v, w, x, i, clength : integer;

R : RANDOMNUM;

variation, CL, sum : real;
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{Functions and Procedures}

function F2(c : CONSTANTVECTORS; i, first, second : integer): integer;
{F2 is a next state function in polynomial form assigned to a neuron
which has probability 1-K-2 that it will have two inputs that

determine its next state.}
var G : integer;
begin

G := c[i,0] + (c[i,1] * first) + (c[i,2] * second)
+ (c[i,3] * first * second);

F2 := G mod 2

end;

function F3(c: CONSTANTVECTORS; i, first, second, third : integer): integer;
#{F3 is a next state function in polynomial form assigned to a neuron
which has probability K-2 that it will have three inputs that
determine its next state.}

var G : integér;
begin
G := c[i,0] + (c[i,1] * first) + (c[i,2] * second)
+ (c[i,3] * first * second) + (c[i,4] * third) +
(c[i,5] * first * third) + (c[i,6] * second * third)
+ (c[i,7] * first * second * third);
F3 := G mod 2
end;
function F(K:real; R:RANDOMNUM; c:CONSTANTVECTORS; i, first, second,
third : integer): integer;
{F is the function which determines whether the next state function

of a neuron will have connectivity 2 or 3.}

begin
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if R[i] <= K-2
then F := F3(c, i, first, second, third)
else F := F2(c, i, first, second)

end;

procedure randconst(n:integer);

{randconst generates n random coefficient vectors with 8 components
of constants. These are the coefficient vectors which will be
associated with each of the n next state functions for the n neurons.
Note: F2 needs 4 constants and F3 needs 8 constants.}

var ©p, 1, x : integer;

r : real;
begin
x = 0;
for 1 := 1 to n do
for p := 0 to 7 do
begin
r := random(x);
if r <= 0.5 then
c[l,p] :=0
else c[1,p] := 1
end
end;

procedure inputneurons(i,_n :integer);
{This procedure generates three random distinct input neurons for one of
the n next state functions: one "input" vector is created for ome
neuron’s next state function in this procedure.}

label stop;

var P, k, x : integer;
r : real;

begin
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x := 0;
for p :=1 to 3 do
" begin
r := random(x);
if (0 <= 1) and (r <= (1/n))
then inp[i,p] := 1
~else :

for k := 1 to (n-1) do
if ((k/n) < r) and (r <= ((k+1)/n))

then
begin
inp[i,p] := k+i;
goto stop
end;
stop:
end

-end ;

~ procedure n_inputvectors(n:integer);
{In this procedure, n_inputvectors generates three random distinct
input neurons for each of the n next state functions.}
var 1 : integer;

begin

for i :=1 ton do
inputneurons(i, n)

end;

procedure initialstatevector(n:integer; var X: NEURONVECTOR) ;
{This procedure randomly picks one state vector to be used to find
a cyclic state in the net.}

var

m, x : integer;
r : real;
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begin

x = 0;
form := 1 to n do
begin
r := random(x);
if r <= 0.5 then
X[m] :=.0
else X[m] := 1
end

end;

procedure firstsecondthird(i: integer; var first, second, third : integer;
inp:INPUTVECTOR; var V:NEURONVECTOR);
{This procedure finds the values of the first, second, and third input
neurons to be used in evaluating a next state function.}

begin

first := V[inp[i,1]1];
second := V[inp[i,2]];
third := V[inpl[i,3]]

end;

procedure findcyclicstate(K:real; n, N: integer; var first, second,
third : integer;
c:CONSTANTVECTORS; inp:INPUTVECTOR;
R:RANDOMNUM; var X: NEURONVECTOR);

{Given the random initial state vector X, this procedure uses two
functions: F(X)=A and F(F(X))=B. When A=B, then A will in fact
be a cyclic state which will be used later to calculate a cycle
length.}

label found;

var i, f : integer;
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B, Astorage, Bl : NEURONVECTOR;

begin
for i := (n+1) to 40 do
begin
A[i] := 0;
B[i] 0;
Astorage[i] := 0;
Bi[i] := 0
end;
for i := 1 to n do {4 =FX)}
begin :
firstsecondthird(i, first, second, third, inp, X);
A[i] := F(K, R, c, i, first, second, third)
end; ’
for i := 1 to n do {B = FFX)) = FA)}
begin
firstsecondthird(i, first, second, third, inp, 4);
B[i] := F(X, R, ¢, i, first, second, third)
end;
for £ := 1 to N do {Reiterate these functions s.t. A=F(A)
and B=F(F(B)) until A=B, indicating a
cyclic state.}

begin
for i :=1tondo {A=F@Q)}
begin
firstsecondthird(i, first, second, third, inp, 4);
Astoragel[i] := F(K, R, c, i, first, second, third)
end;
A := Astorage;
for i := 1 to n do {B1 =F(B)}
begin
firstsecondthird(i, first, second, third, inp, B);
Bi[i] := F(K, R, c, i, first, second, third)
end;
for i := 1 to n do {B=F(B1)=F(F(B))}
begin
firstsecondthird(i, first, second, third, inp, B1);
B[i] := F(K, R, c, i, first, second, third)
end;
if A =B

then goto found
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end;

found:
end;

procedure cyclelength(K:real; v, w, n, N : integer; ¢ :CONSTANTVECTORS ;
inp:INPUTVECTOR; R:RANDOMNUM; var X :NEURONVECTOR) ;

{Procedure cyclelength finds a cyclic state S1 in the

net and iterates the next state function F until a j is

found such that at the j’th iteration of S2=F(S2), S2 = Si,
resulting in a cyclelength j for this particular cycle in the net.}

label finish;

var first, second, third, i,j : integer;
Si, S2, S2storage : NEURONVECTOR;

begin

for i := (n + 1) to 40 do

begin
S1[i] :=-0;
S2[i] := 0;
S2storageli] := 0
end;
first := 0;
second := 0;
third := 0;
findcyclicstate(X, n, N, first, second, third, c, inp, R, X);
for i := 1 to n do
S1[i] := A[il;
for i := 1 to n do
begin

firstsecondthird(i, first, second, third, imp, S1);
s2[i] := F(X, R, c, i, first, second, third)

end;
if S1 = S2
" then cyclelnth[v,w] := 1
else
for j := 2 to N do
begin
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for i:= 1 to n do
begin
firstsecondthird(i, first, second, third,
inp, S2);
S2storagel[i] := F(K, R, ¢, i, first, second,
third)
end;
S2 := S2storage;
if S2 = S1
then
begin
cyclelnth[v,w] := j;
goto finish
end
end;
finish:

end;

begin {***MAIN PROGRAM*#¥%}

for n := 2 to 40 do {n is the net size}
begin ' .
for v := 1 to 200 do  {generate 200 random nets}
begin
x := 0;
for i:= 1 to n do
R[i] := random(x);
randconst(n);
n_inputvectors(n);
for w := 1 to 10 do  {find 10 cycles in each random net}
begin
initialstatevector(n,X);
cyclelength(K, v, w, n, N, ¢, inp, R, X)
end
end;
clength :=0;
for v := 1 to 200 do
for w := 1 to 10 do
clength := clength + cyclelnth[v,w];
CL := clength/2000;
writeln(’(’,n:2,’,’,K:1:2,7,’,CL:2,7)");
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sum := 0;
= 1 to 200 do {calculate the variation}

for v :
for w := 1 to 10 do
sum := sum + ((cyclelnth[v,w] - CL) * (cyclelnth[v,w] -
CL)); '
variation := (1/1999) * sum;
writeln(variation:3)

end

end. {*%*MAIN PROGRAM#***}
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