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Introduction

This paper looks at two methods for finding the eigenvalues of a matrix. The first
section examines the behavior of symmetric and nonsymmetric matrices under the power
- method. Differences in the convergence rates of these two classes of matrices are presented
and explained. The second section focuses on the extreme eigenvalues computed by the
Lanczos algorithm. In particular, the paper examines error bounds and approximations for
the symmetric and unsymmetric Lanczos methods.

I. The Power Method

The power method is known as a simple iterative process for finding the dominant eigen-
value of a matrix. The method proceeds as follows: Let zo be an arbitrary initial vector,
and Iet A € R™™ have eigenvalues A;, Az, ..., A, such that |A;]<[A2[< -+ <]Az]. Con-
struct the sequence zx41 = Azy for £ = 0,1,2,.... Assuming the dominant eigenvalue A,
exists, this sequence converges to a multiple of the associated eigenvector. The method is
easily explained by expanding z, in terms of the eigenvectors of A. Suppose the eigenvectors
V1,2, ..., V, of the matrix are linearly independent; that is, A is non-defective.! Then zg

can be written as

o = Ui+ -+ oty
Thus, zx = Afze= al)\fvl +---+ anAﬁvn

‘ A A
)\ﬁ[al(/\—l)kﬁ + -+ anal ) -

)k'v'n.—l + anvn] (1)

— an/\fpn as k£ — o0

When using the power mefhod, the z;’s are usually scaled at each step to prevent underflow
or overflow from the A* term. Also, an approximation to the dominant eigenvalue can be
computed at each step from the Rayleigh quotient:
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1Even if A is defective, the power method can still yield the dominant eigenvector if it has multiplicity -
one.



As z; approaches the dominant eigenvector, the Rayleigh quotient x; will be an increasingly
better estimate of the dominant eigenvalue. Equation (1) suggests that the speed of con-
vergence of the power method is determined by the ratio ’\"‘1 Many of the linear algebra
textbooks discuss this point no further. However, there is more to the convergence of the
power method than the ratio ”;’ Figure (1) plots the power method’s error for two ma-
trices, A and S, that have exactly the same set of eigenvalues Rega.rding this graph, one
can see that a couple of unexpected things occur. Not only does S converge much faster
than A, but the eigenvalue estimations of A appear to jump up and down initially whereas
the convergence of S is very smooth. The differences in convergence occur because S is
a symmetric matrix. The comparison of the behavior of symmetric versus nonsymmetric
matrices under the power method will be the focus of this section.

The tridiagonal matrices with the same eigenvalues from Figure (1) are found below.
These matrices have exactly the same set of eigenvalues since S is just a similarity transfor-
mation of A, i.e. A = D71SD, where D is the diagonal matrix with diagonal components

(20,21, ..., 2°).
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Figure (1)

10 20 30 40 50
Error in eigenvalue approximation (log scale)

This figure plots the error in the power method’s eigen-
value approximation for 50 iterations applied to A and S.

A good heuristic explanation of A’s initial oscillation can be given in terms of an orthog-
onal expansion of the zx’s. Since S is symmetric, an orthogonal set of eigenvectors exists.
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We can write zo as a linear combination of these eigenvectors:

a
Zo =01V + -+ aov10 =Va, a=
Q1o
Since V is an orthogonal matrix, it is length preserving, and |{zo||=||||. The coefficients

o; are on the same scale as the components of zo. On the other hand, the unsymmetric
matrix A has eigenvectors that are not orthogonal. Let zo = fiwi + - - - + Browro, Where w;
is an eigenvector of A. These coefficients §; can be rather large, making || 8| >> ||zo||. For
instance, let zo € R!° be the vector 711—0(1, ...,1)T. Then by writing zo as an expansion of
each set of eigenvectors, we find that ||¢|=||zo|= 1, but ||8||~ 69.5. When B has such large
positive or negative components for successive z;’s, we see the Rayleigh quotient oscillate as
in Figure (1). Only when z is close enough to the dominant eigenvector does the norm of 8
approximate the norm of z; and the convergence curve becomes smooth. This is easiest to
see if we normalize all the eigenvectors and z’s to be of unit length. Then as z; approaches
w10, Pro approaches 1 but all the other coefficients go to zero. Thus, ||B||=|lz«||= 1

Figure (2) illustrates the difference in convergence rates for another pair of 10 x 10
matrices sharing the same eigenvalues: :

) 0 5 1 0
1 7 3 1 -7 1
1 -9 4 1 -9 1
fl = 111 5= 1 -11
10 1
| 0 L _23 | 0 1 —23

The difference can be explained by properties of the Rayleigh quotient (equation (2))
applied to symmetric matrices. Calculating Rayleigh quotients for a symmetric matrix has
the effect of squaring the error in the initial vector zx. That is, suppose zx = v, + e, where
|| e||= € and v, is an eigenvector of A. Then pr = A, + O(€?). A proof may be found in
Stewart [5]. Thus, while the eigenvalues for A converge linearly at the same rate as the
eigenvectors of both matrices, the eigenvalues of S converge twice as fast. While this is still
extremely slow, the difference is worth noting.

The properties discussed are not unique to the two matrix pairs A and S given here.
Other examples of symmetric and nonsymmetric matrices sharing the same eigenvalues can
easily be constructed on mathematical software. For example, on Matlab, let A = rand(n),
and find the eigensystem of A by [V,E] = eig(A), where the columns of V' are eigenvectors
and the diagonal elements of E are the eigenvalues. The command B = orth(V) gives an
orthogonal basis for the eigenvectors, and S = inv(B) * E * B generates a symmetric matrix
with the same eigenvalues of A. Initial vectors zo should be randomly chosen. Graphs of the
convergence of the power method for these matrices will parrot the properties described.



Figure (2)
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This figure plots the error in the eigenvalue approxima-
tion for 100 iterations of the power method applied to

matrices A and S.

I1. Lanczos

The Lanczos method for finding eigenvalues of a symmetric matrix is typically applied to
large, sparse matrices when a few of the extreme eigenvalues are desired. Given a symmetric
matrix A € IR**", the method computes a sequence of tridiagonal matrices T; whose largest
and smallest eigenvalues are usually close approximations of the extreme eigenvalues of A.
The transformations are made with orthonormal, n x j matrices Q; such that QT AQ; = T
(T, = T). Thus, when j = n, A and T have exactly the same set of eigenvalues since
this is just a similarity transformation. The transformation is useful because the eigenspace
of T is much easier to compute than that of A. This method was developed by Cornelius
Lanczos in 1950 as a complete algorithm for tridiagonalization. In actual use, round-off
errors cause the method to break down as the orthogonality of the columns of @ is lost.
However, the practicality of the Lanczos algorithm is that the extreme eigenvalues of A are
closely approximated when j is much less than n. This section will focus on the error bounds
and approximations of the eigenvalues of the 7}’s. '

The Lanczos method (Golub and Van Loan [2])
Let A € R**" be symmetric. We want to find an orthogonal matrix ¢ such that

[ a1 Bh 0 7
B 2 ﬂz
QTAQ=T = Br oz - (3)
e e Bama
| 0 Br-1  on



To show how this can be done, we first represent Q by its columns: @ = [¢1 ¢ ... ¢n]. Since
AQ = QT, we can set the j** column of AQ equal to the j** column of QT'. Thus,

Agj = Bi-19i-1 + @g; + Bigix1 (Pogo=0) j=1:n—1 (4)
Since the columns of Q are mutually orthogonal, multiplying equation (4) by n yields

; = q; Agj. Let r; = (A — a;I)g; — Bj-19j-1. Then ¢j11 = r;/Bj, where §; = + ||rJ||2 If
‘= 0 the algorithm terminates prematurely. We have thus written explicit formulas for the
aJ and B;. This method may be programmed into Matlab as follows:

Matrix = input("Matrix = ?°);

q(:,1) = zeros(size(Matrix,1),1);
q(:,2) = input(’initial vector = 7’);

i=0;

u(l) = 1;

r(:,1) = q(:,2);

np = size(Matrix,1);

for j = 2:(np+1)

d(j) = a(:.d)*Matrix*q(:,j);

r(j) = (Matrix - d(j)*eye(np))*a(:.j) - u(-1)*q(:3-1);

u(j) = norm(r(:,j));

q(:.d+1) = r(:3)/u();

end;

’I‘rldlag = zeros(np,np);

for j j = 1:size(Matrix,1)-1

Tridiag(j,j) = d(i+1);

Tridiag(j+1.j) = u(j+1);

Tridiag(j,j+1) = u(i+1);

end

Tridiag(j+1,j+1) = d(+2);

A Lanczos algorithm for unsymmetric matrices exists but is not very practical. Given
A € R™", one can find an invertible (but not necessarily orthogonal) matrix X such that

[on T 0 7
,31 G2 Y2
XAX =T = By as - | (5)
.. '711.—1
. 0 ﬁ'n.—-l o, |

Just like the symmetric case, the extreme eigenvlaues of A are located fairly quickly by a
small submatrix of T. As pointed out in Golub and Van Loan [2], the tridiagonalization
of a nonsymmetric matrix is a very unstable process. The unsymmetric Lanczos method
is almost never used in practice,although some recent research has attempted to improve
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this algorithm, such as Parlett, Taylor and Liu’s “look-ahead Lanczos algorithm” [3]. The
Mz 'ab program for this algorithm is as follows:

Matrix = input("Matrix = 7°);

x(:,2) = input(’initial vector x = ?’);
¥(:,2) = x(:,2);

x(:,2) = x(:,2)/norm(x{:,2));

¥(:,2) = y(:,2)/norm(y(:,2));

N = size(Matrix,1);

x(:,1)=zeros(N,1); y(:,1)=x(:,1);

c(1) = 0; b(1) = 0;

for j = 2:N

a(j) = y(:+j) *Matrix*x(:,j);

r() = (Matrix - a(j)*eye(N))*x (i) - €(-1)*x(:,4-1);
b(j) = norm(r(:,j));

x(:+1) = r(5)/b(3);

P(:,J) = (Matrix - a(j)*eye(N))"*y(:J) - b(-1)*y(:,J-1);
c(i) = x(:-+1)*D(:);

y(:.+1) = p(:d)/c();

end

a(N+1) = y(:,N+1)*Matrix*x(:,N+1);
Tridiag = zeros(N,N); '
for j = 1:N-1

Tridiag(j.j) = a(j+1);

Tridiag(j+1.j) = b(j+1);

Tridiag(j,j+1) = c(j+1);

‘end

Tridiag(N,N) = a(IN+1);

Note: This program does not work for complex matrices.

It has been mentioned that the sequence T; tends to locate the extreme eigenvalues of
A very quickly. The Kaniel-Page theorem gives a lower bound for the largest and smallest
eigenvalues of T; in terms of the eigenvalues of A.

Kaniel-Paige Theorem. (Golub and Van Loan [2])

Let A be an n x n symmetric matriz with eigenvalues A\ < ... < A, and corresponding
orthonormal eigenvectors vy,...,v,. Let 6y < ... < 0; be the eigenvalues of the matriz T}
obtained after j steps of the Lanczos method. Then
An — A 2
/\n > 9,' > )\n _ ( 1) tan(¢n) (6)

(cj-1(1 +2p,))?



where cos(¢n) =| @ n |, pn = (A — Anc1)/(Pn-1 — A1), and cj_1(z) is the Chebyshev
polynomial of degree j — 1. Similarly,

(’\n - )\1) ta,n(¢1)2
(cra(l + 20))° ™

where cos(¢1) =|gFvi| and py = (A2 — A1)/ (An — A2).

A <6, <A+

Proof. (Golub and Van Loan [2])
From the minimax theorem of eigenvalues, we have

b — max VDY _ ¥ (Q7AQi)y
; = Inax = max ———5—

L (@u)AQ)
w0 yTy y#0 yTy w0 (Q;9)T(Qsv)

Let w = Q;y. Then w € span{qi,qs,...,¢;}. One can show by induction that w €
span{q:, Aqi, ..., A" 1q:}, providing that the Lanczos process does not break down. This
implies that w = p(A)g for p € P’~!, where P?~! is the set of polynomials of degree j — 1.
Then w = Vp(A)V7Z¢q, since A = VAVT by the spectral theorem.

wl Aw

we II{I%%M) oTw where K is the Krylov subspace = span{¢:, Aqi, ..., A" 1q:1}.

Thus, §; =

Since A, is the maximum of % over all nonzero w, it follows that A\, > #;. Now let
d = VTq, where d is just the vector of coefficients if we expand ¢; as a linear combination
of A’s eigenvectors. Then

AdVpA) Ap(A)VTq _ dTp(A)TAp(A)d

0;, = _
i rebrs AVp(ATp(M)VEq e dp(AVed
?.—.1 dz?p(/\i)z)\,' )
= ,,2}%’-‘1 r, d?p(Ai)z 8)
- =1 J2n(X;)?
> max A\, — (A — M) X250 dZp(X) o

pEPI-1 d2p(Aa)? + 05 d2p(Xi)?

Note that this bound holds for any specific polynomial p(z) we choose. We can make a
tight bound by choosing our polynomial p(z) that is large at A, and relatively small for the

non-dominant eigenvalues. Let

.’l?—)\l

p(z) = ¢ja(-1+ zm)

where c;_; is the Chebyshev polynomial defined by c;(z) = cos(jeos™'z). For z € [-1,1],
| c;(z) |< 1; but the Chebyshev polynomial grows very rapidly outside this interval. Thus,
|p(X)|£1fori=1:n—1, while

An - /\n-—l

(M) = cji-1(1 + 2Pn):Pn = Aot — Ny
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Since ||d||= 1,
. n—1 n—1
12 =5 a3 o

=1 =1

(A = A1) — d7)

dlcia(1 + 2pn) |

To obtain the final bound of the Kaniel-Paige theorem, note that tan(¢,)? = (1 — d2)/d%.0

Thus, 0; > A, —

Figure 1

10
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Error bounds for a random 10x10 symmetric matrix
Figure (1) graphs the proximity of the theorem’s upper and lower
 bounds to the dominant eigenvalue for successive T;’s. One can

see that for random matrices, the upper bound, A, is actually a
closer approximation of §; than the lower bound (denoted KP).

The proof suggests an interesting result that occurs when there is a multiplicity of the
eigenvalues. If A has k distinct eigenvalues where k < n, then the extreme eigenvalues 6,
and ), of the matrix T} generated by Lanczos will be exactly equal to A; and A,. To see why
this is true, look at equation (8). The polynomial p(z) in this case has degree k£ — 1. Since

| " Pp(A)2\;
A, >0, > &=t i " for any p € PFY,
== Oy Y
we can choose our polynomial p(z) to have roots at Aq,...,Ax—1. Then A, > 6r > Ay, so

01 = X\,. One can show #; = ); in the same manner.

Very little has been written about the unsymmetric Lanczos method. The author is
unaware of any error bounds or approximations for the eigenvalues of T' comparable to the
Kaniel-Paige theorem for the symmetric case. In 1987, Cybenko [1] published an explicit
formula for the characteristic polynomials of the T}’s in terms of the eigenspace of A. This
formula applies to all nondefective matrices A. '
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Cybenko’s Theorem. Let );, u;, v; be the eigenvalues, right eigenvectors, and left eigen-
vectors of A respectively. Let z and y be arbitrary vectors, and assume A is nondefective.
The characteristic polynomial c;()) of the j** approzimating matriz obtained in the Lanczos
process satisfies |

A =0 D Yo % ViR Ay Ai) X (A= A )(A = Agy) - (A= Ay)
IeAnj

where o is a constant and V. is the Vandermonde determinant. The factors «; are

v; = (y"u;)(viz)

See Cybenko [1] for the proof.
Cybenko’s theorem sheds more light on the case of the multiple eigenvalues. If A has k
distinct eigenvalues, then not only are the extreme eigenvalues of T} exact, but all of the

eigenvalues are exact.

Proof. The characteristic polynomial of T, can be written as a sum of terms of the form
Vi Yip '7ijV2({\i17 Aiza ceey )‘ij) X ()\ - )‘11)(’\ — )‘52) ot (A - Aij)

If \;, = \;, for some g¢,r then the Vandermonde determinant of this term will be zero
since’its matrix will contain two identical rows. The only terms left contain all £ distinct

eigenvalues as roots. O

Therefore, if we have a 1000 x 1000 matrix with just two distinct eigenvalues, one can just
cons“t}ijuct the 2 x 2 matrix T, to get both of them exactly. While matrices like this rarely
occur in applications, the result is an interesting one.

The problem at hand is to find error bounds or approximations for the eigenvalues of the
matrices T;. Cybenko’s formula turns the problem into a search for the roots of polynomials.
A well-known technique for finding such roots is Newton’s method. The remainder of this
paper will examine the application of one iteration of Newton’s method to the chara.ctenstlc
polynomial p;(z) of T; in order to approximate the eigenvalues of Tj.

Recall that Newton s method works as follows: given a function f (z) and an initial guess
Tg, then 7 = 20— J(zo) will be a closer approximation to the nearest root than wo Applying

f'(=

this first iteration to Cybenko’s formula yields

EIEAnj Yig ot 'Yijvz(’\iu ceey /\ij) X (‘TO — ’\il) T (‘TO — )‘ij) (10)
CreanilVin - % V2 (Xirs -5 Aij) Treani-1)(To = Aigy ) -+ (20 — Ay, )]

1 = To —

For the symmetric case, we can create an upper bound for Tj’s largest eigenvalues §; by
letting zo = A,. We know this is an upper bound since the characteristic polynomial p(z)
will have all real roots, so the concavity of p does not change for z > 0;, and we know
An > 0; from the Kaniel-Paige theorem. Thus z; will be located between A, and ;. Figure
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(2) shows that this bound is a much tighter one than the Kaniel-Paige bounds. In the
unsymmetric case, the Newton formula yields just an approximation and not necessarily a
bound since some of the eigenvalues may be complex. From Figure (3) one can see that this
approximation is also fairly tight. These graphs indicate that the Newton estimate seems to

have a lot of potential.

° Figure 2 > Figure 3
10 v - T . 10 . - r T
N KP - ] L lambda --
102 lambda -- | 10° b Newton ... -
\ Newton ... N i
i -2
-4 10 - N -
10 - | \\\ ]
-8 1 0-4 - \\ =
10 - L N
- 1 O-s - AN B
107 e | ", RN
- 107 | A -
107! of S - J
~10 .
A 107 F N -
-12 - N 1
o - N
10 1072} " |
-14 ' 1al N
10 1 1074t -
-16 A A 3 1 2 -16 i ' i A 1
10 2 4 6 8 10 10 2 4 (5] 8 10
Random 10x10 symmetric matrix Random 10x10 unsymmetric matrix

Figure (2) and Figure(3) plot the closeness of the bounds to the
actual dominant eigenvalues of the T;’s for 7 =1 : 10.

To be practical at all, this formula must be simplified so that it does not require prior
knowledge of the entire eigenspace. Plugging in A, for z¢ causes many of the terms to
cancel, but unfortunately this does not provide a simpler expression of equation (10). Some
knowledge of the distribution of the eigenvalues can help this simplification.

Consider random matrices whose entries are uniformly distributed between 0 and 1.
Such matrices can be generated on Matlab by the command A = rand(n). A symmetric
matrix can be generated from a random matrix A by S = (A + AT)/2. These matrices
have a dominant eigenvalue at approximately 3, and the rest are located within a circle of
radius \/% about the origin (Silverstein [4]). To make things simpler, suppose the initial
vector z has equal components in the direction of all the eigenvectors. Then we can cancel
the ~;’s from equation (10). Actually, the choice of a random initial vector should have
little impact on the speed of convergence of Lanczos. Regard Figure (4), which plots the
convergence of the Lanczos eigenvalues to A, for a random initial vector and for one with
equal components in the directions of the eigenvectors. The equal components vector gives
a bad initial estimate? of trace(A)/n, but the convergence rates appear to be roughly the

. .. . n-1 .
same. Since terms containing A, cancel, our Newton formula contains (".7) terms in the
J

22T Az = trace(A)/n in the symmetric case, where z = VI;V[I, ..., 1J¥. Obviously this guess is not even

close to the dominant eigenvalue.
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numerator containing j products of the form A, — A;. To maintain the upper bound, we
can underestimate the difference by substituting (A, — \/%)J. The denominator consists of

(n) terms containing j — 1 products of the form A, — A;. We can overestimate by using
j

(An + \/-’_;-_)j ~1. The Vandermonde determinants contain (;) products of the form A; — A;. In

the numerator these products do not include A, although some in the denominator do. For

this fraction, we can initially tr ——@ Our Newton approximation then becomes
U way: PP

I = An—

() ey
"y Wt \B) 0 Qaty /ey

. -_'rg 2(;) LAY |
_ /\n_"—f( \/; ) _Ei\i‘___i (11)

2 Figure 4 - ° Figure 5
1.0 T T v — 10 v v T
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i E 10 L
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= 10 . £
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g -10 [ g 1 0-10 i
— 10 - a3
i S 12
|23 - L
1 o--12 ] % 10
—1af -14
10 14 __ 10 -
-16 I i L A 1 ] _16 1 Il 1 i1
10 6 8 10 10 2 4 [<] 8 10

2 4
Random 10x10 symmetric matrix Random 10x10 symmetric matrix

Figure (4) plots the convergence rate A, — 6; for j = 1 : 10 for two
starting vectors — one with equal components in the directions of all

the eigenvectors and one random. Figure (5) plots the closeness of
three different bounds to the dominant eigenvalues of the T}’s.

The exponent of 2(;) causes this fraction to approach zero very quickly, just as the Lanc-

zos method locks in on the dominant eigenvalue very quickly. For large n, experimentation
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seems to show that this formula is still an upper bound for 8; except for T5. We can correct

this by leaving out the term —Cg%, although we lose some initial tightness in doing so.
nty/s

Figure (5) plots the tightness of this approximation versus the Kaniel-Paige bound and the
original Newton formula. Much of the tightness from the original Newton’s method (before
simplification) has been lost already by the estimations, so better estimates of the eigenvalue
differences, particularly in the Vandermonde terms, should be an improvement.

Although our formula requires prior knowledge of the dominant eigenvalue, remember
that the Kaniel-Paige bound uses three eigenvalues. These formulas can be used to predict
the location of §; given \,. This may seem strange since the whole purpose of the Lanczos
method is to find the 6;’s to approximate \,. Our Newton estimate is best used to give a
better understanding of the Lanczos convergence and a general expectation of the accuracy

of Lanczos.

This paper was written as a part of the Research Experience for Undergraduates at Oregon
State University in the summer of 1993. The author would like to sincerely thank Dr. J.A.C.
Weideman for his ideas and encouragement, without which this paper would not have been

possible.
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