ON K-STAGE EUCLIDEAN DOMAINS

KENNETH H. KEPPEN

-ABsTRACT. In this paper, k-stage Euclidean Domains, a notion conceived by George
Cooke, are defined and characterized. Following the work of Motzkin, a necessary and
sufficient condition for an integral domain to be a k-stage Euclidean Domain is given, and
from this the minimum k-stage Euclidean Norm is constructed.

1. DIVISIBILITY IN INTEGRAL DOMAINS

In this paper, let D denote an integral domain, D* the nonzero elements of D, and D* the
multiplicative group of units of D. While many of the results herein apply to arbitrary commutative
rings, we will focus on integral domains. The following definitions will be used throughout.

Déﬁnition 1. An element v in D is called a unit if uv = vu = 1 for some v in D. Elements a and
b in D are called associate if a = ub for some unit u in D. a and b are called relatively prime if
their only common divisors are the units of D.

Definition 2. A nonzero nonunit element 7 in D is called srreducible if whenever a¢ and b are
elements in D and r = ab, then a or b is a unit. A nonzero nonunit element p in D is called prime

if p| ab implies p | @ or p| b.

The following facts are easily derived from the above definitions. i) u is a unit if and only if
(u) = D. ii) a and b are associates if and only if (a) = (b). iii) A nonzero nonunit element p is
prime if and only if (p) is a prime ideal.

In some integral domains the set of primes differs from the set of irreducibles. However, we
always have

Proposition 1. If p is prime in D, then p is irreducible.

PROOF. Suppose that p = ab and p | a. Then a = pz and so p = (pz)b. By the cancellation law,
1 = zb, which shows that b is a unit. Hence p is irreducible. Note: The converse is true in case D
is a PID or UFD. O

The notion of a greatest common divisor plays a central role throughout this paper.

Definition 3. Let a1,---,a, be nonzero elements in D. A greatest common divisor (ged) of
ai,---,a, is a nonzero element d such that d | a; for all ¢ = 1,---,n, and if d' | a; for all
i=1,---,n, then d' | d.

Note that in a general integral domain neither existence nor uniqueness of gcds is guaranteed.
Propositions 2 and 3 provide some basic facts about gcds of two elements. Although not explicitly
shown, by an easy induction, these propositions hold for any finite number of elements.
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Proposition 2. Let a and b be nonzero elements in D and let d be a gcd of a and b. Then the
geds of a and b are precisely the associates of d.

PROOF. If d' is a gcd of @ and b, then d | d' and d’ | d. Hence d = ud',d’ = vd, and so d = uvd. By
the cancellation law, 1 = uv. Hence v and v are units which shows that d and d’' are associates.
Conversely, suppose that d and d’ are associates. Then d = ud’ and d’ = vd for some units u and
v. Since d | a,d | b, then d’ | a,d’ | b. Moreover, whenever ¢ | a,c | b, then ¢ | d, so ¢ | d’. Hence d’
isagcd ofaand b. O

Proposition 3. Let a and b be nonzero elements in D. If (a,b) = (d), then d is a gcd of a and b.
PROOF. Note first that d'| a,d | b if and only if a,b € (d) if and only if (a,b) C (d). Thus d € D*
is a ged of @ and b if and only if (a,b) C (d) and 1f {(a,b) C {d) 1mp11es (d) C (d'). The proposition
follows if (a,b) = (d). O

We now show that in a PID existence of geds is guaranteed. Specifically,

Corollary 1. If D is a PID, then a and b possess a ged d and there ezists elements z and y in D
with d = az + by. '

PROOF. Since every ideal in D is principal, then (a,b) = (d) for some d € D. From the proposition,
d is a ged of @ and b, and since d € (a,b), then d = az 4 by for some z,y € D.

Corollary 2. If D is a PID, then c is a ged of a and b if and only if (a,b) = (c).

PROOF. By the proposition, if (a,bd) = (c), then c is a gcd of @ and b. Conversely, suppose that c
is a gcd of @ and b. By Corollary 1, a and b possess a gcd d, where (d) = (a, b). From Proposition
2 it follows that ¢ and d are associates. Hence (c¢) = (d) = (a,b). '

ExaMPLE 1. In Z, the geds of 18 and 48 are & 6. For any D, D[z]* = D*. Thus in Q[z], the gcds
of 2 — 2z + 1 and 2% + z — 2 are all polynomials ¢(z — 1) with ¢ € Q*. However, in Z[z], the gcds
of 22 — 2z + 1 and z? + £ — 2 are +(z — 1).

2. k-STAGE EUCLIDEAN DOMAINS

Next we consider Euclidean Domains in tandem with k-stage Euclidean Domains; essentially
domains possessing a weakened Division Algorithm. We first define the notion of a norm on an
integral domain D. This is a measure of “size” in D.

Definition 4. Any function N : D* — Z* U {0} is called a norm on D. N is called semi
multiplicative if N(ab) > N(a) for all nonzero a and b in D. :

Note that it is permissible for N(0) to be undefined. Some authors define N(0) = 0 or
N(0) = —oo, while others define N(a) > 0 for all nonzero a. These conventions lack necessity
for our purpose, however, and consequently will not be adopted here. The following definition of a
Euclidean Domain is not standard, but it will be the definition employed throughout this paper.

Definition 5. An integral domain D is a Fuclidean Domain (ED) if there is a norm N on D such
that D admits an N-Division Algorithm. That is, for each pair a,b in D with b # 0, there exists
elements ¢ and 7 in D with @ = bg + r and either r = 0 or N(r) < N(b). The element ¢ is called
the quotient and the element 7 the remainder. Any such norm on D is called a Euclidean Norm.

Notation: The following statements will be used synonymously; D is Euclidean for N, N is a
Euclidean Norm on D, and (D,+,-,N)is a Euclidean Domain. Note that ¢ and r need not be
unique in the N-Division Algorithm. Note also that since D is a ring, additive inverses exist in
D. We can therefore write the N-Division Algorithm on D as follows: for each pair a,b in D with
b # 0, there exists elements ¢ and r in D with a + bg = 7 and either r = 0 or N(r) < N(b). This
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rephrasing will bear its fruit in sections 3 and 4.

Definition 5 is not standard in that most authors additionally require N to be semi multiplicative.
A semi multiplicative Euclidean Norm, as we will see, is useful in characterizing the units and
associates in D. However, the main interest in a Fuclidean Domain D for N is that the N-Division
Algorithm shows that D is a PID and that gcds can always be calculated algorithmically (using the
Euclidean Algorithm). To show that D is a PID, given any nonzero ideal I in D, take any nonzero
element b € I with minimal N value. By closure, (b) C I. For any a € I, a = bg + r with either
r=0or N(r) < N(b). Since r = a — bg € I, we must have 7 = 0. Thus a = bg, and so I C (b).
In this proof the semi multiplicative property of N has not been used, and any well-ordered set
W could be used for the codomain of N. Employment of the later enlarges the class of Euclidean
Domains. Additionally, it is unnecessary for D to be an integral domain to possess a Division
Algorithm. Samuel [1] therefore gives the following definition. Given a ring R, a Fuclidean Norm
on R is a map NV of R into a well-ordered set W such that R admits an N-Division Algorithm.
We will not utilize this definition, however. Definition 5 was chosen in the generality needed to
coherently discuss subsequent implications.

ExXAMPLE 2. a) A field F is trivially a Euclidean Domain with N(a) = 0 for all a € F. Take any
pair a,bin F with b # 0. Then a = bg + 0 where ¢ = b~ la.

b) Zis a Euclidean Domain for N(n) = |n|.

c) For any field F, F[z] is a Euclidean Domain for N(f) = deg(f). Here, ¢ and r are unique.

d) Z[\/-—_Q], the ring of algebraic integers of Q(y/—2), is a Euclidean Domain for the norm N given
by N(a) = a@. To see this first note that @ + 3, —a, aB, and 1 are elements of Z[v/—2] whenever
@, B are elements of Z[v/—2]. Additionally this ring is commutative and has no zero divisors; both
properties are inherited from C. Next, take any pair o, 8 in Z[v/—2] with 8 # 0. We must show
there ‘exists elements T,p in Z[v/—2] with a = B7 + p, and either p = 0 or N(p) < N(fB). Let
&= =+ yv/—=2 € Q(v/=2). Choose T = a + b/—2 in Z[+/=2] with a € Z chosen closest to
z € R and b € Z chosen closest to y € R. Clearly [z —a| < ; and |y — b] < 3. It follows that
N-7)=N({(z—a)+(y—0)vV-2)=(z-a)’+2(y—-b)*<1+2: =2 Nowifa=zand b=y,
then 7 = 5 and o = (7, which shows that p = 0. If not, let p = a — 87 = (% -7)8=(—-T1)8.
We then have N(p) = N(§ — 7)N(B) < 3N(B8) < N(B). This shows that Z[/~2] admits an N-
Division Algorithm. Moreover, let a, 3 be nonzero elements in Z[/—2]. It follows that N(af) =
afaf = N(a)N(B) > N(e), since N(a), N(8) > 1. Whence N is a semi multiplicative Euclidean
Norm. Note: Similarly one can show that Z[i] and Z[v2] are Euclidean for the norm N given by
N(a) = |aal.

All of the norms given in EXAMPLE 2 are semi multiplicative. Although hard to find, the next
example provides a Euclidean Norm which is not semi multiplicative.

EXAMPLE 3. In Z, let N(n) = |n| for n # 7 and N(7) = 15. We claim that N is a Euclidean
Norm on Z which is not semi multiplicative. To see this take integers a¢ and b with b # 0 and
bt a. By the usual Division Algorithm on Z, there exists elements ¢g,7 € Z with a = bg + r and
|r] < 1b]. If [b] < 7 or |b] > 16, then N(r) < N(b). If 8 < |b] < 15 and 7 # 7, then N(r) < N(b).
However, if 8 < |b] < 15 and r = 7, then a = ¢b + 7 for some ¢g. Rewrite this equation as
a=0b¢+1)+(7T—06) =b¢d +7'. Nowif 8 < b < 15, then —8 < 7' < —1, which shows that
N(r') < N(b). And if —15 < b < -8, then 11 < ¢’ < 18, which shows that N(r') < N(b). We
conclude that Z is Euclidean for N. However, N(2-7) = 14 < 15 = N(7), and so N is not semi
multiplicative.

Before introducing k-stage Fuclidean Domains we need the following definition.
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Definition 6. Let a and b be elements in D. An n-stage division chain starting from the pair a, b
is a sequence of equations

= bg+m

b = rg+r
Ty = Togz+ T3
The3 = Tnp-2qn-1 + Tn—1

= Tn-14n + Tn-
Such a division chain is called terminating if the last remainder r, is 0.

Remark: A division chain is completely determined by the sequence of quotients ¢, -, ¢,. Any
sequence qi,- - -, g, of elements in D defines an n-stage division chain starting from the pair a, b.

We now consider a weakening of the Division Algorithm and define a notion conceived by George
Cooke [2]. The principal definition is

Definition 7. Let k£ be a natural number. An integral domain D is a k-stage Fuclidean Domain
if there is a norm N on D such that D admits a k-stage N -Division Algorithm. That is, for each
pair a,bin D with b # 0 there exists an n-stage division chain starting from the pair a,b for some
n < k such that the last remainder r,, satisfies either 7, = 0 or N(r,) < N(b). Any such norm on
D is called a k-stage Fuclidean Norm. '

Notice that in a k-stage Euclidean Domain after at most & “divisions” (these are actually divisions
in the field of quotients of D) a “smaller” remainder is produced, while a “smaller” remainder is
achieved after one “division” in a Euclidean Domain. Note also that the k-stage condition implies
the m-stage condition if m > k, and that the 1-stage condition is the usual Euclidean property.
From this definition, an integral domain D is a 2-stage Euclidean Domain if there is a norm N
on D such that for each pair a,b in D with b # 0, either i) there exists elements ¢,r € D with
a = bg + r and either r = 0 or N(r) < N(b), or ii) there exists elements g;,q2,71,72 € D with
a = bg, + 711, b = 7195 + 75 and either ro = 0 or N(73) < N(b). In section 4 we will consider 2-stage
Euclidean Domains in detail.

For k-stage Euclidean Domains, as well as Euclidean Domains, we will show why the semi
multiplicative property of a norm is auxillary. More precisely, in sections 3 and 4 we will show that
every k-stage Euclidean Domain (k > 1) has a semi multiplicative k-stage Euclidean Norm.

By further weakening the Division Algorithm we have

Definition 8. An integral domain D is an w-stage Euclidean Domain if there is 2 norm N on D
such that D admits an w-stage N -Division Algorithm. That is, for each pair a,bin D with b # 0
there exists an n-stage division chain starting from the pair a,b for some natural number n such
that the last remainder 7, satisfies either r, = 0 or N(r,) < N(b).

Note that for every k, the k-stage condition implies the w-stage condition. k-stage Euclidean
Domains will be our primary concern.

The following strict inclusions among classes of integral domains is well known.

fields ¢ EDs C PIDs C UFDs C integral domains

What can we say about the intrinsic algebraic properties of k-stage Euclidean Domains? Where
do k-stage Euclidean Domains (k > 2) fit into this chain? The remainder of the paper addresses
these questions. Dummit [3] states that there are examples of 2-stage Euclidean Domains which
are not PIDs, which as we will show, must contain an infinitely generated ideal; and that there are
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examples of domains which are 2-stage Euclidean but are not Euclidean. There are also examples
of domains which are not Euclidean for a given norm but which are k-stage Fuclidean for the norm.
For example, the ring Z[/14] is not Euclidean for the usual norm N given by N(a) = |a@], but is
2-stage Euclidean for this norm (see [2]). Cooke showed that Z[/d] is 2-stage Euclidean for this N
in case d is equal to 14, 22, 23, 31, 38, 43, 46, 53,61, 69, 77, 89, 93, 97, 113, 129, 133, 137, 181,
and 253.

ExaAMPLE 4. This example shows that choosing ¢ and 7 in the Division Algorithm is not a trivial
matter. Let a = 214 4v/14, 8 = —3 + v/14 € Z[V14], and N(e) = |o@|. Using the proof given
for Z[+/-2] in Example 2d, we apply the N-Division Algorithm to the pair o, to get: Step
1 Let & = § = e _ 33,/14 and choose 7, = 23 + 7v/14. Then p; = a — fr; = —8 + 21/14
,and N(p;) = 8 > 5 = N(B). Step 2 Let & = }% = —1 - 1/14. Choosing 7, = 0 yields
pz = B—pi7s = B, s0 N(ps) = 5 = N(B). Choosing 7, = —1 yields p, = —11 + 3v/14 and
N(p:) = 5 = N(B). Hence N(p;) £ N(B). Is this a counterexample to the “fact” that Z[v/14] is
known to be a 2-stage Euclidean for this norm? The answer is no. Cooke’s proof uses continued
fractions and the geometry of numbers and does not employ the method used to prove that Z[/—2]
is Euclidean. Consequently, a completely different procedure must be used to choose quotients and

remainders in the Division Algorithm in Z[/14].

The existence of a k-stage Division Algorithm has important implications. We now reveal a
signiff:éant advantage of k-stage Euclidean Domains over PIDs; namely, although geds exist in both
settings, in k-stage Euclidean Domains one has an algorithm for computing them.

Lemma. Let a and b be elements in an integral domain D with b# 0 and a = bg+ r. Then i) d
is a ged of a and b if and only if d is a ged of b and r, and i) {a,b) = (b, 7).

PROOF. i) Suppose d is a gcd of aand b. Then d | a,d | band sod | 7 = a—bg, which shows that dis a
ged of b and 7. The converse is similar. ii) Take ¢ € {(a,b), then ¢ = az+by = (bg+7)z+by = b(gz+
y)+r € (b,r). Conversely, take e € (b, 7), then e = bu+rv = bu+(a—bg)v = av+b(u—qv) € (a,b).
This shows that (a,b) C (b,7) C (a,b), and so (a,b) = (b,r). O

Proposition 4. The Euclidean Algorithm. Let (D,+,-,N) be a k-stage Euclidean Domain for
k> 1. Let a and b be elements in D with b # 0. Then the pair a,b has a terminating m-stage
division chain for some natural number m, and the last nonzero remainder r,,_, is a ged of a and
b. Moreover, r,,_, = az + by for some elements z and y in D.

PROOF. It follows from the Division Algorithm that there is an n-stage division chain starting from
the pair a,b for some n < k such that r, = 0 or N(r,) < N(b). If r, = 0, the chain terminates.
If not, it follows from the Division Algorithm that there is a j-stage division chain starting from
the pair r,_;, 7, for some j < k such that 7,4; = 0 or N(r,4;) < N(7rn). If r,4; = 0, the chain
terminates. If not, continue this process. Since N(r;) is nonnegative for all 7, this decreasing
sequence of normed remainders must end; say 7, = 0. By induction and repeated use of Lemma i)
we find that d is a ged of a and b if and only if d is a ged of r,,_; and 0. Since 7,,,—; is a ged of 7,1
and 0, then 7,,_; is a gcd of @ and b. Alternatively, by induction and repeated use of Lemma ii) we
find that (a,b) = (rpm-1,0) = (rp—1). Hence r,,_; is a ged of a and b. To find z,y € D such that
Tm-1 = ax + by , first write 7,1 = 7r,—3 — 'm_2Gm—1. Upon successively back solving the equations
in the terminating m-stage division chain we find that r,,_; = az + by for some z,y € D. O

It is easy to see that if D is an w-stage Fuclidean Domain then every pair a,b with b 7 0 has a
terminating m-stage division chain for some m € N. Consequently, every w-stage Euclidean Domain
admits a Euclidean Algorithm. As a consequence, although not explicitly stated, every subsequent
result from this section applies verbatim to w-stage as well as k-stage Euclidean Domains.
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If D is a k-stage Euclidean Domain (k > 1) and a4, -+ ,a, € D*, an easy induction shows that
(a1, ,a,) = (d) for some nonzero d, d is a ged of ay,---,a,, and d = a1z, + --- + apz, for
elements z; € D. In particular, we have the following corollary.

Corollary 1. FEvery finitely generated ideal in a k-stage Fuclidean Domain is principal. Moreover,
every Noetherian k-stage Fuclidean Domain is a PID.

" The next corollary follows immediately from our work thus far.

Corollary 2. In a k-stage Euclidean Domain D the following are equivalent: i) a and b are
relatively prime, i) the units of D are precisely the geds of a and b, iii) (a,b) = D, and iv)
1 = az + by for some elements z and y in D.

ExAMPLE 5. The proof that F[z] is Euclidean uses long division to obtain unique elements ¢ and

7 in the Division Algorithm for N(f) = deg(f). To find the geds of f = 2° + 22* 4+ 222 + 2z + 2
and g = 223+ 22? + z + 1 in Z3[z] we employ this tactic successively at each step in the Euclidean

Algorithm.

Step-1 f = gq, + r, where ¢, = 222 + 2z, r; = 2% + 2z + 2, and deg(r;) < deg(g).

Step-2 g = r1gy + 1o Where gz = 2z + 1, r, = 2 + 2, and deg(r;) < deg(r).

Step-3 7, = T3¢s + r3 where g3 = z, r3 = 2, and deg(r3) < deg(r2).

Step-4 7, = r3qs + r4 Where g, = %:1: +1,74=0.

Hence a gcd of f and g is 2; the other ged is 1. This shows that f and g are relatively prime in
ExAMPLE 6. To find a ged of @ = 22 + 44/-2 and f = 6 + 7/—2 in Z[+/—2] for the norm
N(a+b/-2) = a® 4 2b%, we use the proof given in Example 2d in conjuction with the N-Euclidean
Algorithm.

Step-1 a=fr+p:. Let§ =4 = 28 /—2and choose 71 = 1—+/-2, p; = a— 71y = 2-5V/-2.
Thus N(p;) = 54 < 134 = N(B).

Step-2 B = piTa+ps. Let & = fT =—-242,/-9and choose T, = —1++/=2, ps = f—p17y = —2.
Thus N(p,) =4 < N(p,) = 54.

Step-3 p1=pams+ps. Let =2 = -1+ 2V/—2 and choose 73 = —1 + 2¢/=2, ps = p1 — paTs =
—+/=2. Thus N(p3) =2 < 4 = N(p,). »
Step-4 py = pa7a+ ps. Let & = %;— = —/—2. Hence p, = 0.

It follows from the Euclidean Algorithm that p3 = —/—2 is a gcd of @ and f; +/—2 is the other
ged.

ExAMPLE 7. Continuing from EXAMPLE 4, if we apply the Euclidean Algorithm to a = 21+44v14
and 8 = —3 4 /14 in Z[/14] borrowing the technique used in EXAMPLE 6 to obtain quotients 7;
and remainders p;, we get the following:

a=fn+p p=-8+2V14  N(p)=8>5=N(B)
B=pira+p2 p2=-1143V14 N(p)=5
pr=pamst+ps ps=-19+5/14  N(ps) =11
pr=psTatps  pa=-11+3V14  N(p)=5

P3 = PaTs + ps ps = =19+ 5v/14 VN(ps) = 11.

In general, pop = —11 + 3+/14 and poz41 = —19 + 5v/14. Hence the Euclidean Algorithm fails to
generate a gcd. The following observation is now evident: Knowing only that an integral domain
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is k-stage Fuclidean for some norm N is not enough to algorithmically calculate geds using the
N -Euclidean Algorithm. Knowing how to choose a quotient and a remainder at each step in the
algorithm is imperative.

We now provide some consequences of the Euclidean Algorithm.

Proposition 5. Let (D,+,-,N) be a k-stage Euclidean Domain. Then an element p in D is prime
if and only if p is irreducible. '

PROOF. Suppose that p is irreducible in D, p | ab, and pt a. Suppose further that « | p and u | a.
Thus p = cu where c or u is a unit. If c is a unit, then w = ¢~ 'p. It follows that p | u, and since
% | a, then p | a; a contradiction. Hence » must be a unit. This shows that a and p are relatively
prime. Thus 1 = pz + ay for some z and y, and so b = pbz + aby. Hence p | b, and so p is prime.
The converse is given by Proposition 1. O

Corollary. A k-stage Fuclidean Domain in which every nonzero nonuit element can be factored
into a finite number of irreducibles is a UFD.

PROOF. Since primes and irreducibles are equivalent in any k-stage Euclidean Domain D, the proof
of unique factorization is the same as the uniqueness portion of the proof that every PID is a UFD

(see [3]).

Proposition 6. Let N be a semi multiplicative norm on D. Then i) N(1) < N(a) for all nonzero
a, and i) if v is a unit, then N(u) = N(1) and N(au) = N(a) for all nonzero a.

PROOF. i) For any nonzero a we have N(1) < N(1-a) = N(a). ii) Suppose u is a unit. Then
N(u) < N(uu™!) = N(1), and so N(u) = N(1). Next let ¢ = au for any nonzero element a. Then .
cu~! = a, and from the semi multiplicative property of N we have N(c¢) > N(a) and N(c) < N(a).
Thus N(c) = N(a). O

Prop_psition 7. Suppose that (D,+,-, N) is a Fuclidean Domain, N is semi multiplicative, and a
and u are nonzero elements in D. Then the following are equivalent: i) w is a unit, i) N(u) = N(1),
and iii) N(au) = N(a).

PROOF. We need only show that ii) implies i) and that iii) implies i). (i = i) If N(u) = N(1),
we apply the N-Division Algorithm to get 1 = ug + 7 and either r = 0 or N(r) < N(u). Since
N(u) is minimal, we must have r = 0. Thus 1 = ug, which shows that u is a unit. (iii = i) Let
¢ = au € (a)* and suppose that N(c) = N(a). Take z € (a) and write z = cq+r where either r =0
or N(r) < N(c). Since (a) is an ideal, then r € (a). If r # 0, then 7 = ay with N(ay) > N(a);
a contradiction. Thus we must have r = 0, which shows that r € (c¢) and so (a) C (c). Clearly
(c) C {a). Hence (c) = (a), which shows that a and c are associates and that u is a unit. O

ExXAMPLE 8. a) For Z with N(n) = |n|, the minimum norm value is 1 for all nonzero integers.
Clearly then, + 1 are the units of Z. ' ' o

b) For F[z] with N(f) = deg(f), the minimum norm value is 0 for all nonzero f. Hence F[z]* =
.

¢) For Z[/=2] with N(a+bv/~2) = a*+2b%, the minimum norm value is 1 for all nonzero elements
in Z[+/=2]. Hence the units of Z[/—2] are £ 1.

d) For Z[+/14] with N(a + by/14) = |a® — 14b?|, the minimum norm value is 1 for all nonzero
elements in Z[v/14]. It is easy to see that 15 + 4 /14 is the principal unit. Thus every unit in
Z[/14] can be written as +(15 + 41/14)* for some integer n. Next, suppose @ = a + b1/14 has
la2 — 148%] = 1. Is @ a unit? That is, can & be written as +(15 + 4v/14)"? Yes. For if 1 =
N(a) = |oal, then clearly a is a unit. Hence Proposition 7 is true for Z[/14]; a 2-stage Euclidean
Domain.
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e) ExXAMPLE 13 shows that Proposition 7 is false, in general, for k-stage Euclidean Domains
(k> 2).

3. Tee MINIMUM EucLIDEAN NORM

We now outline a significant result obtained by Th. Motzkin [4] which provides a necessary and
sufficient condition for an integral domain to be a Euclidean Domain. From among the different
possible Euclidean Norms on a Euclidean Domain the minimum norm is constructed. The minimum
norm will be precisely defined shortly. Additionally, we will show that the semi multiplicative
property of a Euclidean Norm is not a necessary condition for the construction of the minimum
norm. In section 4 we will see how Motzkin’s construction can be adapted to any k-stage Euclidean
Domain k& > 2. Two definitions, critical to the remainder of the paper, are given next.

Definition 9. A subset P C D* is called a product ideal if PD* C P.
" Note that since 0 is not in P, then P is not an ideal.

Definition 10. For any subset $ C D,5' = {b€ S| Ja € D with a + 6D C S} is called the
derived set of S.

Proposition 8. If P is a product ideal, then P' is a product ideal.

PROOF. If P is a product ideal, then PD* C P. Take any b € P’ and any ¢ € D*. It follows that
bg € P and there is an element a € D with a+ D C P. Hence (a+bD)g C P since P is a product
ideal. Moreover (a + bD)q = ag + bgD = ¢+ bgD C P. Thus P’ is a product ideal. [

Proposition 9. If §; C S,, then S; C 5).
PROOF. Suppose S; C S, and any take b € S;. Then there is an element a € D with a + 0D C
S;CSyanda+bDC S5, CS,y. Hencebe S5, O

Proposition 10. Let N be a semi multiplicative norm on D. Then P, = {b€ D* | N(b) > i} is a
product ideal fort =0,1,---

PROOF. We must show that P,D* C P;. Take any b € P; and any ¢ € D*. Then N(b) = ¢ and since
N is semi multiplicative, N(bg) > N(b) > i. Hence bg € P;. Note: If N is not semi multiplicative,
then P; need not be a product ideal. O

The next proposition is the key to Motzkin’s construction. Its proof is by contradiction which,
unfortunately, serves to disguise the idea behind the construction of the minimum norm.

Proposition 11. Let (D,+,-,N) be a Euclidean Domain and P; = {b € D* | N(b) > i}. Then
P, C Py,

PROOF. Take any b € P’. Then N(b) > i and there is an element a € D with a+bD C P,. Suppose
that N(b) = 4. Since b # 0 we apply the N-Division Algorithm to the pair a,b to get a +bg = r
and either r = 0 or N(r) < ¢. But r € a4+ bD C P, and so r # 0 and N(r) > ¢; a contradiction.
Hence N (b) > i+ 1 which shows that b€ Fy,. O

Proposition 12. Let D* = P, O P, D P, D --- be a sequence of product ideals with N;P; = ]
and P! C P,y,. Let N be the norm on D given by N(b) = i for all b in P\ Py, (with this norm,
P, ={be D*| N(b) > i}). Then (D,+,-,N) is a Euclidean Domain, and N is semi multiplicative.
PROOF. i) Take any pair a,b in D with b # 0, b { a, and suppose that N(b) = :. We must show
there exists elements g, € D with a+bg = r and N(r) < i. Equivalently we can show a+b6D € F,.
Now if a + bD C P;, then b € P! C Piy1, and so N(b) > i + 1; a contradiction. Hence a +bD Z P;.
ii) Next we must show that N(ab) > N(a) for all nonzero a and b. Take any a,b € D* and suppose
that N(a) = i. Then a € P;, and since P; is a product ideal, ab € P;. Hence N(ab) > 7 which
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shows that NV is semi multiplicative. Note: If the sets of the sequence (P;) are not product ideals,
then N need not be semi multiplicative. O

Conversely we have

Proposition 13. Let (D,+,-,N) be a Euclidean Domain and let N be semi multiplicative. Then
there is a sequence (P;) of product ideals in D with P; = {b € D* | N(b) > i} satisfying: D* =
PB2P2DP2---,;P =0, and P} C Py,.

PROOF. Suppose there is a nonzero element b in D with b € N;B;. Since D is Euclidean for
N,N(b) = k for some natural number k. Since b € N;P;, then b € P, which shows that
N(b) > k+1; acontradiction. Hence N; P; = §. The remainder of the proof follows from Propositions
10 and 11 and the obvious fact that P; O P,;;. Note: If N is not semi multiplicative, then (P;)
need not be a sequence of product ideals. [

In conclusion, there exists a 1-1 correspondence between Euclidean Norms on D and sequences
of this kind. Each such sequence defines a Euclidean Norm and any Euclidean Norm generates a

corresponding sequence.
We now have the machinery for comparing the “size” of Euclidean Norms on D.

Definition 11. Let (P;) and (B;) be the sequences (as discussed in Propositions 12 and 13) in D
associated with the Euclidean Norms N and W, respectively. If P, C P; for all 1, we say that NV is
smaller than N;. Let (P,) be the sequence associated with the Euclidean Norm 7. We say that 7
is the minimum Euclidean Norm on D if B; C P, for all 7, for all such sequences (B;)in D.

It is easy to see that if there exists a minimum Euclidean Norm on a FEuclidean Domain, then
it is unique. For if 7 and 7’ are both minimum Euclidean Norms on a Euclidean Domain D have
corresponding sequences (F;) and (P/), then P, C P/ C P,. Hence, P, = P/, and so n = 7. The
following intuitive result is immediate.

Proposition 14. Let D be a Euclidean Domain. If N is a smaller Euclidean Norm than N on
D, then N(b) < N(b) for all nonzero elements b in D. In particular, 7(b) < N(b) for all nonzero
elements b in D, for all Fuclidean Norms N on D.

PROOF. Let (P;) and (B;) be the associated sequences for N and N, and take any b € P;\ P, for
some i. Then N(b) = i, and since P, C P; for all i, then N(b) > i. The second assertion follows
from the definition of the minimum Euclidean Norm. O

Where we have used smaller and minimum in the above definition, Motzkin used faster and
fastest, respectively, and commented that under certain additional conditions the N-Euclidean
Algorithm requires fewer algorithm steps than the N-Euclidean Algorithm. This claim is not easily
justified, however, and consequently we will choose not to subscribe to his nomenclature.

We now show the existence of the minimum Fuclidean Norm. Motzkin assumed the semi mul-
tiplicative property in the next proposition. We now prove the desired result without the semi
multiplicative assumption.

Proposition 15. Let D be an integral domain. Construct inductively the following sequence. Let
Dy = D* and D;,; = D; so that (D;) = (Do, Dy, Dy,---). Then D is a Euclidean Domain if and
only if N;D; = 0. In which case, the norm 7 given by n(b) = i for all b in D;\D;,, is the minimum
Euclidean Norm on D, and n is semi multiplicative.

PROOF. Note first that D, is a product ideal, so by Proposition 8, each D; is a product ideal.
Secondly, since D; D D, then Dy D Dy D Dy 2 --- . Now suppose D is Euclidean for some norm
N. Then N defines an associated sequence (P;) of sets as described in Proposition 13. We claim
that D; C P, for all . Now Dy = P,, so by Propositions 9 and 11, D; C P; C P,. Similarly,
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whenever D; C F,, it follows that D;,; C P/ C P;;;. By induction on ¢ we conclude that D; C P;
for all ¢. Since N;P; = 0, then clearly N;D; = 0. Conversely, if N; D; = (), then by Proposition 12,
(D;) defines a semi multiplicative Euclidean Norm 7 on D given by n(b) = i for all b € D;\D;,;.
Since D; C P; for all i for the sequence (]_3;) associated with any Euclidean Norm N, then 7 is the
minimum FEuclidean Norm on D. O ;

The following significant result is immediate.
Corollary. Every Fuclidean Domain has a semi multiplicative Euclidean Norm.

Let (D;) be the sequence defined in Proposition 15. Take b € D;, and a,q € D. We then have:
bg D! <= forall a,a+bD ¢ D; <= for all a, there exists a g with c=a+bg ¢ D; < for
all ¢ there exists a ¢ € D; with ¢ — a € bD <= for all a there exists a ¢ ¢ D; with a = ¢ mod
bD <= ¢ : Df — D/bD is a surjective mapping given by ¢(a) = a + bD <= D/bD admits
a complete residue system (CRS) of left coset representatives in Df. Hence D;\D;;; = {b € D; |
D/bD admits a CRS in D¢}. These equivalent statements immediately give our next proposition.

Proposition 16. Dy\D; = D*
PROOF. Dy = D*, so Dy\D; = {b € D* | D/bD has exactly one left coset} = {b € D* | bD = D}.
Since (u) = uD = D if and only if u is a unit, then Do\D; = D*. O

Corollary. Let n be the minimum FEuclidean Norm on a Euclidean Domain D. Then n(u) =0 if
and only if u is a unit.
PROOF. By definition, n(u) = 0 if and only if v € Do\D; = D*.

EXAMPLE 9. a) Z* = {#1} and for the usual norm N given by N(n) = |n|, N(£1) = 1. Therefore
N cannot be the minimum Fuclidean Norm on Z.

b) Z[i* = {£1,+i} and Z[v/=2]* = {£1}. For the norm N given by N(a) = aa, N(u) = 1 for
“qu = +1,+4i. Therefore N cannot be the minimum FEuclidean Norm on either of these Euclidean
Domains.

Next we construct the minimum Euclidean Norm 7 on Z and on Ffz].

EXAMPLE 10. Let D = Z. Then Dy = Z* and Dy\D; = {£1}, which shows that D, = D\{0,+1}.
Next, D;\D; = {b € D, | D/bD has a CRS in D{}. Clearly {0,%1} contains representatives only
for Z /2% and Z /3%, so D;\D; = {£2,+3}. This shows that D, = D\{0,£1,£2,+£3}. Similarly,
D,\D3 = {b € Dy | D/bD has a CRS in D5} = {£4,+5,+6,£7}. By induction on ¢ we conclude
that D;\D;,, = {b € Z | 2 < |b] < 2¢*'}. Hence n(b) = 1 if and only if 2! < [b] < 2'*! if and only
if i < logy|b] < i+ 1. So n(b) = | logz|b|] = the number of digits in the base 2 representation of b.

Some important comments are now in order. Let N be the usual Euclidean Norm on Z, i.e.
N(n) = |n|. Take any pair a,b in Z with b # 0. For this norm, the proof of the V-Division
Algorithm shows that to obtain a quotient and a remainder we simply “divide” a by b. To obtain
a gcd of a and b we apply this procedure iteratively in the N-Euclidean Algorithm. When this
scheme is employed in the n-Euclidean Algorithm, a quotient and a remainder is obtained at each
step as well. In fact, the quotients and remainders obtained from the n-Euclidean Algorithm are
simply the binary representations of the quotients and remainders obtained at the corresponding
steps in the N-Euclidean Algorithm. As a result, although n(n) < N(n) for all nonzero integers =,
the number of Euclidean Algorithm steps required to obtain a ged of a and b is the same for both
1 and N. Consequently, for this scheme of choosing quotients and remainders, 7 is the minimum
norm but not the “fastest” norm.

However, if quotients and remainders are chosen differently, 7 may in fact be “faster” than N (or
vise versa). This reveals a noteworthy point about Motzkin’s construction; while it is constructive,
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it is not instructive. That is, Proposition 15 shows how to construct the minimum Euclidean Norm
on a Euclidean Domain but it in no way instructs how the minimum norm can be used in the
Euclidean Algorithm to obtain gcds. Thus in Z, the above method for obtaining quotients and
remainders may not be the “fastest” method to obtain a gcd using the n-Euclidean Algorithm.
This discussion underscores our decision to avoid the terms faster and fastest when comparing
Euclidean Norms.

ExaMPLE 11. Let D = F[z] for any field F. Here we construct the sequence (D;), and hence
the minimum Euclidean Norm 7, directly. It is easily seen that Dy = F[z]* and D; = Do\ F* =
{f | deg(f) > 1}. Next, D, = {f € D, | 3g € F[z] with g+ (f) C D;}. Take f,g € F[z] with
deg(f) = 1. The Division Algorithm (for N(f) = deg(f)) gives g + fg = 0 or deg(g + fq) < 1;
neither of these possible remainders is in D;. Hence polynomials of degree 1 are not in D5, and
so Dy C {f | deg(f) > 2}. Now suppose deg(f) > 2. Then every polynomial in (f) = {fq |
g € F[z]} is either the zero polynomial or has degree > 2. Hence for any polynomial g of degree
1, g+ (f) € D;. This shows that {f | deg(f) > 2} C D,, and so D, = {f | deg(f) > 2}. By
induction on deg(f) it follows that D; = {f | deg(f) > ¢} and N;D; = 0. Moreover, n(f) = 1 for all
f € D\D;;; = {f | deg(f) = i}, which shows that 7 is the usual degree function on F[z]. .

ExampLE 12. When Motzkin’s construction is applied to the Euclidean Domain D = Z[:], the
minimum norm 7 is difficult to compute. In particular, Dy = Z[i]* (note that |[DE| = 1) and
Do\D; = {£1,+i}. Thus D; = Z[i]\{0, £1, 4}, which is the set of all lattice points on or inside
the circle centered at the origin having radius +/1. Note that |[D¢| = 5. A calculation shows that
D, ={B € D, |3ac Z[i] with a+ BZ[i] C D1} = Z[{]\{0,£1, +i,+2, 42, +1 + 2i, +2 + 4}, which
implies that D3 is the set of all lattice points on or inside the circle centered at the origin having
radius /5. Note that |D§| = 21. One further calculation shows that DS consists of all the lattice
points on or inside the circle centered at the origin having radius +/21. The obvious conjecture is
that B¢ is the set of all the lattice points on or inside the circle centered at the origin having radius

|Dg_;|. The first five such cardnalities are 1, 5, 21, 69, and 221. Furthermore, since we know that

Z[7] is Euclidean, then N;D; = §. However, a formula has not yet been found for calculating the
number of lattice points inside a circle centered at the origin having an arbitrary radius. This is
an unsolved problem proposed by Gauss. As a result, an explicit formula for D; cannot be found
and hence the minimum norm 7 cannot be constructed. The structure of 5 for Z[v/~2] appears to
be equally difficult. In Z[v/=2], Samuel [1] found the cardnalities of D{ for i = 1,2, ---, 9 to be:
1, 3,9, 21, 35, 61, 99, 153, 227, and 327.

4. THE MINIMUM k-STAGE EUCLIDEAN NORM

We now follow the lead of Motzkin and derive a constructive criterion for an integral domain to
be a 2-stage Euclidean Domain. Motkin’s construction for Euclidean Domains is used as a template
for the 2-stage construction which follows. From this construction the minimum 2-stage Euclidean
Norm is determined. We then show how this criterion can be extended to k-stage Euclidean
Domains for any natural number .

For a Euclidean Domain (D, +,-, N) and the product ideal P; = {b € D* | N(b) > i}, Motzkin
embeds the N-Division Algorithm (Definition 5) into the derived set P! = {b € P; | 3a € D with
a+ bD C P;}. In Proposition 11, the key to Motzkin’s construction, we showed by contradiction
that P/ C P,y;. We now would like to develop a similar relationship for a 2-stage Fuclidean Domain.
By definition, any Euclidean Domain is a 2-stage Euclidean Domain, so any necessary and sufficient
condition for an integral domain D to be a 2-stage Fuclidean Domain must also hold in case D is
Euclidean. Recall that D is a 2-stage Euclidean Domain if there is a norm N on D such that for
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each a,b pair in D with b # 0, either i) there exists elements ¢, € D with a + bg = 7 and either
r=0or N(r) < N(b), or ii) there exists elements ¢, ¢z, 71,72 € D with a + bg; + 71, b+ 711z =79
and either 75 = 0 or N(7;) < N(b). In developing an analogous construction for 2-stage Euclidean
Domains we seek to “extend” Motzkin’s construction to include condition ii). For any set S, the
result that follows centers around a new double derived set S@) C §’, which unravels the 2-stage
Division Algorithm in much the same manner that S’ unravels the (1-stage) Division Algorithm.

The principal definition in this section therefore is

Definition 12. For any subset § C D,5®) = {b € S| da € D with a+bD C §, b+(a+bD)D Cc S}
is called the double derived setof §.

With the double derived set we may now prove 2-stage results analogous to Motzkin’s 1-stage
construction.

Proposition 8. If P is a product ideal, then P is a product ideal.

PROOF. If P is a product ideal, PD* C P. Take any b € P® and any g € D*. It follows that bg € P
and there is an element a € D with a+bD C P and b+(a+bD)D C P. Hence (a+bD)g C P since P
is a product ideal, and (a+bD)g = ag+bgD C P. Similarly, (b+(a+bD)D)q = bg+(ag+bgD)D C C P.
- Thus P® is a product ideal. O

Proposition 9. If §; C 5,, then S§2) - ng).
PROOF. Suppose S; C 57 and take any b € 5; (2) Then there is an element a € D with a + 6D -
5, C Sy and b+ (a+bD)D C S; C S,. Hence e §2. O

We prove the next proposition by contradiction, just as Proposition 11 was proven.

Proposition 11'. Let (D,+,-,N) be a 2-stage Euclidean Domain and P; = {b € D* | N(b) > i}.
Then Pi(z) C P.,.

PROOF. Take any b € P®. Then N(b) > i and there is an element a € D with a + bD C P
and b+ (a + bD)D C P.. Suppose that N(b) = i. Since b # 0 we apply the 2-stage N-Division
Algorithm to the pair a,b to get either i) there exists elements g, € D with a + bg = r and either
7 =0 or N(r) < N(b), or ii) there exists elements gi,ga,71,72 € D with @ + bg;.= 11, b+ 71gs = 75
and either 7, = 0 or N(ry) < i. If i) is true, note that r = a + bg € a + 0D C P,. It follows
that 7 # 0 and N(r) > ¢; a contradiction. If i) is true, note that r; = a + bg; € a + bD and ~
9 =b+ 7192 € b+ (a+bD)D C P;. 1t follows that ro # 0 and N(rp) > ¢; a contradiction. Hence
N(b) > 7, which shows that b € P;y;. O

Proposition 12'. Let D* = P, D P, D P, D --- be a sequence of product ideals with N; P; = (
and PZ-(Q) C P,. Let N be the norm on D given by N(b) =1 for all b in P\ P,y (with this norm,
P, ={be D*| N®b) > i}). Then (D,+,-,N) is a 2-stage Euclidean Domain, and N is semi
multiplicative.

PROOF. i) Take any pair a,b in D with b # 0, b { a, and suppose that N(b) = i. We must show
either (1) there exists elements g, € D with a + bg = r and N(r) < i, or (2) there exists elements
¢1,G2,71,72 € D with a + bg = r, b + r1g; = 79, and either r, = 0 or N(r3) < i. Equivalently we
can show (1) a4+ bD € P;,or (2) a+bD C P, and b+ (a +b6D)D € P;. Nowif a+bD ¢ P;, then
there exists elements ¢,7 € D with a + bqg = r € Pf, which shows that N(r) < i. On the other
hand, if a + 8D C P,, suppose that b+ (a+bD)D C P,. Then b € P,( ), and by hypothesis b € P,
which shows that N(b) > i+ 1; a_contradiction. Hence b+ (a + bD)D ¢ P;. ii) Next, we must
show that N (ab) > N(a) for all nonzero a and b. Take any a,b € D* and suppose that N(a) = i.
Then a € P;, and since P; is a product ideal, ab € P,. Hence N(ab) > ¢, which shows that N is
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semi multiplicative. Note: If the sets of the sequence (P) are not product ideals, then N need not
be semi multiplicative. O

Conversely we have

Proposition 13'. Let (D,+,:,N) be a 2-stage Euclidean Domain and let N be semi multiplicative.
Then there is a sequence (P;) of product ideals in D with P, = {b € D* | N(b) > i} satisfying:
D*=P 2P 2P 2, NP =0, and P C Py,.

PROOF. This proposition follows directly from Proposition 13, 10’,11’. O

In conclusion, as with Euclidean Domains, there is a 1-1 correspondence between 2-stage Eu-
clidean Norms and sequences of this kind. Each such sequence defines a 2-stage Euclidean Norm
and any 2-stage Euclidean Norm generates a corresponding sequence. Consequently, the definitions
of a smaller 2-stage Euclidean Norm and the minimum 2-stage Euclidean Norm are the same as
for Euclidean Norms. Moreover, if N is a smaller 2-stage Euclidean Norm than N on D, then
N(b) < N(b) for all nonzero b. Additionally, if a 2-stage Fuclidean Domain has a minimum 2-stage
Euclidean Norm, then it is unique.

We now show the existence of the minimum 2-stage Euclidean Norm. The desired result for
2-stage Euclidean Domains is

- Proposition 15’. Let D be an integral domain. Construct inductively the following sequence. Let
Do = D* and D;y, = D® so that (D;) = (Do, D@, D@ . -+). Then D is a 2-stage Euclidean
Domain if and only if N;D; = 0. In which case, the norm 1 given by n(b) =1 for all b in D;\D;y,
s the 'minimum 2-stage Fuclidean Norm on D, and 1 is semi multiplicative.

PROOF. The proof follows directly from Propositions 8',9’,12/,13’ and is nearly identical to the
proof given for Proposition 15.

From this construction we readily see that analogous results hold for k-stage Euclidean Domains
for any natural number k. For example if (D,+,-,N)is a 3-stage Euclidean Domain, the 3-
stage Euclidean Algorithm says that for each a,b pair in D with b # 0, either i) there exists
elements ¢,r € D with a + bg = r and either »r = 0 or N(r) < N(b), or ii) there exists elements
G1,92,71,72 € D with a 4 bg; = 71,0+ 7195 = 75 and either 7, = 0 or N(rz) < N(b), or iii) there
exists elements ¢/,q¢",¢",v',7",»" € D with a+b¢' = 1,0+ r'¢" = ", + r"¢"" = ", and either
" = 0 or N(r") < N(b). Hence for P;, the triple derived set is Pz(s) ={b€ P, |3a € D with
a+bD C P,b+(a+bD)DC P, (a+bD)+ (b+(a+bD)D)D C B;}. In particular, the following
corollary easily follows.

Corollary. Every k-stage Euclidean Domain (k > 1) has a unique minimum k-stage Fuclidean
Norm. Moreover, every k-stage Fuclidean Domain has a semi multiplicative k-stage Euclidean
Norm.

Note further that if we define inductively the kth derived set D) of D; we have the following
inclusions :
D> D® > ... o Dp® o ...

= z = = 7 =

which shows that if 7 is the minimum k-stage Euclidean Norm on D then for any j > &, 7x(b) >
n;(b) for all b. Theses ideas are illustrated in our final example.

ExaMPLE 13. Since D = Z is Euclidean, then D is 2-stage Euclidean. Hence N;D; = ) where
(D;) is the 2-stage sequence constructed in Proposition 15’. In particular, Dy = Z* and D; =
D = {b e Z|3a € Z with a+bZ C Z*,b+ (a + bZ)Z C Z*}. A computation reveals
that D; = Z\{0,£1,+2,4+3,+4,+6}. Thus n:(n) = 0 if and only if » = +1,+2,43,+4, 16,
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whereas 7;(n) = 0 if and only if n = £1. Additionally, 5;(n) > 0 for |n| > 1. Note further that
72(6) = 12(2-3) = 72(2) but neither 2 nor 3 is a unit in Z. This shows that the converse of
Proposition 6 ii) is not true in a general k-stage Euclidean Domain. That is, in a general k-stage
Euclidean Domain, neither N(u) = N(1) nor N(au) = N(a) implies that  is a unit. Furthermore,
N(u) =0 if and only if » is a unit is not true in the general k-stage setting.

There are a multitude of unanswered problems concerning k-stage Euclidean Domains. The
following are of immediate importance: i) find a 2-stage Euclidean Domain which is not a Euclidean
Domain for any norm, and ii) find a 2-stage Euclidean Domain which is not a PID (necessarily not
Noetherian). Cooke [3] comments that he “does not know of an w-stage Euclidean Domain which
is not a 2-stage Euclidean Domain”. This raises an important question; does there exist a k-stage

Euclidean Domain for £ > 37
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