The Complexity of Computing Fibonacci Numbers

John Karro
August 25, 1993

Abstract

This paper examines the time and space required to recognize and generate Fi-
bonacci numbers. We show that the Fibonacci numbers are a deterministic context-
sensitive language and prove that they are not context-free. We show that the gen-
eration of Fibonacci numbers cannot be accomplished by a finite state or push-down
automaton, and that any algorithm generating the nth Fibonacci number f, will re-
quire at least log, f, bits of memory. We discuss the possibility of time-space tradeoff
on such algorithms, and the possibility of an algorithm to generate them in linear time.

Introduction:
Most readers are familiar with the Fibonacci numbers, the sequence of numbers generated
by the difference equation:

fori=fot faor fo=0 fi=1

In the paper of Cull and Holloway [2], several alternative algorithms for computing the nth
Fibonacci number, f,, are presented, along with the time each algorithm takes to compute
fn (as measured by the number of bit operations). Based on this work, Babb[1] was able to
find a new sequence of algorithms to compute these numbers, the limit of which will compute
it in the least bit operations of any known algorithm. However, the number of bit operations
is still no better than O(nlognloglogn). Is there an algorithm which will compute the nth
Fibonacci number in O(n) bit operations? '

The purpose of this research was to prove any one of three objectives. Ideally we would
have liked to find an algorithm that would compute f, in linear time. Alternatively, we
would have been quite happy to prove that no such algorithm exists, and to find the actual
lower bound. Last of all, it would have been nice to show that there is a time-space tradeoff
on such algorithms, and find a reasonable lower bound on that tradeoff. None of these
objectives were actually accomplished; the following paper discusses the methods we used
in trying to prove these results, and presents some small results that may help in eventually
achieving any of our original objectives.

Notation and background results:
- The notation used in this paper will be standard number theory and automata notation.
fn will be the nth Fibonacci number. For integers a, b, and ¢: a | b indicates that a divides

1

b, (a,b) is the greatest common divisor of ¢ and b, and a = b (mod c) means ¢ | (a —b). If v
is any string of characters, then |v| is the length of the string and v* is the string formed by

the concatenation of ¢ copies of v.
Several identities and theorems about Fibonacci numbers are used in our results, so we

will present them now. For the proofs consult [7].

Identities:
. _ A AT
fo= 7 (1)
where
o= LEVE g =1V
2 2
fn+k = fn—lfk + fnfk-i—l (2)
f2'n. = fn(fn—l + fn+1) (3)

Theorem 1 a | b implies f, | fo, and for a # 2 f, | fo implies a | b.

Theorem 2 (fs, f5) = flap)

Theorem 3 Given any integer m, there exists an integer n such that 0 < n < m? and

Space requirements for the recognition of Fibonacci numbers:

The first resulted we wanted was to find a bound on the space needed to recognize
Fibonacci numbers. Obviously, given a number m, we can determine if m is a Fibonacci
number simply by calculating all Fibonacci numbers up to m, and comparing m to the
largest of these. If n is the greatest integer such that f, < m, and the calculations are
done in base b, it takes no more than log, f, space to hold any needed Fibonacci number
in memory, and we need never hold more than two Fibonacci numbers in memory at once.
So we can certainly classify m in 2log; (fr) = 2nlog, Ao space, and thus the space needed is
no more than O(n). Our next theorem employs the Pumping Lemma and Ogden’s Lemma
from [4] to give a lower bound on the space required.

Theorem 4 There are no ﬁnz’te state or push-down automata that can recognize Fibonacci

Numbers.

Proof: Assume there is such an automaton. Let b be the input base, n; denote the constant
from the Pumping Lemma for CFLs, n, denote the constant from Ogden’s Lemma, and

n = ny + nNa.

For b=1: Let a = ny + 7, and it follows that @ < f,_; < f,. Let z =1/e. Then n; < a <
f. = ||, so we can apply the Pumping Lemma and get strings u, v, w, z, and y such that
0 < |v| + |z| < ni, luvwzy| = f,, and |uvwz?y| is also a Fibonacci Number. But:

2

fo = luwwwzy] < [uvtwzy| < fo+m < fata < fo+ foe1 = fart

Thus f, < |uv?wz?y| < fa41, so |uv?wz?y| is not a Fibonacci Number, and we have a
contradiction.

For b > 1: By Theorem 3 we can choose some k; such that 8" | fi,, so the n right-most bits
of the string representing fi, in will all be zeroes. Then we can apply the Pumping Lemma
to fn, and find binary numbers u, v, w, z and y such that for any 7 > 0, the binary number
uv'wz'y is a Fibonacci Number (and equal to f, if 7 = 1). From this we create an increasing
sequence of integers k; such that for all ¢ > 0:

fr, = uv'waty = ubeH bl gl) gl gl L bl

whilzl+lvl a:b[yl(l AL b(i_l)lfl) +y (4)

Apply Ogden‘s Lemma by “marking” the n, right-most digits of fi,. That Lemma then
assures us that at least one bit of the string vwz is marked, which in turn implies the right-
most bit of z is marked. Then the Pumping Lemma for push-down automata assures us that
the string vwz is no longer than n;, which implies the the left-most bit of vwz extends no
farther left than the (n — 1)th bit from the right end. Since 8™ | f,,, these bits must all be
zero,'so v = w =z = y = 0, and we can rewrite (4) as

Fo, = uiH Ikl 0 004 0 = pleIHel (Db G-Dlsktlly — g+l £, (5)

If Wegfznow substitute (1) into (5) we get:
)\(I);i _ /\icz — b(lv|+lx|)()\§i—1 _)‘Ilﬁ_l)a

which reduces to:

)\gi—l (/\gi—ki_l _ b(lv[+|x|)) — /\11‘71‘—1 ()\fi—ki—l _ b(|'u|+|:c|)) (6)

k; is an increasing sequence of integers, |Ag| > 1, and |A1] < 1. Thus as ¢ goes to infinity, the
right side of (6) converges to zero and Ag=t diverges, hence we eventually have Ao ™%

bl*Hlel - This means there exists a constant k such that, for large enough i, k; — k;_; = k,
and we get.

plll+l=l) — 2=
plPHHEDNE = (Xodq)* = (—1)* (7)
However:

AE = pllol+lzl) =

)\IS _)\Ilc B plvl+l=l) _ /\71‘5
Vs V5
Bllvl+l=l) _ \E
fi=———2
V5

Since b, ||, and |y| are all rational and /5 is irrational, (7) implies that A¥ is rational, and
(8) implies it is irrational, thus giving us our contradiction. O

=

(8)

Space requirements for the generation of Fibonacci numbers:

In the same way that we wanted bounds on space needed to recognize Fibonacci numbers,
it would also be nice to have bounds on space requirements for generating them. We can use
the same method as before to show that the required space is no more than O(n), and we
will now present a theorem similar to the last to give a lower bound on the space required.
However, in order to do this, we need to first prove four lemmas.

Lemma 1 There is no deterministic finite state or push-down automaton that, given an
input n in base b > 1, can give f, as an output.

Proof: As there are only a finite amount of states, there are only a finite amount of possible
inputs to the stack as the automaton changes state. Let s be the largest number of elements
that can be added to the stack at any given movement. If the initial height of the stack is
¢, then the height of the stack after the last input can be no greater than ¢ + slog,n.

At the point the input halts, the automaton will be in a specific state and have a specific
element at the top of the stack, and this will determine exactly what output the automaton
will give from that point until that element of the stack is removed. As there are a finite
number of possible elements on the stack and a finite number of states, one state in combi-
nation with one element must produce a longest such output of length ;. Thus, when the
input terminates, the automaton will produce no more than c+ slog, n strings of input, none
of which will be longer than [;. Let [, designate the length of the longest output produced
when the automaton moves from one state to another. Then we know the upper bound for
the length of the input is l;log, n + l1(c + slog, n) = ¢1 + c2(log, n) for some constants ¢,
Co- However the length of the output needed is either f,, if the output is in base 1, or
log fr, = log(2852L \/- L) = log(f(l - —1—) > ¢} + chn. Thus, for sufficiently large n, the 1ength
of the output that it should produce will be larger than the length of output the automaton
can produce, and thus the machine cannot work.

Lemma 2 There is no deterministic finite state or push- down automaton that, given an
input n in base 1, can give an output f, in base 1.

Proof: The proof follows exactly as the proof of Lemma 1. The maximum stack height will
be ¢ + sn, so the maximum length of output will be lon + l1(c + sn) = ¢1 + en, Whlle the
needed length of output will be fn, which is clearly greater for large enough n.

Lemma 3 Any deterministic finite state or push-down automaton that takes a base 1 input
of n and produces an output of f, in base b > 1 can never give more than one significant
digit of output before the input has terminated, and can only give one digit of output if that
digit is the most significant digit of f, and b =2

In order to prove Lemma 3, we will first need to prove three claims.

Claim 1: For any given m, there exists an n > m such that the representations of f, and
fn41 in base b > 1 do not have identical least significant digits.

Assume the converse. Then for alln > m, f, = fay1 = faye (Mmod b)) = b | (fr41 —
fn) = fa1 and b | (fry2 — fat2) = fu = b | (fa-1, fn) = 1, which contradicts our assumption
that &> 1.

Claim 2: For any given integer m, there exists an n > m such that the strings representing
frn and fr41 in base b > 2 do not have the same most significant digit.

Assume the converse. Then for all n > m, f,, fut1, far2 and fri3 all have the same left
most digit ¢, and note that a > 0.
Case 1: The lengths of the strings representing f, and f,41 are the same. Consider their
sum. If we add the digits of the two numbers pairwise to get f,i2, then the sum of the left
most digits of f, and f,41 along with any carry will determine the left most digit of fri2.
It is gésy to show that a carry can never be greater than one, so we must consider the sums
ata and a+a-+1. If these sums are less than b then we have a + a = @, indicating a = 0, or
ata —|— 1 = @, indicating a = —1, neither of which are possible. Thus a+a > b, so the carry
from thls is the most S1gn1ﬁcant digit of f,42. But that carry must be one, which implies
that d = 1. Thus 2 = a 4+ a > b, which contradicts our original assumption.
Case 2: The length of the string representing fn41 is longer than fn. If @ < b— 1 or if
a =5— 1 and there is no carry when adding the second most significant digits, then the
sum of these two numbers, f,.2, will be the same length of f,1, and we can apply case 1 to
show that f,4s does not have a as its most significant digit. If « = b—1 and there is a carry,
then the carry from a + a + 1 will be the most significant digit of f,42. The carry must be
1,s0 a =1 = b= 2, which contradicts or assumption that b > 2.

Claim 3: For any given integer m, there exists an n > m such that the binary strings
representing f, and f,41 do not have the same second most significant digit.

First note that the difference of the lengths of the binary representations of two consec-
utive Fibonacci numbers can never be greater than 1. For if there was such a case, and the
length of the lesser of the two, f,, was [+ 1, then:

fn+1
————-——>2
fn > ol =

2fn < fn+1 = fn +fn—-1 < fn +f'n = an

Now assume the converse of the claim. Then there exists an m such that all Fibonacci
number greater than f,, have the same second most significant digit.

Case 1: The second most significant digit is 1. Then there must be a greatest Fibonacci
number f,, which has 0 as the second most significant digit. Let /41 be the binary length of
fn- Then f, = 2! + 21, where z; < 2!=1_ If the length of f,4; is greater than /, then we know
that frye1 = 241 + 2! + 5, where z; < 21 Then fpiz = 24?4+ z3 where 73 < 21 42071 < 21

which contradicts our assumption that f,.» has a 1 as its second most significant digit. On
the other hand, if f, and f,41 are the same length, then we have that fu,11 = ol 421 4 2,
where z, < 2~ -1 . We then calculate the next two Fibonacci numbers, and get fn4s = 272424,
where z4 < 2! + 271 < 2% s0 we have our contradiction again.

‘Case 2: The second most significant digit is a 0. Then there must be a greatest Fibonacci
number f,, such that the second most significant digit is 1. Let /4 1 be the length of fn,so
that f, = 2!+ 2!"1 4z, where z; < 2!~%. If f,41 is the same length than fn, = 2!+ 25 where
zo < 271, From this we must calculate that fops = 2072 4+ 21 4 25 where z5 < 2! + 271,

which means its second most significant digit is a 1. If f,41 has a longer length than fn,
then fny1 = 2171 + 22 where z; < 2!, Then we can calculate that fr., = 21 +2! + 2171 425
where z3 < 2! + 2!-1. However, in order to insure that f,., does not have a 1 as its second
most significant digit, we need that z3 > > 2!-1. Then we calculate fn43 = 27242/ +2/71 424
where 271 < g, < 2™+ 4 9™l If we write z4 = 27! + y where y < 0 then we have
fogs = 2142 42141 4y which implies y > 241, But then 2! 4 2/~ <2y < 21 4 2l-1,

Proof of Lemma 3: Assume that the first digit the automaton prints is the least significant
digit, and that it prints that digit before the input, n, has terminated. Since all inputs larger
than n will follow the same path, the least mgmﬁca,nt digit for all f,/, n’ > m, will be the
same, which contradicts claim 1.

Now assume that the first digit it outputs is the most significant. By the same argument,
this would imply that all large Fibonacci Numbers have the same most significant digit,
‘which contradicts claim 2 if & > 2. If =2, then the most significant digit will always be
1, but claim 3 shows that the second digit output cannot be fixed, and thus cannot appear
before the input terminates.

Lemma 4 There is no determmzstzc finite state or push-down automaton that, given any
input n in base 1, can give an output f, in base b > 1 without giving more than one digit of
output before the input has terminated.

Consider how such an automaton would work. Since all input is identical in all aspects
except length, if the automaton travels down a given path for an input of n, it will travel
down the same path and create an identical stack for any input m > n up through the length
of n. As there are a finite number of states, it must at some point enter a loop, and will
continue around that loop until it reaches the end of the input. Thus, for sufficiently large
n, the top of the stack will have become a repetitive cycle of elements, which can be made
arbitrarily long.

For any state on the loop, there are an infinite number of n that will cause the automaton
to be at that state when the input terminates. From that point on, only the stack will
determine what states the automaton reaches. As the stack will always be an arbitrarily

large set of cycles down to a certain point, all of these inputs will cause the automaton to
follow identical paths for an arbitrarily large amount of time, and it must therefore go into
another loop for large enough n. Upon reaching the end of the cycles in the stack that were
caused by the initial loop, the automaton will the follow a specific path of a set length,
dependent at this point on the state it is in.

By Theorem 3 there are an infinite amount of Fibonacci Numbers that have an arbitrarily
large number of zeroes as their least significant digits in their base b representation. The
only way to produce an arbitrarily large number of zeroes in the output is to have at least
one loop that prints only zeroes, and that must be one of the loops entered after the input
has terminated. We pick an f, as a multiple of ™, m large enough such that the input n
will force the automaton to circle the first loop several times, stop at some state when input
terminates, enter a second path containing the loop that outputs only zeroes, circle that
loop several times, and leave it at some state to follow the remaining part of the path.

Now consider all inputs larger than n that lead down the identical path, varying only i in
the number of times they circle around each loop. The original n, say n;, will give an output
of fn,. The next n will differ only in that it has gone around the first loop a few extra times,
which does not produce any output, and then has gone around the second loop a constant
number of times, thus adding a constant number ¢ of zeroes and giving an output of 6°f,, .

In general:

fni+1 = bcfn; s

and from there we can a drive a contradiction identical to the last part of the proof of
Theorem 4.

a theorem giving us a lower bound on the space required to generate Fibonacci numbers
follows directly from the four lemmas just presented.

Theorem 5 There is no deterministic finite state or push-down automaton that can take
any number n as input and produce the nth Fibonacci Number, f,.

The proof of Theorem 5 actually tells us a little more than what the theorem states. The
problem the machine runs into in any case other then a base 1 input and base > 1 output is
that for large enough n, the machine cannot count how many bits are in 7, and thus does
not know when to terminate. From this we can conclude that not only does the machine
need random access memory, but it needs at least logn memory to count the bits in f,.

Conjectured generalities of Theorems 4 and 5:

While theorems 4 and 5 give us lower bounds on the space need for the recognition and
generation of Fibonacci numbers, it would be nice to generalize these theorems to a broader
range of difference equations. The final contradiction reached in both the recognition and
generation problems was that the Fibonacci relation has characteristic roots which are not
rational powers of any integer. This leads us to our conjecture:

Conjecture 1 Let g, be any difference equation such that g, = Sk ign_i. A finite state
or push-down automaton that identifies a base b input as a member of that sequence, or a

7

determanistic finite state or push-down automaton that generates g, in base b, cannot ezist
if b is not a rational power of any of the characteristic roots of the relation.

In the case of Fibonacci numbers, there are two properties we used which we cannot
assume in other difference equations. First, Theorem 3 allows us to “zero out” the right
most bits of the Fibonacci numbers, thus allowing us to use the Pumping Lemma to show
that there is a sequence of Fibonacci numbers that are constant multiples of each other. The
second property is that in the closed-form expression for generating Fibonacci numbers, the
coefficients of the characteristic roots have the same absolute value, and thus drop out in

the algebraic manipulation.

Another case of the conjecture which we were able to prove for & = 2 was the relation:
gn = 3gn_1, go = 1 (whose solution is the sequence of powers of three). This recurrence
relation has the same two properties that make the Fibonacci numbers manageable. Since
there is only one root, we know that all coeflicients of the roots have the same absolute value.

As for zeroing out the low order bits, the following lemma helps.
Lemma 5 Forn >1, 32" = 1(mod 2"?).

Proof: Induct on n. This is trivial to verify for n = 1, so assume that 32" = 1 (mod 2"*?%),
and assume that 32" % 1(mod 2"*3), hence (327)? # 1(rmod 2"*3). Obviously 3%" #
1 (mod 2™*3), so it must be congruent to 2"*? 4 1. By substituting and expanding this
congruence, we get 1 # (327)2 = 227+ 4273 1 1 (mod 2™*2), and thus 2>"+* # 0 (mod 2"+°).

That is clearly a contradiction. O

Now, in the same way as before, we can prove that the base two powers of three cannot
be recognized in finite space or with a stack.

Theorem 6 There is no finite state or push-down automaton that can recognize powers of

three in base 2.

Proof: Let n; be the constant from the Pumping Lemma, ny be the constant from Ogden’s
Lemma, and 7 = ny + ny. Then choose the number 3%". which has a string of zeroes of
length n + 2. As before, we mark the right most zero, and know that our pumped strings
are now all zeroes. From this we have the relation:

9k = 20(.%:’-1 - 1) +1

for some integer c. By substitution and manipulation we get:
12
T

3k;——kg_1 —9¢c

Since the right side converges to zero as ¢ goes to infinity, we know that for all large enough
i there exists a k such that k; — k;_; = k, and 3* = 2°. Thus 2 is an rational power of 3,

which is clearly not true. O

The proof for the generator would then follow roughly as before.

Time-Space Tradeoffs on Algorithms Computing Fibonacci Numbers:

It was our hope that in researching the various methods of proving time-space tradeoffs for
different algorithms, we would come across something which we could apply to the Fibonacci
algorithms. The most likely candidate seemed to be methods proving tradeoffs for integer
multiplication algorithms.

One of the major papers in proving the tradeoff in multiplication algorithms [5] uses
the Pebble Game to prove the tradeoff. The pebble game has been used in many papers,
with many variations, but the basic idea seems to be the same. Take an algorithm and
represent it with a directed graph. Then consider a set of pebbles, which will represent the
available space. In any given turn, one may put exactly one pebble on either an input node
(a node with in-degree 0), or any node for which all the parent nodes have been pebbled.
One may remove any amount of pebbles at any point without a time cost. The object is
to place a limited number of pebbles on each output node (nodes with out-degree 0) in a
minimum amount of time. (Note that these outputs need only be pebbled once each, and not
simultaneously.) Valiant [6] proved that every graph representing a bilinear multiplication
algorithm contains a sub-graph in the form of an n-superconcentrator, and Tompa used a
pebbling argument to show that the pebbling of any graph containing an n-superconcentrator
sub-graph requires that Time-Space= Q(n?).

: Cled this technique be used to prove a similar time-space tradeoff for the Fibonacci
number algorithms? No, we do not believe so. The pebbling technique used by Valiant
and Tompa is only effective in proving lower bounds when the space to be used is smaller
than the size of the input. But we have already shown that for the Fibonacci numbers, any
generating algorithm must have at least as much space as the size of the input, so in terms
of the pebbling argument we need at least log, n pebbles. Then, if we consider each output
bit as a function of the input bits, we will need log, n moves to pebble the inputs and at
most two moves to pebble each output (one move to pebble it and one move to re-pebble
the inputs). As there are log, f, ~ nlog, Ag outputs, this will take us a total of O(n) moves.
This shows us that Time-Space= Q(nlogn), which we already knew. '

The Bit Patterns of Fibonacci Numbers:

After considering the material on space-time tradeoffs, we came to the conclusion that the
only direction left to us was to look for patterns in the bit representations of the Fibonacci
numbers. Using results proved by J. Holloway [3], it is possible to calculate the low order
bits in linear time. If we were able to find a relation of the high order bits to the low order
bits, it would than become possible to calculate the entire number in linear time.

When we examine the bits of of Fibonacci numbers, one pattern is immediately obvious:
the least significant bit of each number, starting with fy, repeatedly runs through the cycle
011. Holloway was able to extend this to a general theorem concerning the sequence of the
bits. If B; is the sequence of ¢th bits from f, for n from 0 to oo, then:

Theorem 7 (Holloway) The cycle length of the sequence B, is 3 -2".

In the proofs of space bounds, we relied heavily on the fact that for any m, we could find

9

an n such that 2™ | f,. Is it possible to predict where these Fibonacci numbers will occur?
As it turns out, it is quite easy to find them, and to show that for any m > 3, there is an n

such that 2™ | f, but 2™t ff,.

Lemma 6 For anym > 3, n = 3-2™2 is the smallest n such that 2™ | f,. Furthermore,
2m+1 /}/fn

Proof: The Lemma follows from induction on m. If m = 3 then n = 6, and it is trivial to
verify this as the base case. So pick an arbitrary m > 3, and choose the least k£ such that
2™ | f. (Theorem 3 assures us that such a k exists.) The induction assumption will be that
k= 3-2™"2 and that 2" [f;. Then we pick the least n such that 2™*! | f,, and prove the

assertion holds for n.

First, notice that 2™ | fx and 2™ | f = 2™ | (fx, fn) = f(km) = f, since k is the minimal
such Fibonacci number. Thus (n,k) = k, so k | n, and we can write n as kz where z > 1
(since 2™*1 ff). Now if we can show that if 2™+ | fa, then we have n = 2k =3 - 2™,

Assume 2™t [for. We know for = 0(mod 2™) and for # 0 (mod 2™11), hence for =
2™ (mod 2™*1) and we have:

fgk = fk (mod 2m+1). (9)
Using (3) we can rearrange (9) to get:

fe(faer + fer1 — 1) = 0(mod 2™ =
2™(fre1 + frt1 — 1) = 0 (mod 271) =

fit + fra1 = 1(mod 2)

This implies that fi_; and fy41 are of different parity. However, 3 | k implies fj is even, and
fr—1 and fip; are both relatively prime to fi, hence both odd. Thus they are of the same
parity, and we have a contradiction. So we know that 2™+ | for.

Now it only remains to be shown that 22 [f,.. Assume otherwise. Then by applying

(3) we get:
fe(fr=1 + feg1) = 0(mod 2m+2) =
2™ (fre1 + frg1) =0(277%) =

frie1 = — fry1 (mod 4).

Since we have already shown that both terms are odd, it follows that fr_1 Z fin (mod 4).
However, fri1 = f& + fie1 = 0+ fr—1 (mod 4), and this gives us our contradiction. So we

have 2™*2 ff,. O

Lemma 6 gives us the first Fibonacci number divisible by 2™ but not by 2™**. Can we
expand this into a theorem giving the positions of all such Fibonacci numbers?

10

Theorem 8 Let m be any positive integer greater than or equal to 3. Then m is the maz-
imum power of 2 dividing f, if and only if n = 3 - 2™~2; for some positive odd integer i.

Proof:

(<) Let n; = 3-2™72{ = nyi. We prove the assertion by induction on 7. Qur base case, 7 = 1,
follows directly from Lemma 6. So assume the statement is true for ¢, and consider ny,.
Since (n1,niy2) = (N1,in1 + 2n1) = n1, we have 2™ | ny | ni4o. Assume that 2™+ | n;,,. By
applying (2) and (3) we get:

fnz‘+2 = fin1+2n1 = fin1—1f2n1 + fin1f2n1+1 =

fim—lfnl (fn1+1 + fnl—l) + fz’nlf2n1+1 = O (mod 2m+1)

From Lemma 6 we know that f,, = 2™ (mod 2™*!), and by the induction assumption we
know the same for f,;. So now we have:

2mf'i711-—1(fn1+1 + fnl—-l) + 2mf2n1 = O (mOd 2m+1) =

fnli—l (fn1+1 -+ fnl—l) + f2n1+1 =0 (mod 2)

However, since (fn, fa+1) = 1, we know all the terms in the above congruence are odd, so it
reduces to 1 = 0 (mod 2), and we have a contradiction. Thus 2™+ ff,. .

(=) Let £k =3-2™2, and choose some n such that 2™ | f, and 2™*! ff.. By Lemma 6, k
is the minimum such Fibonacci number, so n > k. We know that 2™ | fi and 2™ | f,, so we
have 2™ | (fx, fn) = fikm)- Also, 2 ffix), hence fixn) > fi (since fi is the minimal such
Fibonacci number). Thus k | n, or n = ki = 3 - 2™~?; for some positive integer . Now we
induct on ¢. For z = 1, Lemma 6 shows this works as our base case. Choose any odd 7, and
assume the statement holds for n;. We know the statement holds for ¢ + 2, so we need only
show that it does not hold for i +1. Assume it does. Then f,, s1 = fing4n, = 2™ (mod 2™11),
s0 by (2): fini—1fny + fing frr41 = 2™(mod 2™1) = fini—1 + fa41 = 1(mod 2). This is
clearly not possible, since fi,, -1 and f,,+1 are both odd. O

While these results give some indication of what the low order bits look like at certain n,
allowing us to quickly calculate the low order bits of other Fibonacci numbers, they do not
help much with the high order bits. Another possibility considered was to show that certain
blocks of bits could not occur within a Fibonacci number. For instance, if we look at only
the first two bits of any of these numbers, all four possible values will occur at some point
within the cycle. If we look at the first three bits, all eight possible values will occur except
for four and six. In general, we have:

Conjecture 2 Consider the first n bits of all Fibonacci numbers ranging from fo to faqn-1.
For any integer a such that 0 < a < 2" — 1, at least one of these blocks will be equal to a if

and only if a # 4 (mod 8), a # 6 (mod 8), a # 10 (imod 16), and a # 18 (mod 32).

11

The conjecture is obviously true in one direction, just by checking all the block patterns
that occur from fy to f3..s. We have not proved the other direction, but have tested it up

through n = 14.

Our last approach was to try the same method, but start the block at an arbltrary bit,
not necessarily the first. This got us nowhere; it seems that for any block not including the
least significant bit, every bit pattern that can occur will at some point during the cycle.

Conclusion:

The only solid results that have so far come out of this research are the bounds on
space required to recognize and generate Fibonacci numbers: they are a context sensitive,
but not context free, language that requires at lest O(log n) memory to generate. We also
believe that the standard methods of proving lower bounds on time-space tradeoffs cannot
be applied to the Fibonacci problem; if there is such a tradeoff, then the proof will most
likely require a new method or model. The theorems we proved in looking for bit patterns
may be helpful, but it is not yet obvious in what way. While it seems likely that there is
an underlying pattern in the bits that will allow us to generate Fibonacci numbers in linear
time, we still have no idea what that pattern is.

References

[1] B.J. Babb, Computing Fibonacci Numbers Rapidly (M.S. Paper, Oregon State Univer-
sity, Corvalhs Oregon, 1991)

[2] P. Cull and J.L. Holloway, Computing Fibonacci Numbers Quickly, Inform. Process. Lett. .
32 (1989), 143-149.

[3] J. Holloway, Computing Fibonacci Numbers Quickly, (M.S. Thesis, Oregon State Uni-
versity, Corvallis, Oregon, 1988)

[4] J.E. Hopcraft and J.D. Ullman, Introduction to Automata Theory, Languages, and Com-
putation (Addison-Wesley Publishing ., Menlo Park, California, 1979).

[5] Martin Tompa, Space-Time Tradeoffs for Computing Functions Using Connectivity Prop-
erties of Their Circuits, J. Comput. System Sci. 20 (1980), 118-132.

[6] L.G. Valiant, Graph-Theoretic Properties in Computational Complexity, J. of Comput.
System Sci. 13 (1976), 278-285. :

[7] N.N. Vorvob’ev Fibonacci Numbers, (Blaisdell Publishing Company, New York, 1961).

12

