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Abstract

The topic of this paper is structure systems for the linkages of computer processors to
‘be arranged in parallel. I will explore specifically the common case where the number of
processors in on the order of 2" where n is the dimension of the system.

Dimension: Dimension of a system is the minimum number of bits required to uniq'uely
determine a binary address for each node (or vertez, or computer).

Introduction

This paper will address some of the dynamics of some types of of these linking systems
with the purpose of characterizing what makes a system that works for this type of linking.
I will explore some types of examples of small networks (n = 1,2,3) and the generalized
models proposed by others as efficient (minimal diameter and average distance), and try to
generalize aspects that make these models work.



Diameter: The diamter of a network is the greatest distance between any two vertices within
the system. Diameter = maz {¥ X, Y vertices min {V paths connecting any vertices X and Y'}}

The model we are interested in is a resource preserving variant system of node (vertex)
linkage. That is, a linear system that, using only linear manipulation of three n-by-n matri-
ces, generates a n-dimensional structure of linked nodes. By multiplying the selector matrix
by the address of a node, a binary sequence is yielded. This sequence corresponds to the
columns of the base matrices to be added (mod 2) to the address to give the addresses of

the neighboring nodes.

Network: A collection of nodes (vertices) that may be connected (by edges) to each other.
In this application, the nodes represent computers that should ideally be connected in parallel.
In diagrams, the nodes appear as dots and are differentiated from each other by way of binary
addresses. A network of dimension n has 2" nodes of constant out-degree, n. A network in
this context may be described as the composition of it’s vertices, V, and it’s edges, E as

follows:
V = {Z}" (1)

E={XY):X+Y =5} (2)

such that:
¢ € Zy and § = (AX), for1 < o<,

Directed Connection: A connection between two nodes that allows flow (of information in
the computer model) strictly from one to the other (not the converse). Directed connections
are represented in diagrams as vector arrows between nodes. There is a directed connection
(edge) from address X to address Y if and only if the it column of the base matriz B? equals
the difference (or sum) of the addresses of X and Y where the it* component of the selector
function operating on X is ¢.

Reflexive Connection: A reflezive connection is a connection from a node directly back to
itself. This type of connection is represented in diagrams as a circular vector originating and
terminating at one node. A reflezive connection is formed when a column of a base matriz is
selected and is equal to the zero vector. (X,X) € E is a reflexive connection le firightarrow
the it* column of the B® matriz is uniformly zeros where ¢ = the i** element of AX.

Reciprocal Connection: A reciprocal connection is the union of two oppositely directed
connection between a particular pair of node. This allows information to flow both ways
between the two nodes in the computer model. Reciprocal connections are shown in diagrams
as two-headed vectors connecting pairs of nodes, except in the case of reflezive connections
which must also be reciprocal. There is a reciprocal connection between addresses X and Y
if and only if two opposing directed connections link X and Y. If (X,Y),(Y,X) € E, then

there is a reciprocal connection between X and Y.

Symmetric Connection: A symmetric connection is a reciprocal connection that uses the
same base column to travel both ways between addresses. That is: a symmetric connection




ezists between address X and address Y if and only if the it* component of the product of the
selector matriz on X equals the it* component of the product of the selector matriz on Y.

Redundant Connection: A redundant connection is two or more directed connections run-
ning parallel, originating and terminating at the same nodes. Redundant connections are
shown in diagrams as separate vectors that originate and terminate at the same nodes. Re-
dundant connections occur when two or more identical columns are selected to be used by

one particular address.

Connected Network: A connected network is one that for any pair of nodes, there is at
least one path connecting them.

Base Matrices: Two-by-two binary matrices comprised of columns of numbers which may
be added to an address to yield a second address; if a column from one of the base matrices is
added to an address, this indicates a directed connection from the input address to the node
corresponding to the sum of the address and the column. The base matrices are named B°

and B (B-zero and B-one).

Selector Matrix: A function that takes as its argument a binary n-bit address of a node
and yields an n-bit binary number that indicates which columns from the base matrices should
be added to the address to determine the directed connections from the given address. In this
model, the selector function is in the form of an n-by-n binary matriz by which an address
is multiplied by (the selection matriz on the left, the address on the right). In this paper, the
selector function (matriz will be represented by A.

Distance: The distance between two nodes is defined to be the smallest number of directed

connections that must be followed to travel from one node to the other. That is: the minimal
number of edges of the network that must be used to reach one node from the other.

Diameter: The diameter of the network is the mazimum of all distances between all pairs
of nodes in the network.

In the simplest case, n = 1, implying two vertices. The corresponding addresses then,
would be 0 and 1, and A, B%, and B! are all one-by-one matrices. If:

[B%] = [B] = [0] )

then regardless of what A is, then the zero vector will always be added to the address and
each node would be only connected to itself like this:

Co) Gy

and the same digraph will result if:
[4] = [B°] = [0] (4)



for any (either) B! matrix because the selector matrix (A) would ensure that the B! matrix
could never be selected. Notice that the connections in this digraph are both reflexive and
reciprocal, but the network is not connected. If:

[4] = [1],[B°] = [0],and[B"] = [1], (5)
then the system would look like this:

Co

which is connected (unilaterally), and has a reflexive but no reciprocal connection. In the

remaining case where:

[4] = [B°]=[B'] =[1], (6)
0o

notice that this digram is connected, reciprocal, and has no reflexive or redundant edges.

00 < l 1 00 Xﬂl 00 l 01
11 10 11 10 11

10

These are the three diagrams possible for n = 2 such that all connections are reciprocal
and the system is connected. In the left digram, either

I | R |

for any B! matrix (because the selector matrix precludes any column of the B! matrix from

being used) or: BO—Ble{[l 0} [0 1]} (8)
- 0o 1|°|1 0

for any selector, or: B! shares exactly one column with B?, and the selector function is one
of the four possibilities (out of the sixteen total possible binary 2-by-2 matrices) that permit
only that duplicated column of B! to be selected. For example: If

B°=[(l) é] and Ble{[(l) ‘;(]} 9)
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the following digram results:

f



for some (X,Y) # (1,0), then:

ae{la ][0 o) Lo o)-ool} 10)

or: neither column of B! is identical to B°, in which case

A:[g'g]. (11)

The other two cases (the center and right above) are similar to the first, varying only in the

B° matrix (one column has exactly one 1 in it while the other is comprised of both 1’s) and
accordingly varying selector matrix. For each of these two remaining cases, there is a bijective
transformation between the n = 2 hypercube (a square) and the crossed configurations. This
type of relationship is called a homeomorphism.

. Homeomorphic: Two digraphs are homeomorphic to each other if and only if there is a
bijective continuous linear transformation from one to the other.

Hypercube: An n-dimensional hypercube is a network such that:

E = {(X,Y): X,Ydif fer by ezacly one bit} (12)

Now if connectedness and reciprocality are required, but the prohibition of reflexiveness
is relaxed, then the verticies may be connected in series (as well as above), with selector and
base matrices making each ordering possible.

If connectedness and non-reciprocality are required, but not reciprocality, other possibil-
ities arise; example:

00 o1
10 11

(00 [10].m [10

A_[l OJB“[Ol]B‘“[l 1} (13)

The number of possibilities clearly grows as a function of freedoms allowed.

Notice that in all cases, regardless of the selector matrix, the zero vector (from the address
0 0 0...0) always uses exactly the columns of the B® matrix to determine it’s neighbors; also



notice that these three configurations are homeomorphicto then = 2 hypercube (the square).
You get the idea, I'm sure.

Several models of twisted cube-type structure patterns have been proposed as efficient
and extendable versions for parallel computer linkage. Among them are, The Mébius Cube
(both the ’zero’ and ’one’ versions), by Shawn Larson and Paul Cull, The M-Cube by Nitin
Singhvi and Kanad Ghose, the Twisted N-Cube by P Hilbers, M. Koopman, and J. van
de Snepscheut, and the Crossed Cube by Kemel Efe, and of course the basic hypercube.
These systems can be represented in the resource preserving three-matrix linear system as
follows (the matrices are for the n = 8 case, and the diagrams represent the n = 4 case):
First the regular hypercube that employs, in any combination, exactly the columns of the

n-dimensional identity matrix; the n = 4 diagram is as follows:

The 0-Mobius Cube:
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The 1-Mobius Cube:
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The Twisted N-Cube:



70000000 O] 1000000 0] 10000
10000000 01000000 01000
11000000 00100000 01100
4_|t1100000] 5 [00010000| ,»_ |00010
11110000]|’ 00001000] 00011
11111000 00000100 00000
11111100 00000010 00000
1111111 0] (0000000 1] 00000
(17)

Our purpose is to explore the characteristics of a system like the above examples so that
we may generalize and idealize them. The desireable aspects of these systems in particular
were: connectedness, reciprocality of connections, non-redundantcy, non-reflexiveness and
expandability. In each of the above case, note that both of the base matrices form a basis,
as do three of the four selector matrices.

ulProduct Address: The product address is the n-by-n matriz formed by the composition
of columns from the base matrices according to the product of the selector matriz, A, and

the address, X.

The condition for reflexive connections to exist in the system is for a column of the matrix
formed by the conjuntion of the base matricies as a function of the selector matrix operating
- on the address of any vertex. :

Redundant connections are formed if and only if not all columns of the product address
matrix are unique for some vertex address.

Reciprocal connections may result in two ways. The first, and most simple is the case
of a symmetric connection where the same column from the base matrices is employed for
" E; = (X,Y) and E; = (¥, X). In this case, the i** element of the selector matrix operating
on X, (= AX;) equals the :** element of AY;. This implies:

for X,Y € V such that: (X,Y),(Y,X) € E,and1<4,j<n:

Y = X 4 Bf¥andX =Y + B} (18)
ey ),
= ‘Bi = .B‘7 I : (19)
so for X = 000...0, |
A(BY) .

J

so if the relation is symmetric, then either case a:
e A(B?); or case b:
odj : A(B?)J. = landB} = B]

Satan’s Counterexample
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000 001

100 101
010 011
110 111
00 0 | 000 a § 1
A= ooo}, B° = 011}, B1'=[ﬂ50} (21)
011 101 v ¢ 0

This example (with Greek letters arbitrary) disproves the popular theory that a basis
must be formed by the B® matrix in order that the system be connected with reciprocal

connections.
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