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INTRODUCTION:

Digital topology has been developed to address problems in image
processing, an area of computer science which deals with the analysis and
manipulation of pictures by computers.  The results from digital topology
help provide a sound mathematical basis for image processing operations
such as object counting, boundary detection, data compression and
thinning. Around the late 1960's Rosenfeld and others began to work on
this area from essentially a graph-theoretical point of view. Although
this approach did not lead to a consistent topology due to contradictions
[7], working around the problems still brought many useful results [5, see
bibliography]. In the last couple of years, a consistent topology, which
was published by E. Khalimsky in Russia in 1970, is beginning to be used
and some have approached the same image problems topologically [3, 4, 6].
This paper gives a brief sketch of each approach and the advantages and
disadvantages we discovered in working from these concepts.

GRAPH-THEORETICAL DIGITAL TOPOLOGY:

The graph-theoretical approach begins by defining connectedness out
of adjacency ideas. If x = (a,b) is a point in Z xZ then the points (a £ 1, b)
and (a, b + 1) are 4-adjacent to x . These points and (a1, b 1) are 8-
adjacent to x . The following holds for k = 4 or 8. A k-path from point P
to Q is a sequence of points P= Po, P1, ..., Pn=Q where Pi-1 is k-adjacent
to Pj. Points P and Q are k-connected in a set S if there exists a k-path
from P to Q consisting entirely of points in S. Components are maximal
connected sets. The one infinite component of S (complement of S) is the
background. S is a k-curve iff S is k-connected and every point of S is

k-adjacent to exactly two points in S.
To prove a digital Jordon curve theorem in this context requires the

set, S, and its complement, S, to have different ideas of adjacency.
Usually S is defined as 4-connected, forcing S to be 8-connected. With
these definitions the following can be proved [10, Sect. 2.4]:



Digital Jordon Curve Theorem I: The complement of a curve y has
exactly two components, namely the inside and the outside (the one that
meets the background) of y. Moreover, every point of y is 4-adjacent to
both of these components.

A border point in S is any point adjacent to a point in S.

KHALIMSKY TOPOLOGY:

To define a topology on the digital plane, we first define a topology on the
integers. This topology can be defined in terms of the minimal
neighborhood N(x) of each point x. (A set is open iff it contains N(x) for
every point x in the set). Define a topology on the integers by letting N(k)
= {k}, for k even and {k-1, k, k+1} for k odd (See below).
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it is valid to regard this space as a digital line because it satisfies
the condition of being a connected ordered topological space (COTS).

Definition 1: A connected ordered topological space is a connected
topological space X, with this property: if Y is a three point subset, there
isaye Y such that Y meets two connected components of X-{y}.

For a topology on the digital plane we use the product topology. The
topology on the integers and the associated product topologies are called
the Khalimsky topologies. The Khalimsky topology in the plane consists of
three kinds of points: open points (open x open), closed points (closed
x closed) and mixed points (open x closed or closed x open). The minimal
open set for each point is the product of the minimal open sets on the
integers.
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Definition 2: A digital path (digital arc, respectively) in a topological
space is the range of a continuous function (homeomorphism) from a finite
COTS, i.e., from a finite interval in Z.

Definition 3: A digital Jordon curve is a finite connected set J with
|J| = 4 such that J - {j} is a digital arc for each j € J.

Using these definitions the following can be proven:

Digital Jordon Curve Theorem lI: If J is a digital Jordon curve in a
digital plane X x Y then X x Y - J has exactly two components. The infinite
component is called the outside, the other is called the inside.

The relation x <y iff y € N(x) defines a partial order on this space
called the specialization order. In a topological space we call x a
boundary point of a set S iff each neighborhood of x intersects both S
and S. For the Khalimsky topology this means that x is a boundary point
of S iff N(x) intersects both S and S. Note that an open point cannot be in

the boundary.

For applications with computers, the open screen, where the
pixels correspond to the open points in the topology, is usually used. The
mixed and closed points do not show up on the screen. The advantages of
the open screen over the pure screen (both open and closed points
correspond to pixels) are mentioned later.

COMPARISON:

Working in the Khalimsky topology provides a topological proof of
the Jordon Curve Theorem and other properties on the digital plane, such
as a characterization of which curves separate the digital plane into
connected components. A topological approach leads naturally to
constructions which may be possible in Rosenfeld's theory but have not
been considered. Since the topology is a product topology, generalization
into n-dimensional digital spaces is possible. Although the graph-
theoretical system is called digital topology, essential notions such as
open subset, open neighborhood, and boundary of a set are difficult, if not
impossible to transfer.

However, there does appear to be some advantages to working in
Rosenfeld's theory. For example, he uses a class of metrics to define



continuous functions which preserve the connectedness of areas [9]. In
Khalimsky's topology continuous functions preserve connectedness in the

topology but since only open points serve as pixels, "pixel"-connectedness
is not guaranteed to be preserved.
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If f is the function that maps A to B then f is continuous, but when
examining the image on the screen the three open points in Set A are
"pixel"-connected while the open points in Set B are not.

This problem can be avoided by requiring open points to be taken to
open points but this only guarantees 8-connectedness in the image of
either a 4 or 8-connected set.

Definition 4: A function f is specially continuous in the

Khalimsky topology on the digital plane if f is continuous and open points
are not mapped to mixed points.

Definition 5: If X is a set in Khalimsky topology then Xp is the open
points or pixels in X considered in the Rosenfeld topology.

Definition 6: A set X is specially connected if Vx,y € Xp 3z € X
such that z < x and z < y. (This would be true for any connected set when
using the common global face memberships discussed later).

Theorem 1: Let X and Y be digital planes in the Khalimsky topology
with X specially connected. Letf: X — Y be a specially continuous
function. If Xp is (4 or 8)-connected then Yp is 8-connected.



Proof: Let x,y € Xp be (4 or 8)-adjacent. Then since X is specially
connected 3z € X such that z £ x and z < y in the specialization order,
where z is a nonopen point. Then f(z) < f(x) and f(z) < f(y) [Prop. 2.1, 6], and
f(z) is a nonopen point so f(x) and f(y) are 8-adjacent. Therefore Yp is 8-
connected.

Theorem 2: Let X and Y be digital planes in the Khalimsky topology.
Let f : X—Y be a homeomorphism and X a specially connected set in the
Khalimsky topology. If Xp is (4-)8-connected then Yp is (4-)8-connected.

Proof: Let x,y € Xp be 4-(8-)adjacent. Then since X is specially
connected 3z € X such that z < x and z < y in the specialization order,
where z is a mixed (closed or mixed) point. Then f(z) < f(x) and f(z) < f(y)
[Prop. 2.1, KKM], and f(z) is a mixed (closed or mixed) point so f(x) and f(y)
are 4-(8-)adjacent. Therefore Yp is 4-(8-)connected.

If one tries to use a pure screen with a 6-adjacency relation, then
even a homeomorphism does not guarantee that images of connected sets
will be connected. Counterexample:
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The two open points in set C are 6-adjacent while the open points in
set D are not, even though g is a homeomorphism.

An important concept in digital topology is that of data compression.
One way to compress data is to designate a shape by storing a code for
only its outline rather than information for each pixel. In Rosenfeld's
topology there are difficulties with transferring the idea of a boundary or
border. From the definition the borders of a set S and S are different and



using 4 or 8 adjacency also gives different results. Moreover, with any
one of these borders, the border is a set of pixels which , counter-
intuitively, has a nonzero area. In Khalimsky's topology the boundary is
unique and does not show on the screen when considering the open points

as pixels.

Here is an example of a boundary detection algorithm in the
Khalimsky topology:

Given a point xo € S, such that A(x) meets S. Beginning with xo,
check all non open points of A(x) to see wether they are boundary
points or not.  Let the first new boundary point be x1, and store any
other boundary points for future use. Check all points in A(x1) for
boundary points, find an x2 and store any others. Continue this
process. If at any step no new boundary points are determined by
studying A(xi), then denote the most recently stored unused boundary

point as xi+1, and continue.

The boundary can be stored in the same way for either Khalimsky or
Rosenfeld. Given a starting point in the boundary, we can define a
sequence of numbers such that each number tells the reader the position
of the following point. One numbering method starts at the given point
and numbers the eight surrounding points of that point from 0 to 7
beginning with the right horizontal neighbor as 0, and proceeding
clockwise.

In the Khalimsky topology we must keep the information about not
only the pixels (open points) but also the closed and mixed points. For
an m x n rectangle, this means approximately 3 to 4 times more set
points in Khalimsky's topology as compared to Rosenfeld's. For
Khalimsky's the total number of stored points is (2n-1)}(2m-1) as
compared to mn in Rosenfeld's. Storing the boundary points explicitly
requires about twice as many in Khalimsky's as Rosenfeld's.

m x r ] mpression ratio: n

Khalimsky's 4(m+n) / (2n-1)(2m-1)
Rosenfeld's 2(m+n-2) / mn



An example of the compression of an arbitrary image is given here:

m i rati

Khalimsky's 589/1005 = .059
Rosenfeld's 238/2631 = .090

A way to make storing boundary points practical in Khalimsky's is to
define a global face membership. This is a rule which assigns a set
membership to the nonpixel (closed and mixed) points according to the set
membership of an adjacent pixel (open point). With a global face
membership rule one stores only the pixel information explicitly, while
the values of the other points are stored implicitly, requiring no memory
space. The problems with this method is that with low resolution
pictures not every membership rule will correctly represent the
connectivity information. Some knowledge of the picture beforehand may
indicate what membership rule will work but in some cases each point's
membership must be encoded explicitly. But in some of these cases it is
possible to store more information than in Rosenfeld's.

In situations where the right information is known about the
pictures beforehand, using Khalimsky's topology could be useful. However,
when working with relatively arbitrary images Rosenfeld's border may be
the most efficient.

SUMMARY:

The topological viewpoint of Khalimsky and others is appealing
because it is consistent with the ideas of general topology. This
consistency not only allows the use of standard topological ideas and
definitions, but also gives this approach an easily defined n-dimensional
generalization. Unfortunately, this viewpoint appears to have some
disadvantages in certain applications. In data compression there is a
trade-off between the quality of the image resolution and the amount of
information that must be stored. Unlike Rosenfeld's approach which deals
only with the actual pixels, Khalimsky's requires information about other
points as well. Also continuous functions on Khalimsky's topology do not
preserve the properties we would like in the image. These are two of the
current areas in digital topology research. One advantage in Rosenfeld's



approach is the amount of past research which has already been done.
Algorithms for data compression have been analyzed and continuous
functions have been defined which preserve connectedness.
Unfortunately, this approach cannot be defined consistently in terms of
classical topological concepts. This means that many ideas must be
redefined in terms of the graph-theoretical basis. Further research in
digital topology from a topological point of view may overcome the
current disadvantages.
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