

Table	5.2.	Values of	the	Madelung
consta	nt for	various st	ructi	ires.

Zinc blende (ZnS)	1.63806
Wurtzite (ZnS)	1.64132
Sodium chloride	1.747558
Cesium chloride	1.762670
Cuprite (Cu ₂ O)	4.3224
β -Quartz (SiO ₂)	4.4394
High quartz (SiO ₂)	4.4633
Cadmium iodide	4.71
Anatase (TiO ₂)	4.800
Rutile (TiO ₂)	4.8 <u>1</u> 6
Fluorite (CaF ₂)	5.03878
Antifluorite	5.03878
$\dot{Corundum}$ (Al ₂ O ₂)	25.0312

Table 5.3. Lattice energies of the alkali halides.*

alide	r, × 10ª (cm)	χ × 10 ^{1 2} (dynes/cm ²) ⁻¹	n	-E _o (kcal/mole) ^b		
				Equation (5.35)	Experimental	
F	2.014	1.53	5.86	238	238	
Cl	2.570	3.48	6.66	191	192	
Br	2.746	4.28	7.00	180	182	
I	3.010	7.2	6.15	161	170	
aF	2.330	(1.90)	(8.00)	217	214	
aCl	2.849 ·	4.16	8.16	178	179	
aBr	2.982	5.09	8.02	169	171	
aĭ	3.236	7.1	7.98	156	160	
F	2.679	3.3	8.05	189	189	
Cl	3.149	5.64	8.87	163	163	
Br	3.304	6.66	9.08	155	156	
I	3.538	8.54	9.29	146	148	
bF	2.815	(3.64)	(8.80)	178	181	
PC1	3.286	7.4	8.12	154	158	
bBr	3.434	7.95	8.72	152	151	
bľ	3.663	9.58	9.49	141	143	
۶F	3.005	(3.07)	(13.0)	177	172	
· 1 :	3.559	5.9	13.1	148	142	
	3.716	7.0	13.2	142	142	
	3.9 52	9.3	12.7	133	135	

⁴ Taken from E. A. Moelwyn-Hughes, *Physical Chemistry*, p. 557, Pergamon Press, 1961. asod upon calculations by M. Born and J. Mayer, Z. Phys., 75, 1 (1932) and J. Sherman, hem. Rev., 11, 93 (1932).

* Equation (5.35) has been multiplied by Avogadro's number to convert to moles.

Rutile (TiO2)

Zinc blende (cubic ZnS)

f-cristabolite

	Li+	Na ⁺	K+	Rb ⁺	Cs ⁺
F-	0.51	0.73	1.00	1.12	1.28
- Cl-	0.38	0.54	0.74	0.82	0.94
Br-	0.35	0.50	0.68	0.76	0.87
I-,	0.31	0.44	0.60	0.68	0.77

Table 5.13. Values of r_+/r_- for the alkali halides.

Table 2.13 – Radius ratios for some MX_2 halides

Fluorite		Rutile		β-Cristobalite	
BaF ₂ SrF ₂ BaCl ₂ CaF ₂ SrCl ₂	1.25 1.11 0.88 0.99 0.78	CaCl ₂ CaBr ₂ MgF ₂	0.69 0.63 0.73	BeF ₂	0.23
· 70.73		0.73	-0.41	20	0.41

4

 CdI_2

.- 2

. }

· ·

a⁺² Q Ti⁺⁴ Q O⁵

Figure 5.27.

Electrical conductivities of several common substances and representative solid electrolytes are shown at temperatures where the materials might be used. β -Alumina is the sodium form, in which Na⁺ is the mobile species. In silver iodide, Ag⁺ is responsible for the electrical conductivity, as it is in RbAg₄I₅. [After Shriver and Farrington, C&E News, 63, 42 (1985).]

'gure 5.19. _

The 1-2-3 structure has three cubic units. O^{2-} ions are absent from the vertical edges of the Y cell. They are also missing from the terminal horizontal planes YBa₂Cu₃O₆, but there are two O^{2-} , shown in dashed circles, in YBa₂Cu₃O₇.

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$

-

Fig. 7.5 (a) The Meissner effect showing a superconducting material, M, being repelled from a magnetic field, (b) levitation of a sample of YBa₂Cu₃O₇ above a magnet. Photograph provided by R. Treviño and C. Piña, UNAM, Mexico.