

Table 1.2. The six crystal systems.

System	Latuices	Coordinates	Examples
Cubic (isometric)	3	$\begin{aligned} & a=b=c \\ & x=\beta=y=90 \end{aligned}$	$\begin{aligned} & x-\mathrm{Fe} \\ & \mathrm{NaCl} \end{aligned}$
Hexagonal Hexagonal subsystem Rhombohedral subsystem (trigonal)	1	$\begin{aligned} & a=b \neq c \\ & \alpha=\beta=90^{\circ} \end{aligned}$	Graphite MoS_{2} $i=120^{\circ}$
Tetragonal	2	$\begin{aligned} & a=b \neq c \\ & x=\beta=\gamma=90^{\circ} \end{aligned}$	White Sn PtS
Rhombohedral (trigonal) subsystem ${ }^{3}$	1	$\begin{aligned} & a=b=c \\ & x=\beta=\eta \neq 90^{\circ}<120^{\circ} \end{aligned}$	Calcite $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}$
Orthorhombic	4	$\begin{aligned} & a \neq b \neq c \\ & x=\beta=\gamma=90^{\circ} \end{aligned}$	Rhombic S $x-N p$
Monoclinic	2	$\begin{aligned} & a \neq b \neq c \\ & x=y=90^{\circ} \neq \beta \end{aligned}$	Monoclinic S KICl_{2}
Triclinic	1	$\begin{aligned} & a \neq b \neq c \\ & x \neq \beta \neq \gamma \end{aligned}$	$\begin{aligned} & \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ & \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$

- The rhombohedral subsystem is sometimes categorized as an independent system; however, American crystallographers treit it as at hexigonal subgroup. since the rhombohedral cell can also be described with hexagonal coordinates.

Figure 1.6.
The 14 Bravais lattices with the letters designating P (primitive), I (body-centered), F centered), C (end-centered), and R (rhombohedral). ${ }^{\ddagger}$ Note that a rhomb, which is 1 . hexagonal unit cell (see Fig. 1.20), contains all the symmetry elements of this structure.

1. Symmetry

Figure 1.4.
Major planes and axes in the cubic system: (a) the three symmetry planes parallel to the cube faces, (b) the six diagonal mirror planes, (c) the three fourfold rotation axes \bigcirc, (d) the four threefold axes Δ, and (e) the six twofold axes of rotation O.

(111)

Figure 1.11.
Prominent planes of the cubic system.

Figure 1.13.
The tetrahedrally coordinated interstitial atom in the bec structure.
Figure 1.12.
The body-centered cubic structure showing the cight nearesi neighbors and six next-n neighboring atoms.

Figure 1.14.
The octahedral interstitial sitc in the boc erystal structure

Table 13. Bcc elements.

Temperature		$a_{0}(\AA)^{6}$	Temperature				
Ba		5.025	1002	β-Sm	1190- $T_{\text {m }}$	-	1345
β-Ca	$720-T_{\text {m }}$	5.38 (773)	1112	$\gamma-\mathrm{Sr}$	$830-T_{\text {m }}$	4.85 (887)	1041
δ-Ce	999- $T_{\text {m }}$	-	1071	Ta		3.3058	3269
Cr		2.8839	2130	β-Tb	${ }^{150-T} \mathrm{~T}_{\mathrm{m}}$	-	1630
Cs		6.067 (78)	301.5	$\beta-\mathrm{Th}$	$1636-T_{\text {m }}$	4.11 (1723)	2028
β-Dy	$1657-T_{\text {m }}$	-	1682	$\beta-\mathrm{Ti}$	$1155-T_{m}$	3.3065 (1173)	1943
Eu		4.606	1090	$\beta-\mathrm{Tl}$	507-T ${ }_{\text {m }}$	3.882	577
$\alpha-\mathrm{Fe}$	<1183	2.8665		$\gamma-\mathrm{U}$	1048- $T_{\text {m }}$	3.474	1405
$\delta-\mathrm{Fe}$	$1667-T_{\text {mi }}$	2.94 (1698)	1809	V		3.0240	2175
β-Gd	$1533-T_{\text {m }}$	-	[595	W		3.16469	3653
β-Hf	2013- $T_{\text {m }}$	-	2227	$\beta-\mathrm{Yb}$	1033- $T_{\text {m }}$	-	1097
β-Ho	$1701-T_{m}$	-	1843	$\beta-\mathrm{Zr}$	1036- $T_{\text {m }}$	3.62 (1123)	2125
K		5.247 (78)	336.4				
γ-La	$1134-T_{\text {m }}$	-	1193				
β-Li	$80-T_{\text {m }}$	3.5093	454				
δ-Mn	$1410-T_{\text {m }}$	3.0806 (1407)	1517				
Mo		3.1473	2890				
$\beta-\mathrm{Na}$	40- $T_{\text {m }}$	4.2906	371				
Nb		3.3004	2740				
$\beta-\mathrm{Nd}$	$1128-T_{m}$	4.13 (1156)	1283				
$\beta-\mathrm{Pr}$	$1068-T_{\text {m }}$	4.13 (1094)	1204				
ε-Pu	753-Tm	3.638 (773)	913				
Rb		5.605 (78)	312			-	.
β-Sc	1608- $\mathrm{T}_{\text {ra }}$	-	1812			.	

[^0]
gure 1.20. \qquad
te axes and indices of some of the prominent planes in the hexagnal system.

Figure 1.16.
The hap unit cell as constructed from equidimensional spheres and the lattice upon which this structure is based.

Table 1.5 Hcp elements.

Element	Temperature Range (K)	$a_{0}(\AA)^{\text {a }}$	$c_{0}(\dot{A})$	$T_{\text {m }}(\mathrm{K})$
Be		2.2866	3.5833	1527
Cd		2.97887	5.61765	594
$\beta-\mathrm{Ce}$	125-350 (dhep) ${ }^{\text {b }}$	3.65	5.96	
$x-\mathrm{Co}$	<700	2.5071	4.0686 (293)	
$\alpha-D y$	<1657	3.5903	5.6475 (293)	
Er		3.5588	5.5874	1795
$\alpha-\mathrm{Gd}$	<1533	3.6360	5.7026 (293)	
$\alpha-\mathrm{Hf}$	<2013	3.1967	5.578 (299)	
$x-\mathrm{Ho}$	<1701	3.5773	5.6158 (293)	
α-La	<550 (dhcp)	3.75	6.07	
$\alpha-\mathrm{Li}$	<80	3.111	5.093 (78)	
Lu		3.5031	5.5509	
Mg		3.20927	5.21033	
$\alpha-\mathrm{Na}$	<40	3.767	6.154 (5)	
$\alpha-N d$	<1128 (dhcp)	3.657	5.902	
Os		2.7352	4.3190	$3300)$
$\alpha-\mathrm{Pr}_{r}$	<1068 (dhep	3.669	5.920	
Re		2.7608	4.4582	3453
Ru		2.70389	4.28168	2523
α-Sc	<1608	3.3090	5.2733 (293)	
$\alpha-\mathrm{Tb}$	<1560	3.6010	5.6930 (293)	
Tc	.	2.735	4.388	2473
$\alpha-\mathrm{Ti}$	<1155	2.950	4.686 (298)	
$\alpha-\mathrm{Tl}$	< 507	3.456	5.525	
Tm		3.5375	5.5546 (293)	1818
$\alpha-Y$	<1752	3.6474	5.7306 (293)	

- All latlice parameters are given for 298 K unless otherwise noted in parentheses.

Figure 1.18.
The solid circle is the octahedrally coordinated interstice at the center of a face-centercd cubic cell.

Figure 1.19.
Illustrating the eight tetrahedral interstitial positions in the fec unit cell.

Element	Temperature Range (K)	$a_{0}(\AA)^{\prime}$	$T_{\text {m }}(\mathrm{K})$
Ac		5.31 I	1323
Ag		4.0862	1234
AI		4.04958	933
Au		4.07825	1337
$\alpha-\mathrm{Ca}$	<720	5.576	
$\alpha-\mathrm{Ce}$	<125	4.85 (77)	
$\gamma-\mathrm{Ce}$	160-999	5.1601	
β-Co	$700-T_{\text {m }}$	3.548	1768
Cu		3.61496	1356
$\gamma-\mathrm{Fe}$	1184-1665	3.5910 (320)	
Ir		3.8394 (321)	2716
β-La	550-1134	5.296	
$\gamma-\mathrm{Mn}$	1360-1410	3.52	
Ni		3.52387	1726
Pb		4.9505	601
Pd		3.8896	1825
Pt		3.9231	2042
δ-Pu	480-588	4.6370	
Rh		3.8031	2233
$\alpha-\mathrm{Sr}$	<830	6.0847	
$\alpha-\mathrm{Th}$	<1636	5.0843	
$\alpha-\mathrm{Yb}$	<1033	5.4862	

Figure 1.21a.
The diamond cubic unit cell presents a face-centered cubic exterior.
(b)

Figure 1.21b.
The $s p^{3}$ hybridization leads to tetrahedral bonding with a bond angle of $109^{\circ} 28^{\prime}$.

Figure 1.22.
The hexagonal crystal structure of graphitc.

Figure 1.26.
The unit cell of rhombic sulfur.

Figure 1.30.
(a) The orthorhombic unit cell of I_{2} projected on the $x y$ plane, the numbers denoti distance in and above plane of the page. (b) The atoms drawn with correct van radii to illustrate the close packing. (After Ref. 3.)

[^0]: - Where no temperature range is given, the element has only one crystal structure
 - All lattice parameters are given for $7 \boldsymbol{R}$ K unlese nthmonina man... :-

