1. Place the following compounds in order of <u>decreasing</u> strength of intermolecular forces.

HF O₂ CO₂

 $HF > CO_2 > O_2$

2. In liquid propanol, CH₃CH₂CH₂OH, which intermolecular forces are present?

Dispersion, hydrogen bonding and dipole-dipole forces are present.

3. Consider dimethyl ether, CH₃OCH₃. The intermolecular forces present in CH₃OCH₃ are:

Dispersion forces and dipole-dipole forces.

4. The equivalent number of atoms in the FCC unit cell is_____.

4

5. The structure below represents:

An SC unit cell, a BCC unit cell, an FCC unit cell, a cell phone, or a prokaryotic cell.

- 6. Which of the following sets of compounds are expected to be soluble in water?
 - (A) CH_4 , CO_2 , CF_4
 - (B) NaCl, CH₄, CH₃OCH₃
 - (C) NaCl, CH₃CH₂OH, NH₃
 - (D) NaCl, CCl_4 , C_4H_{10}
- 7. List the following from lowest to highest melting point: calcium chloride, Ne, diamond, water, CH₃OCH₃, CH₃CH₂OH, O₂, sodium chloride, lithium chloride.

 $Ne < O_2 < CH_3OCH_3, \ CH_3CH_2OH < water < NaCl < LiCl < CaCl_2 < diamond$

8. Sketch the SC unit cell. The equivalent number of atoms in the SC unit cell is _____.

$$8 \times 1/8 = 1$$

Sketch the BCC unit cell. The equivalent number of atoms in the BCC unit cell is _____.

2

Sketch the FCC unit cell. The equivalent number of atoms in the FCC unit cell is _____. Which unit cell offers the best packing (least amount of void)?

+ 6 x 1/2

4

9. Discuss why water has a higher boiling point than ethanol, than methanol, than carbon disulfide.

Outstanding hydrogen bonding.

10.	List six molecules which exhibit dispersion forces and no other intermolecular forces. Explain.
	(Non-polar, no hydrogen bonding)
	CO ₂ , He (not really a molecule, but), O ₂ , N2, CH ₄ , CF ₄
	plus many others
11.	List six molecules which exhibit dipole-dipole intermolecular forces and not hydrogen bonding. Explain.
	(Polar, no hydrogen bonding)
	NO, CH ₃ F, CH ₃ OCH ₃
12.	List six molecules which exhibit H-bonding. Explain.
	H ₂ O, CH ₃ OH and CH ₃ CH ₂ OH (alcohols), NH ₃ , HF
13.	Why does water boil at 100 °C (oh that's high!)? Outstanding hydrogen bonding.
14.	List and draw six molecules that you expect to be soluble in water. Are these polar or non-polar?
	Polar! Alcohols, ethers, CH ₃ F
15.	List and draw six molecules that you expect to be soluble in a non-polar solvent such as CCl ₄ . Are these polar or non-polar?
	Non-polar!

- 16. How does soap work? Long chains with a hydrophobic end and a hydrophilic end.
- 17. Consider CH₃CH₂OH. The intermolecular forces present in CH₃CH₂OH are:
 - (a) dispersion forces only, (b) dipole-dipole forces only, (c) dispersion forces and dipole-dipole forces only, (d) dispersion forces, dipole-dipole forces, and hydrogen bonding, (e) hydrogen bonding only. (Choose one).
- 18. List the following from lowest to highest boiling point: water, methane, trifluoromethane, ethanol, lithium chloride.

methane < trifluoromethane < ethanol < water < lithiu chloride

molecules (with weakest IMF on left) < ionic compounds

19. List the following from lowest to highest melting point: aluminum oxide, lithium chloride, calcium chloride.

20. Which has a higher boiling point, He or Kr? Why?

Kr, it has better dispersion forces (more electrons, heavier).

- 21. Which of the following is **false**?
 - (A) Quartz, graphite, and diamond are network covalent compounds
 - (B) Sodium oxide is an ionic compound
 - (C) Methanol (CH₃OH) is a polar molecule which exhibits hydrogen bonding
 - (D) Sodium oxide melts at a higher temperature than methanol
 - (E) Argon melts at a higher temperature than methanol

22. The cubic form for the fictitious element Oregonium is FCC. The atomic radius is 132.0 pm and the density is 34.2 g/cm³. Determine the molar mass of Oregonium.

$$1 \text{ m} = 1 \text{ x } 10^{12} \text{ pm}$$

$$1 \text{ m} = 100 \text{ cm}$$

For Simple Cubic: l = 2r

For BCC: $l = 4r/\sqrt{3}$

For FCC: $l = 4r/\sqrt{2}$

267.4 g/mol