Objectives for Exam #1:

- 1. Describe basic cellular structures and functions, including the organelles and plasma membrane.
- 2. Discuss different cellular shapes and different stages of cellular lives.
- Objective for Portfolio #1:

Reflect on background knowledge of anatomy, physiology, and disease.

Part I: Cellular Structure and Function

You will have an opportunity to cycle through different stations. You can work independently, or with classmates at each station.

Station A: Cellular Organelles

- 1. From the display, a ______ is the basic building block of life, the smallest unit of an organism that can carry out functions of life. The structures within cells that carry out specific functions are called ______.
- Below is a photo of the cell model at your table. Using the display and the *Human Body* textbook (p. 46-47) for assistance, label the following organelles: Nucleus, Mitochondria, Endoplasmic Reticulum (dotted with ribosomes in model), Golgi Complex, Lysosomes (green in model), Vesicles (blue in model).

- 3. Your GTA has made a prep of cheek cells by scraping a few cells with a toothpick, rubbing the cells onto a microscope slide, adding a drop of stain, and covering the stained cells with a coverslip. Under the microscope, what organelle can you see in these cheek cells?
- 4. In the next slide, body cells have been preserved and stained with numerous chemicals. The plasma membrane and nucleus of each cell is stained purple in color. Some of the cells were active and their mitochondria picked up brown stain. Do these cells have few <u>or</u> many mitochondria? ______

Station B: Organelle Functions

1. Using the display and the *Human Body* textbook (p. 46-47) for assistance, match the organelle with its correct function (write the letter next to the function):

A. Nucleus	contains substances the cell produces (like hormones, enzymes, and waste products) and secretes them at the plasma membrane.
B. Mitochondrion	processes proteins and other molecules and directs them to where they need to go.
C. Endoplasmic Reticulum	has enzymes that degrade bacteria, old organelles, and other unwanted substances.
D. Golgi Complex	often called the "powerhouse" of the cell, where respiration produces ATP, an energy-rich substance.
E. Lysosome	often called the "brain" or "control center" of the cell, contains chromosomal DNA and a nucleolus.
F. Vesicle	transports materials, and is the site of attachment for ribosomes, structures involved in building chains of amino acids.

Station C: Plasma Membrane Structure

 The cell membrane consists of two layers of **phospholipids**. Each phospholipid molecule has two parts, commonly referred to as the "head" and the "tail." The heads are water-soluble and face outward, and the tails are water-insoluble and face inward. Referring to the cell membrane model, loosely sketch the phospholipid bilayer of a portion of a cell's plasma membrane.

- In the cell membrane model, the water-soluble heads of the phospholipids molecule are ______ in color, and the water-insoluble tails are ______ in color. The blue structure embedded in the membrane represents a ______.
- The display shows three transport proteins embedded in the cell membrane. The protein on the left is aquaporin, which is the protein that moves ______ through the cell membrane. The protein in the middle is helping large ______ molecules into the cell, and the protein on the right is using a molecular form of energy abbreviated to ______ to move sodium and potassium from low to high concentration ("against their gradient").

Station D: Plasma Membrane Function

 Start by dropping one drop of food color into the beaker of clear water. Observe what happens. From the *Cell Membranes* poster, this is an example of ______ diffusion, molecules moving from an area of ______ concentration to an area of ______ concentration. (Empty the cup in the sink, and fill it with water for the next students)

- 2. From p. 49 of the *Human Body* textbook (and the display), ______ diffusion is when molecules are transported by a particular carrier protein and ______ transport is when ATP energy is required to change a protein into a channel molecules can pass through.
- 3. From the *Cell Membranes* poster, the membrane of a cell folding inward around a material, taking it into the cell within a vacuole, is called _______. If it takes in a solid, this process is more specifically called _______. When vacuoles fuse with the cell membrane and release materials outside of the cell, this is called
- 4. Fill in the function of these three proteins found in a cellular membrane:

Protein Type	Function (what they do)	
Receptor Proteins		
Marker Proteins		
Transport Proteins		

Station E: Specialized Cells

- 1. From the display, the human body consists of trillions of cells, including approximately ______ different types of cells that vary greatly in size, shape and function.
- 2. Although cells are typically drawn as round, there are many different cellular shapes and sizes (p. 48 of *Human Body*). Using the display, for each of the following cells, sketch their general shape and read how it matches the cell's function.

Cell	Function	Sketch
Fertilized Egg	Large egg has adequate organelles and nutrients to support rapid mitosis (cell division) once fertilized by the sperm	
Sperm	Small head contains the DNA, and whip-like tail projects the sperm through fluid as it seeks the egg	
Skeletal Muscle Cell	Long tube-like cells have smaller myofibrils that contract and relax, altering the length of the cells and resulting in movement	
Neuron (nerve cell)	Numerous hair-like dendrites and a long axon connect cells together for intricate communication	
Fat Cell	Cells can swell in size to store additional fat, the nucleus and other organelles are often pushed off to the side	

- 3. Refer to the large model at the station. This is a high magnification of a bundle of ______ cells (choose from the list above). When you view the model from the side, the muscle cells look long and tubular in shape. When you view the model from above, what shape does each muscle cell seem to have? _____ This difference in appearance from different viewing angles will be important when you start studying the muscular system next week.
- 4. From *The Structure of Human Cells* poster (right side), which cells in the human body lack a nucleus? ______. Approximately how many white blood cells does a human make in a day? ______. Which cells can be the longest in the human body? _______

Station F: Cellular Life Stages

- Cells have stages of development, also known as cellular life stages. After the egg is fertilized by sperm, the fertilized egg begins to divide into cells, those cells divide into more cells, and so on. Cellular division is called **mitosis** (p. 53 of *Human Body*). In order for one cell to become two cells, the chromosomes (made of DNA) are _______ so each resulting cell receives equal copies from the original cell. Mitosis is critical for growth, repair of injury, and replacement of older cells. Where in your body are cells currently undergoing high rates of mitosis? _______
- 2. Once a new cell has been formed by mitosis, it changes to a specific shape and function. This process is called **differentiation**. Most cells in the body will differentiate into a pre-specified shape and function, except for ______ cells, which can become a broader range of cell types (see handout).
- 3. Cells will typically grow in size over time. This process is called **hypertrophy** and is necessary since many cells are quite small after mitosis. There are cells found throughout the body that can grow quite large if a human consumes an excess of calories. These are _____ (or adipose) cells.
- 4. Most cells have a finite life span, and are genetically programmed to die at a specific time. This programmed cell death is called **apoptosis**. What might be an advantage of cells having a predetermined life span (think about what may happen to a cell as it ages)?

Station G: Cells and Homeostasis

- 1. From the display, what is **homeostasis**?
- 2. **Disease** is a loss of homeostasis. There are many ways to disrupt homeostasis in the human body. If organelles are abnormally formed or become damaged, cells can malfunction or die. From the handout provided, list diseases associated with abnormal/damaged mitochondria and lysosomes.

Cell Structures	Diseases
Mitochondria	
Lysosomes	

Include this page in Portfolio #1, along with reflection paragraph

Keep your other Cells activity pages to study for the exam

Part II: Background Knowledge Survey (for Portfolio #1)

<u>Skill:</u> Reflect on background knowledge of anatomy, physiology, and disease. Reflection is a key component of learning.

Assignment: This assignment has three parts.

- (1) Fill in the Pre-Assessment Survey form individually. It is fine if you do not know the correct answers; answer each question to the best of your current ability.
- (2) Check answers at the BI 103 website <u>http://science.oregonstate.edu/bi10x/</u> (main page under "Portfolio Links") and fill in the correct answers in the appropriate column.
- (3) Write a paragraph reflection on (A) where you learned the answers that you answered correctly on the survey (B) what you have learned about the human body (anatomy, physiology, and/or disease) as a result of completing the survey. If you did not know any of the information prior to the survey, or did not learn anything from the survey, include this information as well. The paragraph reflection can be written on the back of the survey or typed on a separate sheet of paper.

<u>Assessment:</u> This assignment is worth 4.0 points: 2.0 points is for answering the survey questions, filling in the correct answers from the website, and turning in the questionnaire; and 2.0 points are for the reflection paragraph (1.0 point for stating the source of what you knew on the survey, and 1.0 point for what you learned by completing the survey).

Correct Answer # Question Your Answer (from website) What is the difference between a tendon and a 1 ligament? In a twenty-year old human's body, what is the 2 oldest possible age of one of the bones? What is the most common physiological cause of 3 hiccups? What keeps the trachea ("windpipe") from collapsing 4 when you are not taking in a breath of air? Approximately how many cells are in the human 5 body? 6 What is the primary function of the gallbladder? Why does lack of sufficient oxygen during exercise 7 lead to build-up of lactic acid in muscles? Besides regulating blood sugar levels, what else 8 does the pancreas do? Survey continues on the back...

Background Knowledge Survey

(Include in Portfolio #1, along with reflection paragraph)

9	What are the two types of information about sound that receptor cells in the ears can send to the brain?	
10	What causes "Mad Cow" disease (what is transmitted to cows and potentially to humans)?	
11	What do doctors search for in a patient's urine as a possible indicator of anemia?	
12	During an infection, which cells in the human body increase dramatically in number?	
13	Cancerous cells utilize blood vessels to spread throughout the body and for what other purpose?	
14	What does the body release in large quantities in response to an allergen?	
15	When a memory forms, what is happening on the cellular level in the brain?	
16	Which infectious disease pathogen currently kills more humans globally each year than any other?	
17	What disease was used to develop the first effective vaccine, the vaccine for smallpox?	
18	Besides restoring health, what is the other main role of modern medicine?	
19	What is an example of an autoimmune disease (disease in which the body attacks itself)?	
20	Why do people keep getting the influenza (flu) vaccine each year?	

Include this page in Portfolio #1, along with reflection paragraph Keep your other Cells activity pages to study for the exam