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Abstract

This paper considers several single species growth models featuring a carrying capacity,
which are subject to random disturbances that lead to instantaneous population reduction
at the disturbance times. This is motivated in part by growing concerns about the impacts
of climate change. Our main goal is to understand whether or not the species can persist
in the long run. We consider the discrete-time stochastic process obtained by sampling the
system immediately after the disturbances, and find various thresholds for several modes of
convergence of this discrete process, including thresholds for the absence or existence of a
positively supported invariant distribution. These thresholds are given explicitly in terms
of the intensity and frequency of the disturbances on the one hand, and the population’s
growth characteristics on the other. We also perform a similar threshold analysis for
the original continuous-time stochastic process, and obtain a formula that allows us to
express the invariant distribution for this continuous-time process in terms of the invariant
distribution of the discrete-time process, and vice versa. Examples illustrate that these
distributions can di↵er, and this sends a cautionary message to practitioners who wish
to parameterize these and related models using field data. Our analysis relies heavily
on a particular feature shared by all the deterministic growth models considered here,
namely that their solutions exhibit an exponentially weighted averaging property between
a function of the initial condition, and the same function applied to the carrying capacity.
This property is due to the fact that these systems can be transformed into a�ne systems.

1 Introduction

Much of the present work was motivated by general discussions with ecologists on critical
thresholds in natural systems and the desire to construct tractable models that illustrated
how such thresholds could emerge from population dynamics and for which critical thresh-
olds could be understood and expressed as functions of other key system parameters. This
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is a critical research problem that was identified in a 2010 NSF Conference Report Toward
a Science of Sustainability, organized by William C. Clark and Simon Levin at the Airlie
Center, in Warrenton, VA, November 29, 2009 – December 2, 2009.

This paper is organized as follows. We first provide a brief overview of prior work on
both deterministic and stochastic population growth models. We then define a general,
random catastrophe model for which the discrete-time process (population sizes just after
catastrophes) and continuous-time process can be analyzed separately. This is followed
by results for various special cases that correspond to specific choices of the deterministic
growth model that is followed between disturbances. Results for the exponential, logistic,
Richards and Gompertz growth models are presented, and di↵erent critical thresholds are
identified for convergence of expected values (L1 convergence), for almost sure convergence
toward extinction (sample path by sample path), and/or convergence in distribution to
non-trivial invariant distributions. These sections include several examples where results
(e.g., non-trivial invariant distributions) can be given in closed form, most often for the
case where the disturbance factors have a uniform distribution. We then present theorems
that establish the relationship between the invariant distributions for the discrete-time and
continuous-time process, utilizing the general theory of Davis (1984) and Costa (1990) for
piecewise deterministic Markov processes. We also present a few simulation results from an
open-source implementation of the random catastrophe model in the Python programming
language. One might argue that the theory should also permit nonstationarities in the
evolutions, and/or correlations between disturbance times that are not present in Poisson
models. While outside the scope of the present paper, the distinction between trends and
statistical dependence is itself a non-trivial problem for data analysis that might better be
addressed first in this regard; e.g., see (Bhattacharya, Gupta, Waymire, 1983) for illustra-
tion of this point in a hydrologic context. Having a general framework for stationary and
uncorrelated disturbances has the advantage of being more self-contained, while providing
a benchmark to (theoretically and/or computationally) test the impact of such relaxations.

2 Background

2.1 Deterministic Population Growth Models

There is a long and fascinating history of deterministic, sigmoidal growth laws being used
to model the size of single-species populations over time, starting with the classic paper
on the logistic growth model by Verhulst (1838). Kingsland (1982) provides a very nice
summary of this history with extensive references. The simplest growth laws are predicated
on several simplifying assumptions (some of which are simple facts), that can be summarily
stated as follows:

(H1) The growth rate of population size at time t, N 0(t), is a smooth function,
G of the population size, N(t), at time t. That is, N 0(t) = G(N(t)).
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(H10) It is also generally assumed that G depends on t only through N(t), that
is, that the resulting ODE is autonomous. Moreover, one assumes that there is
a unique evolution of the population N(t) defined for all t � 0 for any initial
size N(0) = N0 > 0.
(H2) Reproduction is not possible with a population size of zero, i.e., G(0) = 0.
(H3) There is an upper limit to the size of the population based on availability
of required resources (e.g., food, water, space, etc.) called the carrying capacity
and denoted by K. It follows that G(N) must decrease to 0 as N " K. That is,
one assumes that there is a maximal interval (0,K) over which G is positive,
and G(0) = G(K) = 0.
(H4) If the environment is stable, then K is not a function of time, t.
(H5) The per capita growth rate G(N)/N is a decreasing function of N , re-
flecting negative density dependence. This represents increasing competition
for available resources.
(H6) As population size N becomes small, the per capita growth rate G(N)/N
approaches a positive constant r (which may be even be infinite), known as the
maximal per capita growth rate: r = lim

N&0G(N)/N . Constancy of r expresses
that population demographics are stable, and do not fluctuate in time.

Under such conditions, the unique solution N(t), t � 0, to the growth equation

dN(t)

dt
= G(N(t)), N(0) = N0, with N0 < K (1)

will increase from the specified initial population size N0 toward K.
Information about how a given species reproduces can be used to further restrict the

functional form of G. Notice that the list of model assumptions does not explicitly ac-
count for the age structure of the population; that is, the fact that fertility of individuals
is a function of their age, with no reproduction until they reach maturity. Similarly, they
do not account for a gestation period during which an individual cannot reproduce, nor
for seasonal variation of reproductive rates, which is well-documented for many species.
For a su�ciently large population and period of observation, however, these e↵ects can
be accommodated by the choice of G. Some of these e↵ects can also be accommodated
by using discrete-time approximations to (1) in the form of di↵erence equations, so that a
fixed amount of time is allowed to pass before the population size can increase. Di↵erence
equations also accommodate integer-valued population sizes, although it is generally ac-
cepted that di↵erential equations with real-valued population sizes can provide reasonable
approximations (idealizations) when population size is su�ciently large.

As pointed out by Lotka (1925), taking only the first two terms of a Taylor series
expansion for G(N) provides the simplest choice for G(N) having the required proper-
ties: G(N) = rN(1 � N/K). This provides the well-known logistic growth model, first
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introduced by Verhulst (1838). Retaining only the linear term results in unchecked expo-
nential growth, which is not limited by a carrying capacity, i.e., K = 1. Any model with
a linear lowest order term will exhibit exponential growth at early times. The Richards
growth model (Richards, 1959) is a more general model with this feature, generalizing the
logistic and exponential models as special cases. The Richards growth model is defined by
G(N) = rN [1� (N/K)↵], with ↵ > 0, and is also known as the theta-logistic model (Lande
et al., 2003; Gilpin and Ayala, 1973). By contrast, the Gompertz growth model, defined by
G(N) = �rN ln(N/K), does not possess a Taylor expansion at N = 0; the derivative at
N = 0 is infinite. So growth at early times is therefore faster than exponential. Moreover,
the parameter r is not the limit as N ! 0 for G(N)/N . In fact this limit is infinite. We
will see that results for stochastic extensions of the Gompertz model di↵er from these other
growth models in important ways due to such di↵erences.

While the various classical models presented above di↵er in details, the solutions share
a common averaging dynamic that is noteworthy. Namely, we will show that a suitably
transformed measure of the population size evolves as a temporally weighted average between
the (transformed) initial population size and the (transformed) carrying capacity. The proof
rests on a more basic fact that every increasing, continuously di↵erentiable function x(t),
0  t < 1 can be represented as a weighted average by time-varying weights of its initial
data x0, and its limit asymptotic limit x1 (assumed finite for simplicity) as follows:

Lemma 2.1 Suppose that x : [0,1) ! [x0, x1) is continuously di↵erentiable and mono-
tonically increasing with x1 = lim

t!1 x(t), and let ⌫ > 0 be arbitrary. Then there exists
a monotone (increasing or decreasing) function h : [x0, x1] ! R such that

h(x(t)) = h(x1)(1� e�⌫t) + h(x0) e
�⌫t, t � 0.

Proof. Since x(t) is continuously di↵erentiable and increasing, it is invertible with con-
tinuously di↵erentiable inverse ⌧(x), where ⌧ : [x0, x1) ! [0,+1), such that ⌧(x0) = 0,
lim

x!x1 ⌧(x) = +1, and d⌧/dx > 0. Let c1 and c2 be arbitrary real numbers such that
c1 6= c2. Define h : [x0, x1] ! R as follows:

h(x) := c1(1� e�⌫⌧(x)) + c2 e
�⌫⌧(x) (2)

Then h is continuously di↵erentiable, with derivative

dh

dx
= (c1 � c2)⌫

d⌧

dx
.

Since c1 6= c2, ⌫ > 0, and d⌧/dx > 0, it follows that h is increasing (if c1 > c2) or decreas-
ing (if c1 < c2). In either case, h is invertible, and by taking the inverse in the definition
(2), and setting x = x(t), we obtain the claimed result by noting that c1 = h(x1) and
c2 = h(x0) (recall that ⌧(x0) = 0 and lim

x!x1 ⌧(x) = +1).⌅
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Of course the transformation h depends on the parameter ⌫ > 0. The latter sets a time
scale for the averaging dynamic and may be normalized to one, or otherwise adapted to
other natural time scale parameters of the model, e.g., the maximal per capita growth rate
when it exists. Such averaging dynamics explicitly reveal the (non-transformed) solution
to be given by

x(t) = h�1
�
h(x1)(1� e�⌫t) + h(x0) e

�⌫t

�
, t � 0. (3)

One-to-one transformations, e.g., logarithms, exponentials, reciprocals, centering and
scalings, are often found to be convenient and natural when graphing and analyzing bio-
logical data. Generally, it is an apparently adhoc choice through a single transformation,
which turns out to be independent of initial data. This and Lemma 2.1 naturally beg the
question of characterizing the class of equations (1) for which all solutions can be repre-
sented as above with the common one-to-one transformation h, independent of the initial
condition, and can be answered as follows:

Lemma 2.2 Consider equation (1), and assume that (H1)-(H6) hold. Fix an arbitrary
⌫ > 0. Suppose that there exists a monotone (increasing or decreasing) continuously dif-
ferentiable transformation h : (0,K] ! R, such that:

h(N(t)) = h(K)
�
1� e�⌫t

�
+ h(N0) e

�⌫t, 8N0 2 (0,K] and 8t � 0, (4)

where N(t), t � 0, denotes the unique solution of (1) with initial condition N(0) = N0.
Then x(t) := h(N(t)) must satisfy the following a�ne equation:

dx(t)

dt
= �⌫x(t) + ⌫h(K), (5)

for all t � 0 and all N0 2 (0,K].
Conversely, if there exists a monotone (increasing or decreasing) continuously di↵erentiable
transformation h : (0,K] ! R such that x(t) := h(N(t)) (here again, N(t), t � 0, is the
unique solution of (1) with N(0) = N0) satisfies the a�ne equation (5) for all t � 0 and
all N0 2 (0,K], then the solution N(t) of system (1) with N(0) = N0, can be represented
by (4), for all t � 0, and for all N0 2 (0,K].

Proof. By direct calculation, and applying the invertible map h to (4):

dx(t)

dt
=

d

dt
(h(N(t)))

=
d

dt

�
h(K)

�
1� e�⌫t

�
+ h(N0) e

�⌫t

�

= �⌫
�
�h(K) e�⌫t+h(N0) e

�⌫t

�

= �⌫
�
h(K)

�
1� e�⌫t

�
+ h(N0) e

�⌫t�h(K)
�

= �⌫h(N(t)) + ⌫h(K)

= �⌫x(t) + ⌫h(K).
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For the converse, we first solve the a�ne equation by the variation of parameters formula:

x(t) = x0 e
�⌫t+h(K)

�
1� e�⌫t

�

= h(N0) e
�⌫t+h(K)

�
1� e�⌫t

�
,

and then using the definition x(t) = h(N(t)), and the fact that h is invertible (because it
is monotone), we obtain (4) by applying the inverse h�1.⌅

So the class of systems (1) for which there exists a rescaling function h(N) such that all
solutions can be represented as in (4), are precisely those systems which can be transformed
to an a�ne system. It is revealing to re-examine the previously discussed population mod-
els from this perspective. In particular, we will see that each is an a�nely transformable
model. Moreover, as we will see in our subsequent analysis, this property is key to analyz-
ing the behavior of these models under certain stochastic disturbance scenarios.

Example 2.1 For logistic growth, G(N) = rN(1�N/K), the choice h(N) = 1/N trans-
forms system (1) into (5) with ⌫ = r. Consequently, the (transformed) solution of (1) may
be expressed as

1

N(t)
=

1

K
(1� e�rt) +

1

N0
e�rt . (6)

Figure 1 is a plot of the logistic (Verhulst) growth curve, and exhibits how it is distinct
from exponential (Malthusian) growth.

Example 2.2 For Richards growth, G(N) = rN(1 � (N/K)↵), the choice h(N) = 1/N↵

transforms system (1) into (5) with ⌫ = ↵r. Consequently, the solution of (1) is

1

N↵(t)
=

1

K↵

(1� e�↵rt) +
1

N↵

0

e�↵rt . (7)

Example 2.3 For Gompertz growth, G(N) = �rN ln(N/K), the choice h(N) = ln(N)
transforms system (1) into (5) with ⌫ = r. Consequently, the solution of (1) is

lnN(t) = lnK(1� e�rt) + lnN0 e
�rt (8)

The standard forms of the non-transformed solutions are readily obtained using (3).
Deterministic growth laws provide an important foundation or starting point for an-

alyzing more complex population dynamics and have been generalized in many di↵erent
ways, resulting in a vast literature. Driven by observations, many extensions of these mod-
els have been proposed, analyzed and compared to observations. These extensions can be
grouped into the following broad categories.
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Figure 1: Population growth curves, N(t) vs. t, with r = 1 and N0 = 10, for (a) simple
exponential growth (K = 1 in (6)) and (b) the logistic growth model (K = 1000 in (6)).

(1) Extensions based on a di↵erent growth laws, with di↵erent assumptions and
ODEs. (e.g. Richards, Birch, Gompertz, Bi-logistic, etc.)
(2) Extensions based on di↵erence equations (with a lag e↵ect) vs. di↵erential
equations. (e.g. Beverton-Holt, Hassell and Ricker models, etc. )
(3) Extensions that allow model parameters such as maximal per capita growth
rate, r, and carrying capacity, K, to vary with time, e.g., see (Meyer, 1994).
(4) Di↵usion-type models that result from a deterministic growth model that
is subject to additive perturbations.
(5) Piecewise continuous models that result from a deterministic growth model
that is subject to multiplicative perturbations, but only during disturbance
events. The frequency of disturbances is often modeled as a Poisson event pro-
cess, while their magnitude is modeled as a random fraction of the population
that survives a disturbance.

We now turn to a brief review of stochastic model extensions of types (4) and (5).

2.2 Stochastic Population Growth Models

A stochastic population growth model is generally constructed by introducing stochastic
e↵ects into a deterministic, sigmoidal growth model. Recall that deterministic models
have two main control parameters: the maximal, per capita reproductive rate, r, and the
carrying capacity of the environment, K. While r is a characteristic of a single-species
population, K is a characteristic of the environment that supports the population. Mod-
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els that allow r to vary in time as a stochastic process are said to exhibit demographic
stochasticity. This type of randomness, for example, may result from natural, genetic vari-
ation in reproductive success or issues associated with finding mates, especially for smaller
populations. Similarly, models that treat K as a stochastic process in time are said to
exhibit environmental stochasticity. For example, natural variation in rainfall rates a↵ects
the lushness of vegetation which therefore a↵ects carrying capacity for herbivores. For
both types of stochasticity, it is natural to model them as additive, stochastic fluctuations
around nominal, mean values. As pointed out by Engen et al. (1998), for a su�ciently large
population, such e↵ects often lead to fluctuations that are small relative to the total size
of the population, so that the population’s growth curve may still appear to be essentially
deterministic, closely following a sigmoidal growth curve over time. While a stochastic
model may introduce just one type of stochasticity, it is more common to combine them
into an additive, di↵usion-type model of the form

dN(t) = G(N(t))dt+ �(N(t))dB(t), N(0) = N0, (9)

where G(x) is deterministic growth growth and �(x) is a generally ad hoc prescription of the
mean square fluctuations. For example, if one assumes that G(x) = rx,�(x) = �x are both
linear, then N(t) evolves as a (positive) geometric Brownian motion; A geometric Ornstein-
Uhlenbeck process is obtained by taking �(x) = �x linear with G(x) = 1

2�
2x�cx log x; e.g.,

see (Bhattacharya and Waymire (1992, 2009), p. 384–385). In both cases the process
{N(t)} remains positive for all t > 0 if N(0) > 0.

If one discretizes via a standard numerical scheme, t0 = 0, t
n+1 = t

n

+�, then writing
N

n

= N(t
n

),
N

n+1 = [N
n

+G(N
n

)�] + �(N
n

)
p
�✏

n+1. (10)

where ✏1, ✏2, . . . are i.i.d. standard normally distributed, i.e., a discrete time white noise.

Another important type of stochasticity that can a↵ect a population is due to relatively
rare, episodic disturbances or random catastrophes. Examples of catastrophes include se-
vere storms, meteor impacts, epidemics, forest fires, floods, droughts, infestations, volcanic
eruptions and so on. The episodic nature of such disturbances means that it is natural
to model their occurrence times as a Poisson event process in time, where the parameter
� determines their mean frequency of occurrence. One can model the resulting mortality
by either subtracting a random number from the population, or by assuming that only a
random fraction of the population survives the disturbance. However, the latter, multi-
plicative model seems more natural in this case because it scales with the population size.
That is, the mortality in an additive model can be larger than the total size of the popu-
lation. Note that whether the mortality due to a catastrophe is additive or multiplicative,
the resulting stochastic process for the population size, N(t), is no longer continuous, but
rather piecewise continuous, with jump discontinuities occurring at the times of catastro-
phes.
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Hanson and Tuckwell (1978, 1981, 1997) appear to be among the earliest to consider
population dynamics models that included random catastrophes. In each of their papers,
these authors modeled the disturbance times with a Poisson event process and modeled
the growth between disturbances with deterministic, logistic growth. Their focus in each
paper was on solving for the expected time to extinction (also known as the persistence
time) for a given initial population size x, which they denoted as T (x). Their approach was
to employ first-passage time methods for stochastic processes with discontinuous sample
paths. This involves using the Markov process semi-group theory (e.g., see Gihman and
Skorokhod 1972), which leads to the di↵erential-di↵erence equation

r x
⇣
1� x

K

⌘
T 0(x) + � [T (x� ✏)� T (x)] = �1, 0 < x < K. (11)

with the boundary conditions T (1) = 0, and the observation that K is an inaccessible
boundary. In their 1978 paper, for each disturbance the population size was additively
reduced by a constant amount ✏ > 0. In their 1981 paper, they obtained results for
disasters with multiplicative reductions so that the population size after a disaster was given
by ✏N(t), where N(t) was the population size before the disaster and ✏ was a constant
in (0, 1). They referred to these as density-independent disasters. In this context they
introduced a nonzero, e↵ective extinction level, �, and solved for the first passage time to
�. Finally, Hanson and Tuckwell (1997) extended their results on mean extinction times
via numerical simulations and asymptotic approximations for both of these prior models
by allowing additive reductions to have an exponential distribution and multiplicative
reductions to have a uniform distribution. They also examined a related model with
exponential decay subject to bonanzas vs. disasters. Many of their results were presented
in terms of the ratio p = �/r, which they called the bio-disaster ratio, q. For their 1997
Model B, with multiplicative disturbance factors drawn from a uniform distribution, they
were able to give asymptotic approximations for T (x), showing that as K/� ! 1,

T (x) ! 1 algebraically for p 2 (0, 1),

T (x) ! 1 logarithmically for p = 1 and

T (x) ⇠ [p/(p� 1)] ln(e x/�) for p > 1.

Lande (1993) reviewed and extended prior work on the relative importance of demo-
graphic and environmental stochasticity as well as random catastrophes; see also Lande et
al. (2003). In the analysis of the multiplicative model from Hanson and Tuckwell (1981),
a threshold parameter called the long run growth rate emerges, given by r̃ = r + � ln(✏),
where ✏ 2 (0, 1) is the constant fraction of the population that survives each disturbance.
The sign of r̃ was seen to distinguish between two distinct types of long-term dynamics.
We will see that a very closely related parameter arises in the more general context of the
current paper, where the disturbance factors are allowed to be i.i.d. randomly varying frac-
tions with any distribution on (0, 1). In the present paper the focus is on general long-term
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stochastic dynamics and critical thresholds rather than expected extinction times, but these
two sets of results are naturally complementary. In fact, the more general description of
the long-term dynamics helps to explain the asymptotic mean extinction behavior obtained
by Hanson and Tuckwell (1997) for their Model B.

3 Definition of the Model

When treating disturbance models the blanket assumption that the disturbance factors
are positive with positive probability is made throughout. Obviously if disturbances are
permitted to destroy the entire population with probability one, i.e., P (D = 0) = 1, then
there is no recovery under the given model assumptions.

3.1 Continuous-time Model

The stochastic model of interest here falls within a general class of piecewise deterministic
Markov models singled out by Davis (1984), in which a single-species population undergoes
deterministic growth determined by an ordinary di↵erential equation (1), but which also
experiences random, episodic disturbances that remove a random fraction of the popu-
lation. In this model, net growth is deterministic while the frequency and magnitude of
disturbances that lead to mortality are treated as stochastic. The competition between
the population’s net reproductive rate and its mortality rate due to disturbances sets up
a situation where critical thresholds can be computed in terms of model parameters that
determine what will happen to the size of the population in the long term. This model can
be expressed as

dN

dt
(t) = G(N(t)), ⌧

i

 t < ⌧
i+1, i = 0, 1, 2, . . . ,

N(⌧
i

) = D
i

N(⌧�
i

), N(0) = N0 > 0, with N0 < K, (12)

where 0 = ⌧0 < ⌧1 < ⌧2 < · · · is the sequence of arrival times of a Poisson renewal process
{⇤(t) : t � 0} with intensity � > 0, and D1,D2, . . . is a sequence of independent and
identically distributed (i.i.d.) disturbance factors on the interval [0, 1], and independent of
the arrival time process. These disturbance factors determine the fraction of the population
that survives a given disturbance. The function G is assumed to satisfy the hypotheses
(H1)-(H6). Our goal is to understand the dynamics of the resulting discrete-time stochastic
process N(⌧

i

), i = 1 = 0, 1, 2, . . . , as well as of the continuous-time stochastic process N(t),
t � 0. We will present a number of results for the exponential, logistic, Richards and
Gompertz growth models subject to various scenarios of the random disturbances.

One may note that G(0) = 0 implies that N = 0 is an absorbing state for (12).
In particular the Dirac (point mass) probability distribution �0 is always an invariant
(equilibrium) distribution for the population in accordance with assumption (H2). We

10



are interested in conditions under which this is the only invariant distribution, as well as
conditions in which another invariant distribution also exists on the interval (0,K).

Note that (12) defines a reducible Markov process since the state N = 0 is inaccessible
from states in (0,1). The present paper takes advantage of some special techniques and
observations to exploit this reducibility to the benefit of a rather complete theory for the
model (12). In particular, it will be possible to apply existing theory to understand the
long term stability of the stochastic process N(t) using a theorem of Brandt (1986) for
a�ne linear maps, together with a theory of “contraction maps on average” introduced by
Diaconis and Freedman (1999). Interestingly, owing to a technical condition on topological
completeness of the phase space in this latter reference and a�ne linearity in the former,
neither of these is su�cient for the full set of results given here, but in combination they
lead to a rather complete picture of the long time behavior.

3.2 Discrete-time Post-disturbance Model

In addition to the continuous time model (12), a natural discrete time model is obtained
by considering the population sizes at the sequence of times at which disturbances occur.
That is,

N
n

= D
n

N(⌧�
n

), n = 0, 1, 2, . . . , ⌧�0 = 0, D0 = 1, (13)

where N
n

is the random size of the population immediately after the nth episodic distur-
bance. Here the left-hand limit notation N(⌧

n

�) = lim
t"⌧n N(t) is used to capture the

population size just before the nth disturbance.

3.3 Relationship between Invariant Distributions of the Continuous and
Discrete-time models

For the continuous time growth models we will take advantage of the existence of a one-
to-one correspondence between the invariant distributions of the (discrete-time) post-jump
Markov chain and the continuous time piecewise deterministic Markov process originally
obtained by Costa (1990) in more generality than required here. In order to keep the
present paper self-contained we provide a derivation for the special disturbance models of
interest here.

Let’s first recall the overall structure in which we consider a class of deterministic popu-
lation models interrupted by i.i.d. random multiplicative disturbances (factors) D1,D2, . . .
at arrival times ⌧1 = T1, ⌧2 = T1 + T2, . . . of a Poisson process with i.i.d. exponentially
distributed inter-arrival times T1, T2, . . . with mean 1

�

. Between disturbances, the deter-
ministic law of evolution of the population continuously in time is given by an equation of
the general form

dN(t)

dt
= G(N(t)), N(0) = x, (14)
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where G satisfies assumptions (H1)-(H6), and whose solution may be expressed as

N(t) = g(t, x), t � 0, x > 0,

where the population flows x ! g(t, x) are continuous, one-to-one maps with a continuous
inverse, such that g(0, x) = x, and g(s + t, x) = g(t, g(s, x)), s, t � 0, x > 0. In particular,
the uninterrupted evolutions considered here have unique solutions at all times for a given
initial value.

By (H2), a common feature of these models is that x = 0 is a steady state, i.e., g(t, 0) =
0. This trivial equilibrium persists in the disturbed evolutions as well. Thus we focus on
initial states x > 0 in what follows.

On the other hand, the discrete-time disturbed population model is given by

N0 = x, N
n

= D
n

g(T
n

, N
n�1), n = 1, 2, . . . . (15)

The following theorem describes the relationship between steady state distributions of
the continuous and discrete time evolutions. The result follows as a special case of a much
more general theory for piecewise deterministic Markov processes due to Davis (1984) and
Costa (1990); however, as remarked earlier, we sketch a proof (in the Appendix) that takes
advantage of the specific nature of the disturbance model of interest here.

Theorem 3.1 (Continuous and discrete time invariant distributions) Let g(t, x) be
the flow of the deterministic system (14), which satsifies (H1)-(H6). Then

(i) Given an invariant distribution ⇡ for the discrete time post-disturbance population model
(15), let Y be a random variable with distribution ⇡, and let T be an exponentially dis-
tributed random variable with parameter �, independent of Y . Then the distribution

µ(C) = P (g(T, Y ) 2 C), C ⇢ (0,1),

is an invariant distribution for the corresponding continuous time disturbance model (12).

(ii) Given an invariant distribution µ, for the continuous time disturbance model (12),
let Y be a random variable with distribution µ, and let D be distributed as the random
disturbance factor distributed in (0, 1), independent of Y . Then

⇡(C) = P (DY 2 C), C ⇢ (0,1),

is an invariant distribution for the corresponding discrete time post-disturbance model (15).

Proof. See Appendix A.
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4 Exponential Growth with Episodic Disturbances

As a warm-up to the more complex, sigmoidal growth models, it is instructive to first
consider random disturbances of purely exponential growth, for which G(x) = rx. Results
for the discrete-time model are followed by results for the continuous-time model.

4.1 Disturbance of Exponential Growth: Discrete-time Model

For simple exponential growth, we have N(⌧�
n

) = N
n�1 e

r Tn so that N
n

= N
n�1 e

r TnD
n

for the discrete-time model. This can be iterated to obtain

N
n

= N0

nY

k=1

⇥
er TkD

k

⇤
, (16)

where N0 is a given initial condition in (0,K), T
n

⌘ ⌧
n

� ⌧
n�1 (n > 1) is the random time

interval between disturbances, and D
n

is the fraction of the population that survives the
nth disturbance. Since we have assumed that disturbances occur according to a Poisson
process, the random variables T

n

, n � 1, are mutually independent and exponentially
distributed with parameter � > 0; e.g., see Bhattacharya and Waymire (1992, 2009).
The random variable S

n

= exp(r T
n

) takes values in [1,1) and has a Pareto distribution
with cumulative distribution function F

Sn(s) = 1 � s�p, s > 0, where p := �/r > 0.
Here, E(S

n

) = p/(p � 1) = (�/r)/((�/r) � 1) if �/r > 1 and is infinite otherwise. The
disturbance factors D

n

are also assumed to be independent and identically distributed
(i.i.d.), and independent of the disturbance times.

Theorem 4.1 (Threshold for almost sure convergence) Let ⌧
n

be a sequence of ar-
rival times of a Poisson process with intensity � > 0, and D

n

be a sequence of i.i.d. random
disturbance variables on [0, 1] which is independent of the Poisson process. Suppose that
G(N) = rN for some r > 0. Then
(i) If 0 < E [lnD1] +

r

�

< 1, then N
n

! 1 a.s. as n ! 1.
(ii) If �1 < E [lnD1] +

r

�

< 0, then N
n

! 0 a.s. as n ! 1.

Proof. Taking logarithms in (16) we have

ln (N
n

) = ln (N0) +
nX

k=1

ln(D
k

) + r
nX

k=1

T
k

. (17)

Now apply the strong law of large numbers to get

ln (N
n

)

n
! E [lnD1] +

r

�
as n ! 1, a.s.

If the limit is positive then ln(N
n

), and therefore N
n

is unbounded as n ! 1. If the limit
is negative then ln(N

n

) ! �1 and therefore N
n

! 0, almost surely. ⌅
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The threshold behavior defined by this result is in terms of behavior of sample paths that
occurs with probability one (i.e., almost surely). This implies convergence in distribution,
but is generally stronger than convergence in mean. In view of the following calculation,
this threshold would not be observed in the (weaker) behavior of the averages.

Theorem 4.2 (Threshold for convergence in mean) Assume that the conditions of
Theorem 4.1 hold. Then, as n ! 1,

E (N
n

) !

8
><

>:

0, if E(D1) +
r

�

< 1

N0, if E(D1) +
r

�

= 1

1, if E(D1) +
r

�

> 1

(18)

Proof. Observe that

E (N
n

) =

(
N0
�
E (D1)E

�
er T1

��
n

= N0

⇣
E (D1)

(�/r)
(�/r)�1

⌘
n

, if �/r > 1

1, if �/r  1.

Thus, E(N
n

) approaches zero if �/r > 1 and E(D1)
(�/r)

(�/r)�1 < 1, E(N
n

) approaches N0

if �/r > 1 and E(D1)
(�/r)

(�/r)�1 = 1, and E(N
n

) approaches infinity otherwise. These three

distinct cases can be re-phrased as in (18). ⌅
Remark. If E(D1)+r/� < 1, then E [ln(D1)]+r/� < 0. This follows from ln(x)  (x�1)
for x > 0 and taking expectations. Theorems 4.1 and 4.2 therefore imply that for the
disturbed exponential growth model, if N

n

! 0 in L1, then N
n

! 0 almost surely, but not
conversely. In more general settings to follow in which the limit is a not an almost sure
constant, e.g., zero or infinity in the present cases, the primary threshold will be that of
convergence in distribution.

Theorems 4.1 and 4.2 distinguish between convergence with probability one and con-
vergence in expectation and they identify two distinct thresholds. In the context of our
model, it makes sense to express these thresholds as a comparison of the intrinsic per
capita growth rate, r, to the other (environmental) model parameters that characterize
the magnitude and frequency of episodic disturbances that lead to mortality. An evolution
toward eventual extinction results when the mortality rate due to disturbances overpowers
the undisturbed net growth rate, r. The threshold conditions in Theorems 4.1 and 4.2 are
then r < �E[� ln(D1)] =: r2 and r < �[1 � E(D1)] =: r1, respectively, and since r1  r2,
the second inequality implies the first. In analogy with their common use in Markov-Monte
Carlo simulation theory, and in statistical physics, we refer to these two parameter regimes
as quenched (Theorem 4.1) threshold for almost sure convergence) and annealed (Theorem
4.2) threshold for convergence in expectation). In the case where r1 < r < r2 (quenched
but not annealed), we have N

n

! 0 almost surely but E(N
n

) ! 1.
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Example 4.1 (Uniformly distributed disturbance) Suppose that D1
d⇠ Uniform(0, 1).

Then E(D1) = 1/2, E [ln(D1)] = �1 and the two regimes are given by r/� < 1/2 and
r/� < 1, respectively. Compare this to Example 5.1.

Example 4.2 (Two-valued distributed disturbance) Suppose that D1 = 1 (no dis-
turbance) or � with equal probabilities, where 0 < � < 1 is fixed. Then E(D1) = (1 + �)/2,
E [ln(D1)] = ln(�)/2 and the two regimes are given by

r

�
<

1� �

2
and

r

�
<

� ln �

2
,

respectively. So with � = 1/4, the annealed regime is r/� < 3/8 ⇡ 0.375, while the quenched
regime is r/� < ln 2 ⇡ 0.693.

Example 4.3 (Disturbance with Beta(a, 1) distribution) This example provides a case
in which the distribution of N

n

can be given in closed form for all n. We begin with equa-
tion (17). Since the T

k

are i.i.d. exponential random variables with parameter, �, the
second sum of random variables has a Gamma(n,�/r) distribution. Now suppose that the
D

k

have the distribution given by FDk(x) = xa, a > 0, x 2 (0, 1) (i.e. D
k

⇠ Beta(a,1)).
Then B = � ln(D

k

) will have have an exponential distribution with parameter a. As a
result, the first sum in (17) has a Gamma(n, a) distribution, with a leading minus sign.
The distribution of (17) is then given by the di↵erence of two independent random variables
having a Gamma distributions. The pdf for the resulting distribution can be computed as

f
Zn(z) =

(p a)ne
(a�p)

2 z

⇣
p+a

|z|

⌘1/2�n

K
n� 1

2
[(p+ a)|z|/2]

p
⇡ (n� 1)!

, (19)

where Z
n

= ln(N
n

/N0), z 2 (�1,1), p = �/r and K
⌫

(x) is the modified Bessel function
of the second kind. However, for integer n > 1, K(n� 1

2 , x) can be written as

K
n�1

2
(x) =

r
⇡

2x

e�x

�(n)

Z 1

0
e�t tn�1

✓
1 +

t

2x

◆
n�1

dt (20)

=

r
⇡

2x
e�x

n�1X

k=0

1

(2x)k

✓
n� 1

k

◆
�(n+ k)

�(n)
(21)

⌘
r

⇡

2x
e�xQ

n

(x), (22)

where the binomial theorem is used to get the second equality (Pope, 2003). The function
Q

n

(x) > 1 for all x and n, diverges for x = 0, and decreases to 1 as x ! 1 for all n.
Using (22), (19) can be written in terms of simple functions as

f
Zn(z) =

8
<

:

1
(n�1)!

⇣
p a

p+a

⌘
n

|z|n�1eaz Q
n

⇥�
p+a

2

�
|z|
⇤
, z < 0

1
(n�1)!

⇣
p a

p+a

⌘
n

|z|n�1e�pz Q
n

⇥�
p+a

2

�
|z|
⇤
, z � 0

(23)
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If a = p, this distribution is symmetric about z = 0 (so N
n

is log-symmetric), while for
a < p and ↵ > p it is skewed to the left or right, respectively. Now the pdf for N

n

can be
computed in closed form as

f
Nn(x) =

1
x

f
Zn

h
ln
⇣

x

N0

⌘i
, x 2 (0,1). (24)

It is also easily shown that E(Z
n

) = n (1/p� 1/a). Note that E(D1) = a/(1 + a) and
E [ln(D1)] = �1/a, so the two threshold regimes are given by

r

�
<

1

1 + a
and

r

�
<

1

a
,

These are equivalent to p > 1 + a and p > a, respectively.

4.2 Disturbance of Exponential Growth: Continuous-time Model

Theorem 4.3 Assume that the conditions of Theorem 4.1 hold. Then the solution N(t)
of (12) satsifies:

(i) E[N(t)] = N0 e
t[r��(1�E(D1))].

(ii) E
⇥
N2(t)

⇤
= N2

0 e
2 r t�� t[1�E(D2

1)].
(iii) E [N(t)] ! 0 if, and only if, E(D1) < 1� r/�.

Proof. Let M(t) be the random number of disturbances that occur before time t and let
⌧ be the time of the last (most recent) disturbance before time t, given by

⌧ =

M(t)X

k=1

T
k

. (25)

We can then write the population size at an arbitrary time, t, in terms of the deterministic
growth that has occurred since the last disturbance event as

N(t) = N
M(t) e

r(t�⌧). (26)

Here, N
M(t) denotes the value of the discrete-time process immediately after the last dis-

turbance event. Since disturbances follow a Poisson event process, M(t) has a Poisson
distribution with parameter �t. Between time ⌧ and t, the population again experiences
deterministic, exponential growth. Interestingly, the product of the exponential (determin-
istic) growth terms contained in N

M(t) combine with the one in (26) to give simply er t.
This allows (26) to be written as a product of a random number of i.i.d. random variables

N(t) = N0 e
r t

M(t)Y

k=1

D
k

. (27)
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Using conditional probabilities and noting the probability generating function for the Pois-
son distribution, one has that

E

2

4
M(t)Y

k=1

D
k

3

5 = E{
M(t)Y

k=1

E[D
k

|M(t)]}

= E{(D1))
M(t)}

= e�� t(1�E(D1)). (28)

Inserting this into (27), we obtain assertion (i). In the long-time limit, the expected size
of the population therefore diverges or converges to 0 depending on whether the argument
of the exponential function is positive or negative, respectively. This is the same threshold
condition that was found for the discrete-time model in Theorem (4.2). Result (ii) is
obtained by the same method after squaring (27). Together, (i) and (ii) also allow the
variance to be computed. ⌅

5 Logistic Growth with Episodic Disturbances

While the exponential growth model allowed us to compute threshold criteria in terms of
model parameters and nicely illustrates the distinction between the quenched and annealed
parameter regimes, it is an unrealistic long-term model because it puts no upper bound on
the population size. We now turn to the case of logistic growth, where G(x) = rx(1� x

K

) in
our general model, (12). It turns out that the reciprocal transform h(N) = 1/N established
in Example 2.1 provides the key to analyzing the discrete-time model in this case.

5.1 Disturbance of Logistic Growth: Discrete-time Model

Recall thatN
n

denotes the random size of the population immediately after the nth episodic
disturbance. As a result of Example 2.1 and (13), since N

n�1 becomes the (new) initial
condition for the next disturbance interval, we have

N
n

= D
n

1
1
K

(1� e�r Tn) + 1
Nn�1

e�r Tn
, (n � 1) , (29)

where N0 is given, T1 is the random time until the first disturbance, T
n

⌘ ⌧
n

�⌧
n�1 (n > 1)

is the random time interval between successive disturbances and D
n

is the fraction of the
population that survives the nth disturbance. The case r > 0,K = 1 is that of exponential
growth, treated in the previous section. As in that section, we assume that disturbances
occur according to a Poisson process, so the random variables T

n

, n � 1, are mutually
independent and exponentially distributed with parameter � > 0. The random variable
S
n

= exp(�r T
n

) has the distribution function F
Sn(s) = sp, where p = �/r. That is,
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S
n

d⇠ Beta(p, 1), for s 2 (0, 1). (Note that in the disturbed exponential growth model we
had S

n

= exp(r T
n

).) The disturbance factors D
n

are again assumed to be independent
and identically distributed, and independent of the disturbance times.

The recursion (29) can also be written as an iterated random function dynamics (see
Bhattacharya and Majumdar (2007), Schreiber (2012)) for extensive theory of such dy-
namics),

N
n

= �⇥(n) � �⇥(n�1) � · · · � �⇥(1) , (30)

where ⇥(i) =
⇣
✓
(i)
1 , ✓

(i)
2

⌘
, i � 1, are i.i.d with independent components ✓1 2 (0, 1) and

✓2
d⇠ Exp(�), and

�⇥(x) ⌘ �(✓1,✓2)(x) = ✓1
1

1
K

(1� e�r✓2) + 1
x

e�r✓2
. (31)

While it is di�cult to analyze the logistic growth model in terms of N
n

directly, signif-
icant progress can be made by instead examining its reciprocal, N�1

n

. Specifically, letting
J
n

= 1/N
n

2 (1,1), one has for all n = 1, 2, . . .

J
n

= A
n

J
n�1 +B

n

, J0 = 1/N0, (32)

where A
n

= S
n

/D
n

, B
n

= (1� S
n

) /KD
n

and (A1, B1), (A2, B2), ... are i.i.d. The general
solution to this linear recurrence relation is given by

J
n

= J0

 
nY

k=1

A
k

!
+

0

@
n�1X

j=1

B
j

nY

i=j+1

A
i

1

A+B
n

. (33)

We can now establish convergence of the distribution of the stochastic process N
n

to steady
state.

Theorem 5.1 (Threshold for convergence in distribution) Let ⌧
n

be a sequence of
arrival times of a Poisson process with intensity � > 0, and D

n

be a sequence of i.i.d. ran-
dom disturbance variables on [0, 1] which is independent of the Poisson process. Suppose
that G(N) = rN(1�N/K) for some r > 0 and K > 0.

(i) If E [ln(D1)] +
r

�

> 0, then {N
n

}1
n=0 converges in distribution to a unique invariant

distribution with support on (0,K).

(ii) If E [ln(D1)] +
r

�

< 0, then {N
n

}1
n=0 converges in distribution to zero. Moreover, in

this latter case, the convergence to �{0} is exponentially fast in the (Prokhorov) metric of
convergence in distribution.

18



Proof. To prove (i), consider the reciprocal dynamics given by (32). According to Theorem
1 in Brandt (1986), a su�cient condition for the existence of a unique invariant distribution
on the state space (1,1) is negativity of the parameter

E ln |A1| < 0,

or equivalently,

�E [ln (D1)]�
r

�
< 0,

and the negativity of the parameter

E[ln |B1|]+ < 0, where [x]+ = max(x, 0),

but this follows automatically from the condition in (i). This establishes assertion (i), since
the map x ! x�1 of (0,K) onto ( 1

K

,1) is continuous with a continuous inverse.
To prove (ii), we need to obtain uniqueness of the invariant distribution on [0,K) for

{N
n

}. For this we apply the Diaconis and Freedman (1999) condition of “contraction on
average” on the complete metric space [0,K]. Specifically, in the representation as i.i.d.
iterated random maps (30), one also has

�0⇥(x) = ✓1x
�2 e�r✓2

⇣
1
K1

(1� e�r✓2) + 1
x

e�r✓2

⌘2  ✓1 e
r ✓2 . (34)

Thus,
|�⇥(x)� �⇥(y)|  M⇥ |x� y|

for all 0  x, y  K, where
M⇥ = ✓1 e

r ✓2 .

Now, �{0} is the unique invariant probability on [0,K] provided that

E [ln (D1)] +
r

�
⌘ E [ln (M⇥)] < 0.

Moreover, a direct application of the theorem of Diaconis-Freedman (1999) yields the as-
serted exponential rate of convergence to steady-state distribution. ⌅

Next we show that there is a di↵erent threshold to assure that the reciprocal of the
population converges in mean. This can be significant when parametrizing this model
based on data analysis of averages.

Theorem 5.2 (Convergence in mean of the reciprocal) Assume that the conditions
of Theorem 5.1 holds. Then, as n ! 1,

E

✓
1

N
n

◆
!

8
<

:

E(D�1
1 )

K(1��
r (E(D�1

1 )�1))
, if r

�

> E(D�1
1 )� 1,

1, if r

�

 E(D�1
1 )� 1.

(35)
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Proof. First, since the T
n

are independent and exponentially distributed, there follows that
E(S

n

) = E(e�rT1) = �/(� + r). Taking expectations in (32), and using the independence
of J

n�1 and A
n

, yields:

E(J
n

) = E(A1)E(J
n�1) + E(B1), n � 1, (36)

because the A
n

and B
n

are identically distributed. Hence, as n ! 1

E(J
n

) !
(

E(B1)
1�E(A1)

, if E(A1) < 1

1, otherwise

Recalling that A1 = S1D�1
1 , and B1 = (1 � S1)K�1D�1

1 , and exploiting independence of
S1 and D�1

1 , a calculation shows that the above limit is finite if r/� > E(D�1
1 ) � 1 with

the limit given in (35), and infinite otherwise. ⌅

Theorem 5.2 establishes a new threshold for the growth rate r, namely r3 := �
�
E(D�1

1 )� 1
�

guaranteeing convergence or divergence of the mean of the reciprocal of the population.
For future reference, we note that r2  r3, where r2 = �E(� ln(D1)) was defined before.
This follows from Jensen’s inequality and the fact that ln(x)  x� 1 for all x > 0.

Example 5.1 (Uniformly distributed disturbance) This example provides a case where
the invariant distribution of the reciprocal of the population, and of the population can be
given in closed form. For the evolution of the population sizes at successive disturbances,
consider J

n

⌘ K/N
n

2 (1,1) satisfies the recurrence (32) scaled by K. An invariant distri-
bution for reciprocal recurrence must be such that J

n+1 and J
n

have the same distribution,
so let J denote a random variable having this distribution. Then J must satisfy

J
d

=A1 J +B1 =
S1 (J � 1) + 1

D1
. (37)

It follows that

F
J

(z) = P [J  z] = P


J 

✓
zD1 � 1

S1

◆
+ 1

�
. (38)

Since the random variables D1 and S1 are independent, their joint pdf is f
S1(s) fD1(x) and

F
J

(z) =

Z 1

0

Z 1

0
F
J

✓
1 +

z x� 1

s

◆
f
S1(s)fD1(x) ds dx. (39)

Thus (39) provides an integral equation that F
J

(z) must satisfy. Since S1 = exp(�r T ),

f
S1(s) = p sp�1 (or S1

d⇠ Beta(p, 1)), where p = �/r and s 2 (0, 1). Also, since J takes
values on (1,1), F

J

[1 + (z x � 1)/s] = 0 for x < 1/z. Given a solution for F
J

(z), we
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can easily compute the corresponding invariant distribution for N since P [N  Ku] =
P [K/N � 1/u] and therefore

F
N

(Ku) = 1� F
J

(1/u) . (40)

Changing variables to u = z x in (39), and noting that the first integral is zero from x = 0
to x = 1/z, we have

F
J

(z) =

Z
z

u=1

✓
1

z

◆
fD1

⇣u
z

⌘Z 1

s=0
F
J

✓
1 +

u� 1

s

◆
f
S1(s) ds du. (41)

Changing variables again to v = 1 + (u � 1)/s, and using the fact that f
S1(s) = p sp�1,

where p = �/r, we find after simplifying that

z F
J

(z) =

Z
z

u=1
fD1

⇣u
z

⌘
(u� 1)p

Z 1

v=u

pF
J

(v) dv

(v � 1)p+1

�
du. (42)

Now assume that D1
d⇠ Uniform(0, 1). Then all z-dependence, except from the upper limit

of integration, is removed from the right-hand side. Taking the derivative of both sides with
respect to z twice, we obtain


[z F

J

(z)]0

(z � 1)p

�0
=

�pF
J

(z)

(z � 1)p+1 . (43)

Solving this ODE for F
J

(z) with the constraints z � 1, F
J

(1) = 0 and F
J

(1) = 1, we find
that if 0 < p < 1 (or � < r), the cdf for the invariant distribution simplifies to

F
J

(z) =
B(1, 1� p, 1 + p)�B(1

z

, 1� p, 1 + p)

B(1, 1� p, 1 + p)�B(0, 1� p, 1 + p)
, z � 1 (44)

where B(z, a, b) is the incomplete Beta function. However, B(0, 1 � p, 1 + p) = 0 for 0 <
p < 1. One may check that E(J) = 1, which is consistent with (35), since E(D�1

1 ) = 1
for D1

d⇠ Uniform(0, 1). Finally, since the limiting population size is given by N = KJ�1,
we can use (40) to compute the cdf for N as

F
N

(Ku) =
B(u, 1� p, 1 + p)

B(1, 1� p, 1 + p)
, 0  u  1, (45)

and therefore the pdf of N is given by

f
N

(v) = C(p,K)
⇣
1� v

K

⌘
p

⇣ v

K

⌘�p

, 0  v  K, (46)

where C(p,K) is the normalization constant. In particular the rescaled population N

K

has a
Beta distribution on [0, 1] with parameters 1� p and 1+ p, and we previously required that
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0 < p  1. Recall from Theorem 5.1 that there is a unique, nontrivial invariant distribution

when E[ln(D1)] + 1/p > 0 and otherwise N ! 0 almost surely. Since D1
d⇠ Uniform(0, 1),

E[ln(D1)] = �1 and the first condition is equivalent to p < 1. Note also that the pdf given
by (46) diverges at u = 0 for all p > 0. In addition,

E(N) = (1� p)K/2, (47)

V ar(N) = (1� p2)K2/12. (48)

5.2 Disturbance of Logistic Growth: Continuous-Time Model

Since the logistic growth model is a special case (↵ = 1) of the Richards growth model, we
postpone analysis of the continuous time logistic growth to the latter analysis where the
general form of the continuous time invariant distribution function for general disturbance
distributions will be given in terms of the corresponding discrete time invariant distribution.
In anticipation of those results, it will follow from Theorem 6.2, see Example 6.1 for details,

that in the case of uniformly distributed disturbances, i.e., D1
d⇠ U(0, 1) as in Example 5.1,

and if r

�

> 1 = �E lnD1, then the invariant distribution of the rescaled population, N/K
associated to the continuous-time model (12), will have the Beta distribution supported
on (0, 1] with parameters (1� p, 1) given by

µ
K

(x) =
d

dx
µ[0, x] = C2(p)x

�p, x 2 (0, 1]. (49)

where p = �/r < 1, C2(p) = 1/B(1 � p, 1) and B(a, b) =
R 1
0 xa�1(1 � x)b�1 denotes the

Beta normalization constant. In particular,

E(N) =
1� p

2� p
K (50)

V ar(N) =
(1� p)

(2� p)2(3� p)
K2 (51)

Notice that, although both the discrete-time invariant distribution ⇡ and µ are Beta dis-
tributions, the pdf µ di↵ers from that of its discrete-time counterpart (46) in Example 5.1.
This has significant consequences for statistical parameter estimation and calibration of
these models, as can be seen by comparing the moments in (47), (48) to (50) and (51) re-
spectively. For instance, the mean of the invariant distribution for the discrete time model
is a factor of 2�p

2 < 1 of the mean of the continuous time model, and thus always smaller.
As will be shown in Theorem 6.2 in connection with the continuous time post-disturbance
Richard’s model, a general result is possible that displays the invariant distribution for the
continuous time disturbance model as an integral with respect to the invariant distribution
of the discrete-time post disturbance model.
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6 Richards Growth with Episodic Disturbances

The Richards growth model is a generalization of the logistic growth model with an ad-
ditional parameter, ↵ > 0. In terms of our general model (12) this model is given by
G(N) = r N [1� (N/K)↵]. The logistic model is the special case of ↵ = 1. In particu-
lar, as an application of Lemma 2.2, we showed in Example 2.2 that the transformation
h(N) = 1/N↵, and the assignment ⌫ = ↵r, transforms the system into an a�ne equa-
tion, from which follows that the solution N(t) of the Richards growth model with initial
condition N0 can be written as:

N(t) =
1

⇣
1

K

↵ (1� e�↵r t) + 1
N

↵
0
e�↵r t

⌘ 1
↵

. (52)

This curve has an inflection point where N(t)/K = [1/ (1 + ↵)]1/↵.

6.1 Disturbed Richards Growth: Discrete-time Model

The discrete-time disturbance model associated with (52) is

N
n

= D
n

1
⇣

1
K

↵ (1� e�r↵Tn) + 1
N

↵
n�1

e�r↵Tn

⌘1/↵ , (n � 1) . (53)

The reciprocal transform for the analysis of the Richards growth model is given by J
n

=
1/N↵

n

2 (K1�↵,1). Define S
n

= exp (�r↵T
n

), A
n

= S
n

D�↵

n

and B
n

= (1� S
n

)K�↵D�↵

n

.
One then has

J
n

= A
n

J
n�1 +B

n

, J0 = 1/N↵

0 . (54)

The following result covers the disturbed logistic growth model as noted earlier by taking
↵ = 1.

Theorem 6.1 (Threshold for convergence in distribution) Let ⌧
n

be a sequence of
arrival times of a Poisson process with intensity � > 0, and D

n

be a sequence of i.i.d. ran-
dom disturbance variables on [0, 1] which is independent of the Poisson process. Suppose
that G(N) = rN(1� (N/K)↵) for some r > 0, ↵ > 0 and K > 0.

(i) If E [ln(D1)] +
r

�

> 0, then {N
n

}1
n=0 converges in distribution to a unique invariant

distribution with support on (0,K).

(ii) If E [ln(D1)] +
r

�

< 0, then {N
n

}1
n=0 converges in distribution to 0. Moreover, in this

case, the convergence to �{0} is exponentially fast in the (Prokhorov) metric of convergence
in distribution.
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Proof. The proof of (i) is similar to the proof of Theorem 5.1: Apply Theorem 1 from
Brandt (1986) to the process (54) to show that J

n

= 1/N↵

n

, evolves to a unique, invariant
distribution on (K�↵,1). Then (i) follows because the map x ! 1/x↵ of (0,K) onto
(K�↵,1) is continuous with a continuous inverse. To prove (ii) we also proceed as in the
proof of Theorem 5.1, and apply the result of Diaconis-Freedman (1999). ⌅

Remark. It is noteworthy that the threshold condition for the Richards growth model
does not depend on the parameter ↵. That said, of course the details of the asymptotic
invariant distribution, when it exists, will depend on ↵.

6.2 Disturbed Richards Growth: Continuous-time Model

The following theorem demonstrates the relationship between invariant distributions asso-
ciated to the discrete-time and continuous time stochastic processes as stated in general in
Theorem 3.1, for the Richards growth model.

Theorem 6.2 Assume that the conditions of Theorem 6.1 hold, and that 1/p := r/� >
�E lnD1. Then the rescaled continuous time disturbed Richards model N

K

has the invariant
cumulative distribution function

µ
K

(0, x] =

Z
x

0

✓
y�↵ � x�↵

y�↵ � 1

◆ �
↵r

⇡
K

(dy) 0  x  1, (55)

where ⇡
K

is the rescaled invariant distribution for the discrete-time distributed Richards
model from (i) in Theorem 6.1.

Proof. Assume r/� > �E(lnD1). Let ⇡
K

(dx) denote the invariant distribution for
the discrete-time post-disturbance Richards model, rescaled by K to a distribution on
[0, 1]. That is if Y denotes a random variable with distribution ⇡(dx) on [0,K] then let
Y
K

= K�1Y , and denote its distribution by ⇡
K

(dx) on [0, 1]. Scaling the post-disturbance
evolution accordingly, one has

N
n

K
= D

"
e�r↵t +

✓
N

n�1

K

◆�↵

(1� e�r↵T )

#� 1
↵

.

Thus, letting

g
↵

(T, Y ) = [e�r↵T + Y �↵

K

(1� e�r↵T )]�
1
↵ ,

where T is exponentially distributed with parameter � > 0 and independent of Y
K

, by The-
orem 3.1 the invariant distribution of the population size rescaled by 1

K

can be computed
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as follows.

P (g
↵

(T, Y
K

)  x) = P

✓
T � � 1

↵r
ln

✓
x�↵ � Y �↵

K

1� Y �↵

K

◆
, Y

K

 x

◆

= E

2

41[YKx]

✓
x�↵ � Y �↵

K

1� Y �↵

K

◆ �
↵r

3

5

=

Z
x

0

✓
y�↵ � x�↵

y�↵ � 1

◆ �
↵r

⇡
K

(dy) 0  x  1. (56)

⌅

Example 6.1 (Continuous-time disturbed logistic model revisited) If one assumes
a uniformly distributed disturbances on [0, 1], hence 1/p = r/� > 1 = �E lnD1, and ↵ = 1
yielding logistic growth, then, according to (46), Y

K

has the pdf C
p

(1� y)p y�p, 0  y  1.
Thus, the invariant distribution function for the (rescaled) population in the continuous
time Richards growth model is given by

µ
K

[0, x] =

Z
x

0

✓
y�1 � x�1

y�1 � 1

◆
p

C
p

(1� y)py�p dy

= C 0
p

x1�p, 0  x  1, p =
�

r
. (57)

The corresponding pdf, i.e., Beta density with parameters (1 � p, 1) was displayed earlier
at (49).

7 Gompertz Growth with Episodic Disturbances

The Gompertz growth model is another growth model that can be viewed as the limiting
case, ↵! 0+, of the Richards growth model. To see this, let r(↵) be a function such that
lim

↵!0+ ↵r(↵) = r, where r > 0 is a constant, and then for all N > 0:

lim
↵!0+

r(↵)N


1�

✓
N

K

◆
↵

�
= lim

↵!0+
↵ r(↵)N

1� e↵ ln(N
K )

↵
= �rN ln

✓
N

K

◆
,

which is the right-hand side in the Gompertz model. The solution obtained in Example
2.3 may be expressed as

N(t) = K

✓
N0

K

◆
e

�rt

(58)

In particular, this growth curve has faster growth at early times than the exponential,
logistic or Richards model, with an inflection point when N(t)/K = e�1 ⇡ 0.368.
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7.1 Disturbed Gompertz Growth: Discrete-time Model

The discrete-time disturbance model associated with (58) is

N
n

= K

✓
N

n�1

K

◆
e

�rTn

D
n

(n � 1) . (59)

Recall that the appropriate transformation for the (rescaled) Gompertz model is J
n

=
ln (N

n

/K) 2 (�1, 0), and defining A
n

= e�rTn and B
n

= ln (D
n

). Accordingly one has

J
n

= A
n

J
n�1 +B

n

, J0 = ln (N0/K) , n = 1, 2, . . . (60)

Theorem 7.1 (Absence of steady state threshold for Gompertz model) Suppose
that G(N) = �rN ln(N/K) for some r > 0 and K > 0. Let ⌧

n

be a sequence of arrival
times of a Poisson process with intensity � > 0, and D

n

be a sequence of i.i.d. random
disturbance variables on [0, 1] which is independent of the Poisson process, and such that
E[ln(� ln(D

n

))]+ < 1, where [x]+ = max(0, x).
Then {N

n

}1
n=0 converges in distribution to a unique invariant distribution supported

on (0,K).

Proof. Applying Theorem 1 in Brandt (1986) with A
n

= e�r Tn , B
n

= ln(D
n

), one can
verify that condition (0.4) in that Theorem 1 holds; namely, �1  E ln |A1| < 0 (since
�r/� < 0) and E[ln |B1|]+ < 1 (since E[ln(� ln(D1))]+ < 1 by assumption). Therefore,
J
n

= ln (N
n

/K) evolves to a unique, nontrivial invariant distribution. The result follows
because the map x ! ln(x/K) of (0,K) onto (0, 1) is continuous with a continuous inverse.

Remark. This result is remarkable compared to the results for disturbed logistic growth
or, more generally, disturbed Richards growth in Theorem 6.1 because here there is no
threshold, and convergence to extinction cannot occur unless one begins with N(0) = 0.
The cause of this phenomenon is that in case of Gompertz growth at small population
levels, the population grows at a super-exponential rate, and the disturbances occur too
infrequently, no matter how strong they are, to counter this.

Example 7.1 (Uniformly distributed disturbance of Gompertz growth) Let Ñ =
lim

n!1(N
n

/K) be the normalized population size associated with the invariant distribu-
tion. We can derive an integral equation for the cdf of Ñ using the same approach as was
used to obtain (39), which yields

F
Ñ

(z) =

Z 1

x=z

Z 1

w=1
F
Ñ

⇣⇣ z
x

⌘
w

⌘
f
W

(w) fD(x) dw dx. (61)

Here, W = erT has a Pareto distribution with F
W

(w) = 1� w�p, w � 1 and p = �/r > 0.
As in the example for the logistic growth model, we can change variables twice (u = z/x
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and v = uw), to get

F
Ñ

(z)

z
=

Z
z

u=1
fD

⇣ z
u

⌘ lnp(u)

u2

Z
u

v=0

pF
Ñ

(v) dv

v [ln(v)]p+1

�
du. (62)

If we assume that D1
d⇠ Uniform(0, 1), then the only z-dependence on the right-hand side

is from the upper limit of integration. Taking derivatives of both sizes with respect to z
twice and simplifying, we get the ODE

"
z2

lnp(z)

✓
F
Ñ

(z)

z

◆0
#0

=
pF

Ñ

(z)

z [ln(z)]p+1 . (63)

Solving this with the constraints, 0  z  1, F
Ñ

(0) = 0 and F
Ñ

(1) = 1, we find that

F
Ñ

(z) =
�(1 + p,� ln(z))

�(1 + p)
, z 2 (0, 1), (64)

where the incomplete Gamma function is used in the numerator. The corresponding pdf is
given by

f
Ñ

(z) =
[� ln(z)]p

�(1 + p)
, z 2 (0, 1). (65)

Note that this diverges at z = 0 for all p > 0. Unlike Example (5.1) (logistic growth, with
uniform disturbances), where the existence of the invariant distribution was subject to the
threshold condition p < 1, this pdf is defined for all p > 0. The moments are given by
E(Ña) = (1 + a)�(1+p), for a > �1.

8 Simulation Results

In order to explore the dynamics of the randomly disturbed logistic growth model in greater
detail, the model was coded in the Python programming language and is available as open-
source code on GitHub at: github.com/peckhams/disturbed logistic. The code uses the
Python packages numpy (for numerics and random number generators), matplotlib (for
plotting sample paths) and scipy (for the digamma function, to compute ⌘ for the Beta
distribution). Note that for the Beta distribution with parameters ↵ and �,

⌘ = E [� ln(D1)] =  (↵+ �)�  (↵), (66)

where  (x) = �0(x)/�(x) is the digamma function. The model simulates the Poisson
event process for the disturbance times and determines the magnitude of multiplicative
disturbance events by drawing from a Beta distribution on [0, 1]. Depending on the choice
of parameters, ↵ and �, the Beta distribution can take on a rich variety of forms which
makes it a flexible choice to use for the distribution of D1. When ↵ = � the pdf is
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symmetric, while for ↵ < � and ↵ > � it is skewed toward x = 0 and x = 1, respectively.
The Uniform distribution is given by ↵ = � = 1, and the pdf is U-shaped when ↵ and �
are both less than one. For other parameter settings, the pdf can diverge at either x = 0
or x = 1.

The three panels on the left side of Figure 3 show sample paths for parameter settings
where the model is in the subcritical regime, and shows the population often close to the
carrying capacity between disturbances. The three panels on the right side of Figure 3 show
sample paths for parameter settings that are well within the supercritical regime, and show
that despite partially recovering from disturbances a number of times, the population size
drops to zero fairly rapidly for every realization (or sample path). The six panels in Figure
4 all show sample paths for the model when the parameter settings are at the critical
threshold.

9 Conclusions and Open Problems

In this paper we have presented the foundations of a general theory for the dynamics
of populations that are episodically disturbed by random catastrophes. We provided a
relatively extensive literature review and showed how our results unify and extend a number
of results that have been obtained previously for these types of models. A key feature of
these models is that many of them exhibit critical thresholds that can be understood
as a condition for which mortality rate due to the frequency and magnitude of episodic
disturbances exceeds the natural, net growth rate of a population. These critical thresholds
can be computed directly in terms of three key model parameters and they mark a boundary
between two distinctly di↵erent regimes: one where populations persist with a fluctuating
size that is described by an invariant distribution, and another where populations become
extinct at an exponentially fast rate. However, there is an important di↵erence between
real populations and our “model populations”, and that is that real populations cannot
recover from arbitrarily small sizes or biomass. It can be shown in our models that the
population size, N(t), will reach values arbitrarily close to zero repeatedly, even when the
model is on the “good side” of the critical threshold, although this occurs with a very small
probability. While such events would result in extinction for a real population, the model
population can recover from an arbitrarily small, positive size. Despite this fact, even
real populations will experience distinctly di↵erent dynamics on either side of the critical
threshold, and this was a key point in the work of Hanson and Tuckwell. Their model
included an e↵ective extinction level, � > 0, to capture this aspect of real populations,
and they gave asymptotic results for the limit of K/� ! 1. They also showed that the
distribution of persistence time on either side of the threshold is completely di↵erent, with
very long expected persistence times (e.g. measured in millions of years) on one side and
exponentially fast extinction on the other side. Although our results do not specifically
address the distribution of persistence time, we obtain exponentially fast convergence to
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Table 1: Convergence results for the disturbed growth models. The word invar indicates
convergence in distribution to an invariant distribution with support on (0,K).

0 < r < r1 r1 < r < r2 r2 < r < r3 r3 < r

Exponential

E(N
n

) ! 0 E(N
n

) ! 1 E(N
n

) ! 1 E(N
n

) ! 1
N

n

! 0, a.s. N
n

! 0, a.s. N
n

! 1, a.s. N
n

! 1, a.s.
Logistic

N
n

! 0 (a.s.) N
n

! 0 (a.s.) N
n

! invar (dist.) N
n

! invar (dist.)
E(N�1

n

) ! 1 E(N�1
n

) ! 1 E(N�1
n

) ! 1 E(N�1
n

) ! c > 0
Gompertz

N
n

! invar (dist.) N
n

! invar (dist.) N
n

! invar (dist.) N
n

! invar (dist.)

extinction beyond the critical threshold for the general class of models analyzed in the
paper.

Besides providing several specific examples for the exponential, logistic, Richards and
Gompertz growth laws — for which critical thresholds as well as invariant distributions
were computed in closed form — our results extend existing theory in various directions.
We o↵ered a new perspective on deterministic growth laws that shows how they can be
represented as a continuous-time weighted average of an appropriately transformed (or mea-
sured) initial population size and a similarly transformed carrying capacity. We also dis-
tinguished between continuous-time and discrete-time versions of these models and showed
how their invariant distributions are di↵erent but related; this result has important, practi-
cal implications for statistical inference and estimation of parameters. In addition, we illus-
trated how di↵erent types of convergence are characterized by di↵erent critical thresholds,
including convergence of sample realizations (probability one convergence), convergence in
distribution and convergence of means (L1 convergence).

A summary of threshold regimes are displayed in Table 1, where the thresholds are
expressed in terms of critical values of the intrinsic growth rate, r. In Table 1, r1  r2  r3,
where

r1 = � [1� E(D1)] , (67)

r2 = �E [� ln(D1)] , (68)

r3 = �
⇥
E(D�1

1 )� 1
⇤
. (69)

The constant c equals E(D�1
1 )/K

�
1� �

r

(E(D�1
1 )� 1)

�
, and appeared in Theorem 4.2.

Recall that for disturbed Gompertz growth, there is no critical threshold.

Our results also demonstrate the potential for populations to move closer to critical
thresholds if key parameters change over time, thereby putting populations at risk of ex-
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tinction that were not previously at risk. For example, climate change is expected to
lead to an increase in the frequency and severity of disturbances (e.g. storms, fires, floods,
droughts, infestations) and could also lead to a decrease in the net reproductive rate of vari-
ous populations (e.g. due to water, food or habitat shortages or di�culty in finding mates).
E↵ects that increase the disturbance frequency, �, or severity, as measured by E[� ln(D)],
or that decrease the per capita growth rate, r, can all be seen to move populations closer to
the threshold for extinction. In fact, one could potentially estimate these parameters from
population and climate data and then use the di↵erence, I = r � �E[� ln(D)] to measure
or monitor the “distance” of a given population from the threshold. This could be used
to help identify the most endangered populations, and perhaps suggest actions that would
modify the values of the key parameters enough to reduce the risk of extinction.

A natural extension of the disturbances introduced here would allow for climatic ef-
fects that could produce a gradual increase in the average frequency of disturbances in
the Poisson process. That is, ⇤(t), t � 0, would be replaced by a time-inhomogeneous
Poisson process with a non-decreasing intensity function �(t), t � 0, e.g., �(t) = t✓, or
�(t) = log(1+ t), t � 0. However, as is well-known, if

R1
0 �(t)dt = 1, then it is possible to

homogenize the Poisson process by an appropriate (nonlinear) change in time scale. Under
such a time change, the general form of the model remains the same, but the parameters
of the logistic curve then become time dependent.

Finally, while the constancy of K and r in the respective assumptions (H3) and (H6)
may be reasonable for many species, it is clearly violated for humans. Humans are excep-
tional in that they have access to contraception and other technologies that a↵ect their
intrinsic rates of reproduction and mortality. Individuals and governments also make con-
scious decisions about reproduction based on economic and societal conditions. In addition,
human technology has the potential to significantly increase or decrease the carrying ca-
pacity of the planet. Extensions to deterministic growth laws that are intended to apply to
human population growth and other trends that are influenced by technology include the
bi-logistic growth model (Meyer, 1994) which allows the carrying capacity to increase over
time and leads to an additional inflection point in the growth curve, compared to simple
logistic growth which has at most one inflection point. Marchetti et al. (1996) showed
good fits of the bi-logistic model to the populations of several industrialized countries,
including England and Japan. Meyer and Ausubel (1999) showed how bi-logistic growth
can result from allowing a dynamic carrying capacity, K(t), which itself follows a logistic
growth curve. These models o↵er additional directions for future work.
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10 Appendix A: Proof of Theorem 7

The continuous time evolution can be expressed in terms of the semigroup of linear con-
traction operators defined by

T (t)f(x) = E
x

f(N(t)), t � 0, x > 0,

via its infinitesimal generator given by

Lf(x) = T 0(0)f(x) =
d

dt
f(g(t, x))|

t=0 + �{Ef(Dx)� f(x)}.

To derive this simply observe that up to o(t) error as t # 0, either one or no disturbance
will occur in the time interval [0, t). Thus

T (t)f(x)� f(x)

t
=

f(g(t, x))e��t � f(x)

t
+

1

t

Z
t

0
E (f(Dg(s, x)))�e��sds+ o(t).

The first term is, by the product di↵erentiation rule,

f(g(t, x))e��t � f(g(0, x))e��0

t
! d

dt
f(g(t, x))e��t|

t=0 =
d

dt
f(g(t, x))|

t=0 � �f(x).

The second term is �Ef(Dx) in the limit as t # 0.
If µ is an invariant probability distribution for this continuous time evolution then one has
essentially from the Fokker-Planck equation L⇤µ = d

dt

µ = 0 for the adjoint operator, e.g.,
see Bhattacharya and Waymire (1990). In particular, for f belonging to the domain of L
as an (unbounded) operator on L2(µ),

0 =< f,L⇤µ >=< Lf, µ >=

Z 1

0
Lf(x)µ(dx), f 2 L2(µ).

In the case of the discrete time evolution, the one-step transition operator is defined by

Mf(x) = Ef(Dg(T1, x)), x > 0.

The condition for ⇡ to be an invariant probability distribution for the discrete time evolu-
tion is that for integrable functions f ,

Z 1

0
Mf(x)⇡(dx) =

Z 1

0
f(x)⇡(dx).

In particular, it su�ces to consider indicator functions f = 1
C

, C ⇢ (0,1), in which case
one has Z 1

0
P (Dg(T, x) 2 C)⇡(dx) = ⇡(C).
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These are the essential calculations required for the proof.
Let’s begin with part (i). First note from the definition of µ that

Z 1

0
Lf(x)µ(dx) =

Z 1

0

Z 1

0
Lf(g(t, y))�e��t dt⇡(dy).

Now, in view of the above calculation of L, one has
Z 1

0
Lf(g(t, y))�e��t dt =

Z 1

0

✓
@f(g(t, x))

@t
+ � [Ef(Dg(t, x))� f(g(t, x))]

◆
�e��tdt.

After an integration by parts this yields
Z 1

0
Lf(g(t, y))�e��tdt = �{Ef(Dg(T, x))� f(x)}

Thus, using this and the invariance of ⇡ for the discrete process, one has
Z 1

0
Lf(x)µ(dx) = �

Z 1

0
{Ef(Dg(T, x))� f(x)}⇡(dx) = 0.

This proves part (i).
To prove part (ii), first apply L to the function x ! P (Dg(T, x) 2 C). First note from the
composition property and an indicated change of variable,

P (Dg(T, x) 2 C) = P (Dg(T + t, x) 2 C) = e�t
Z 1

t

P (Dg(s, x) 2 C)�e��sds.

In particular the first term of LP (Dg(T, x) 2 C) is

d

dt
P (Dg(T, x) 2 C)|

t=0 = �{P (Dg(T + t, x) 2 C)� P (Dx 2 C)}.

Adding this to the second term yields,

LP (Dg(T, x) 2 C) = �{
Z 1

0
P (Dg(T, y) 2 C)P (Dx 2 dy)� P (Dx 2 C)}.

Integrating with respect to the continuous time invariant distribution µ yields

0 = �

Z 1

0
{
Z 1

0
P (Dg(T1, y) 2 C)P (Dx 2 dy)� P (Dx 2 C)}µ(dx),

or equivalently,
Z 1

0

Z 1

0
P (Dg(T, y) 2 C)P (Dx 2 dy)µ(dx) =

Z 1

0
P (Dx 2 C)µ(dx).

But since by definition ⇡(dy) =
R1
0 P (Dx 2 dy)µ(dx), this is precisely the condition

Z 1

0
P (Dg(T, y) 2 C)⇡(dy) = ⇡(C),

i.e., that ⇡ is an invariant probability for the discrete time distribution. ⌅
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Figure 2: Filled contour plot for the indicator function I(r,�, ⌘) = r � � ⌘ for the special
cases (a) r = 2.0 and (b) r = 4.0. The threshold condition, I = 0, is shown in each plot as
a black curve, with I < 0 above the curve and I > 0 below the curve. Eventual extinction
occurs almost surely where I < 0. The black curves in (a) and (b) should be viewed as
slices through a black, hyperbolic surface that divides the three-parameter state space into
two regions where I < 0 and I > 0.
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Figure 3: Simulations of the randomly disturbed logistic model, all with N0 = 10, r = 1.5,
b = 0.001 and m = 2. The figures on the left show subcritical cases (I = 1) with � = 0.5,
while those on the right show supercritical cases (I = �1) with � = 2.5. A beta distribution
with a = 3 and b = 2 was used for the random fractions D

n

.
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Figure 4: Simulations of the randomly disturbed logistic model, all with N0 = 10, r = 1.5,
b = 0.001, m = 2 and � = 1.5. This represents the critical threshold value of I(r,�,m) = 0.
A beta distribution with a = 3 and b = 2 was used for the random fractions D

n

.
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Figure 5: Density function for the Beta distribution with a = 3 and b = 2. For these
parameters, the distribution has µ = E(D) = 3/5, m = E(1/D) = 2 and ⌘ = MISSING.
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