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Chapter 1

Introduction

1.1 Summary

The goal of this project was to measure the dielectric and breakdown prop-
erties of thin film samples of insulating materials and to assess their suit-
ability for applications in electronics, particularly as gate dielectrics in tran-
sistors. The primary method employed was impedance spectroscopy, which
was used to determine dielectric constants and conductivities. We success-
fully performed these measurements on a series of gadolinium-scandate thin
film samples prepared by the process of pulsed laser deposition (PLD) and
found that the performance of this material as an insulator is not adequate
to be useful in applications.

1.2 Motivation and Goals

The dielectric properties of thin film materials are very important for mate-
rials to be employed in electronics applications because they determine the
extent to which the material can be used as an insulator, as well as its effec-
tiveness as a medium in capacitors. In particular, a successful high dielectric
constant thin film material could see applications in two major areas. First,
in the construction of semiconductor devices (such as transistors and logic
gates), there is a need for high-quality, very thin insulators for use in in-
creasingly small devices where current leakage is a critical issue. Second,
there is the possibility of a successful transparent insulator, which could see
application as a building block in transparent electronic devices, which are a
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new and promising area of development. 1

Our primary goal, in addition to actually measuring the insulator proper-
ties for a number of thin film samples, is to develop the techniques to continue
these measurements in the future. If we can develop the methods and exper-
imental protocols within the group to do these dielectric measurements, they
can become easier and more routine in the future. Previous to this project,
neither the knowledge of how to perform the actual measurements nor the
knowledge and tools to interpret and analyze the results existed in the group.

1.3 Background - Insulators

Before discussing impedance spectroscopy, we should comment on what con-
stitutes a good insulator for our purposes.

• The most obvious property of a good insulator is that it is not a good
conductor. A good insulator will have a low conductivity σ or a high
resistivity ρ. This is equivalent to saying that it has a small leakage
current.

• A related requirement is that a good insulator should have a high
breakdown voltage. Many insulating materials will fail and become
conductive if a large enough electric field is applied to the material (or
equivalently if a large enough voltage is applied across the material);
this process is termed dielectric breakdown. In a good insulator, the
field strength of voltage where breakdown occurs will be large.

• A good insulator will have a large dielectric constant εr. This dielectric
constant determines how easy it is for an applied electric field to induce
a polarization in the material. Strictly speaking, this is a property of
a good dielectric rather then a good insulator: for purely insulating
applications, this is not important. For applications as a gate dielectric
in transistors, the dielectric constant is critically important. Because
gate dielectrics are a major application for thin film insulators, this is
a very important quantity.

These last two qualities, breakdown field strength and dielectric constant,
can be combined to determine a figure of merit for the use of the material as

1This paragraph is based on text written for the URISC grant proposal for this project.
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a gate dielectric. This figure of merit, which we will call the quality factor, is
a the product of the breakdown field strength and the dielectric constant. Be-
cause the dielectric constant is dimensionless, this figure of merit has units
of electric field strength, typically in megavolts per centimeter (MV/cm).
Silicon dioxide (SiO2) thin film insulators have a breakdown voltage of ap-
proximately 10 MV/cm and a dielectric constant of approximately 4, making
a quality factor of 40MV/cm. In order to be a good candidate for a gate di-
electric, a new material should be at least as good as this, preferably better.
Because the relevant quantity is the product of the breakdown field strength
and the dielectric constant, a large breakdown can make up for a small di-
electric constant or vice versa. For application as a gate dielectric it is also
important that the leakage current due to the conductivity σ be small, but
this is not incorporated numerically into the figure of merit.

For capacitor applications, the dielectric constant, breakdown field strength,
and leakage current are likewise important, depending on the application; a
larger dielectric constant will not necessarily make up for a smaller break-
down voltage as it can in the gate dielectric application. For use in capacitors,
the dielectric constant determines the capacitance for a given area; thus it is
easier to make higher value capacitors with a larger dielectric constant. The
breakdown voltage determines the maximum voltage to which the capacitor
can be charged to and limits the operating voltage of a circuit incorporat-
ing the capacitor. However, in many applications a capacitor not operate at
high voltages, so this parameter is less important in these cases. The leakage
current likewise determines the time a capacitor can hold its charge; if the
capacitor is not being used for energy storage or is being charged and dis-
charged on time scales much shorter then the discharge time due to leakage,
this property will likewise not be important.

1.4 Background - Impedance Spectroscopy

In order to measure the small conductance σ and dielectric constant εr dis-
cussed in the previous section, we will employ the technique of impedance
spectroscopy. The goal of impedance spectroscopy is to map out the complex
impedance (a complex generalization of resistance that includes capacitive
and inductive effects as well) Z of the sample as a function of frequency
ω. This is done by applying a small oscillatory voltage to the sample and
measuring the resulting oscillatory current through the sample. The phase
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and amplitude difference between the voltage across and the current through
the sample determines the impedance of the sample at that frequency. By
varying the frequency we can map out the impedance spectrum. Once the
impedance spectrum is known, it can be fit against analytical formulas for
impedance derived from circuit models, yielding an equivalent resistance and
capacitance, which can be converted into resistivity and dielectric constant
if the sample geometry is known.

1.5 Previous Work

This follows directly from work done by Briony Horgan in her senior thesis[6].
Horgan did similar impedance spectroscopic analysis on bulk pellet samples.
In bulk pellet materials, the influence of grain boundary effects tends to
overshadow the intrinsic properties of the material, making it difficult to
use this method to make dielectric constant measurements of a particular
material. This difficulty in determining dielectric properties of bulk pellets
provides the need for using this method in thin film materials.

In the literature, impedance spectroscopy mostis often employed in two
areas. The first primary area of application is in the analysis of electrolytic
cells in chemistry. These cells are not mainly dielectric in nature so the
analysis is employed in different ways[1]. Impedance spectroscopy is also
employed in a more similar application in ceramic and bulk materials[2, 8, 4].
In this case the analysis is similar, but effects such as grain boundaries tend to
dominate; see [7] for a derivation of the brick layer model for grain boundaries
in these systems.

1.6 Methods

1.6.1 Sample preparation

The thin film samples to be tested were produced by the method of pulsed
laser deposition, the details of which are beyond the scope of this document.
In order to measure properly calibrated dielectric constants and breakdown
field strengths, it is necessary to measure the thickness of the sample optically
before metallic contacts are deposited. If this is not done, it is still possible
to determine the figure of merit for gate dielectric applications (the product
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Figure 1.1: A side view of the sample with top and bottom contacts and film
indicated. Not to scale. Each top contact is a circular dot when viewed from
above.

of breakdown field strength and dielectric constant) but not to determine
either independently.

The next critical step in sample preparation was to deposit metallic top
contacts onto the sample. These define the area of the sample under test,
act as a top capacitor plate, and allow us to make electrical contact to the
top of the sample. These contacts were deposited using a mask to create
small circular aluminum dots as top contacts. For a side view of the sample
indicating top contact, bottom contact and film, see Figure 1.1.

A critical and potential troublesome step is making a bottom contact to
the sample. The samples are deposited on conducting substrates, either a
metallic layer or doped silicon depending on the sample. During the PLD
process, some portions of the substrate are covered by clips and are not cov-
ered by the film. During the top contact deposition, these become covered
in large metallic contacts that appear to be in electrical contact with the
substrate of the film, apparently making an easy point of contact for the
measurement. These clip mark areas should not be used for making con-
tact to the substrate! In our experience there appears to be an insulating
layer that is formed on the substrate, so the clip marks do not make a good
contact to the substrate and at best exhibit very large contact resistances.
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Figure 1.2: A diagram of a typical film in top down view with solder contacts
and top contacts indicated

Contact should be made properly after depositing the top contacts by scrib-
bling through the film in an unused area (typically a corner) to expose the
substrate directly and making a small solder contact to fill the hole (see Fig-
ure 1.2 for a diagram of a typical sample). Although only one back contact
point is needed, it is best to create at least two on opposite corners. This al-
lows us to measure the resistance across the substrate (this resistance should
be less then 100Ω) and verify that the quality of the contacts is good.

1.6.2 Measurement

When taking measurements of either the breakdown voltage or dielectric con-
stant, the sample will be mounted in a metal box and set on on an aluminum
backing. Connection is made from the top via two movable probes attached
to the bottom of the box with magnets. One probe has a sharp tip and
the other a rounded tip. The probes each connect to the central conductors
of two separate BNC connectors on the front panel of the box. The sharp
(black) probe is used to connect to the soldered connection to the sample
substrate, not to the sample top contacts. The rounded (red) probe is used
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to connect to the top contact of the dot under testing. Because the sample
thickness varies across the surface, dots near the center should be used. Be-
cause the top contacts are very thin, using the sharp probe risks punching
holes in the sample.

Once the probes are located on a particular sample dot, all connections
for different measurements should made by changing the connections to the
front panel connectors, and all measurements for that dot must be made
at that time, without moving the contacts. Because of the fragility of the
film, removing and replacing the contacts may damage the film and change
the results. Furthermore, the impedance spectroscopy measurement for the
dielectric constant must be taken first, before the dielectric breakdown mea-
surement. The breakdown is a destructive measurement and it may not be
possible to get good measurements of the dielectric constant after breakdown
has been measured for a given sample dot. Also the breakdown measurement
can be taken only once. Once the dot has broken down, it will no longer ex-
hibit insulator behavior and will not exhibit a proper breakdown in future
measurements. Because of these considerations, measurements at a particu-
lar sample point are not repeatable.

1.6.3 Data Analysis and Curve fitting

The data resulting from the impedance spectroscopy measurement were pro-
cessed and fit against a model with a contact resistance and parallel RC
resistance representing the film. This was done using software developed in
MatLAB by the author for this project, which is described elsewhere. The
curve fitting is done using a multi-dimensional optimization routine.
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Chapter 2

Theory

In this chapter we will derive a number of results that are important for
our use of impedance spectroscopy. First, we will discuss the concept of
impedance in circuit analysis. Second, we will derive the impedance of several
important model circuits we will use in our analysis. Third, we will show that
the simple model of a resistor in parallel with a capacitor can be derived by
using the standard formula for the impedance of a capacitor and allowing it
to have complex dielectric constant. Fourth we will derive the capacitance
of a finite plate above an infinite plate and show that this configuration is
equivalent with the standard parallel plate capacitor result. Lastly we will
consider a system consisting of a capacitor having two layers and show that
if one layer is much thinner than the other, all the relevant quantities we are
interested in measuring reduce to those of the thicker layer. This is relevant,
for example, in the case of a substrate with a thin intrinsic oxide layer with
a sample layer on top of it. This result lets us neglect such layers provided
our films are of reasonable thickness.

2.1 Impedance Basics

Impedance (typically denoted Z) is a generalization of resistance by allowing
complex values. A strictly real impedance Z is identical to a resistance R.
This generalization allows us to include affects of reactive elements such as in-
ductors and capacitors in our circuit analysis. When dealing with impedance,
the familiar form of Ohm’s law V = IR is replaced by:

V (ω) = I(ω)Z(ω) (2.1)
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In engineering references it may also be written as V (jω) = I(jω)Z(jω), or
even V (s) = I(s)Z(s). This is because electrical engineering circuit analysis
texts sometimes do their analysis in the Laplace Transform domain, which
is a generalization of the Fourier to allow complex frequencies, which are
often denoted by s. The imaginary part of s corresponds to the real fre-
quency ω that appears in the Fourier transform and setting s = jω reduces
the equations to the conventional real frequency form. In this document
we will consider only real frequencies ω and will not concern ourselves fur-
ther with the Laplace transform representation. Regardless of presentation,
Ohm’s Law for impedances is typically abbreviated to V = IZ, although it
is important to remember that in general all three quantities are functions
of frequency.

The values of the impedance of the standard passive circuit elements
(resistors, capacitors and inductors) are well known and can be found in
many books, for example [9, pg. 393-396]. The impedance of a resistor is
simply the value of the resistor itself.

ZResistor = R (2.2)

The impedance of a capacitor is entirely imaginary, and is given by:

ZCapacitor =
1

iωC
=

−i

ωC
(2.3)

Note that engineering references frequently replace i with j to represent the
imaginary number.

In addition to the impedance of the basic circuit elements, we also require
the rules for combining impedances in series and parallel[9, pg. 398]. Two
impedances Z1 and Z2 combined in series have the total impedance:

Zseries = Z1 + Z2 (2.4)

Two impedances combined in parallel have the combined impedance:

Z|| = Z1||Z2 =

(

1

Z1
+

1

Z2

)−1

=
Z1Z2

Z1 + Z2
(2.5)

It is sometimes helpful to use the notation <{Z} to refer to the real part of
the Z and ={Z} to refer to the imaginary part.
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Because the impedance combines information relating resistive elements
and capacitive or inductive elements in a single quantity, it allows us to
consider both leakage currents and dielectric behavior in the same model.

Essentially, impedance spectroscopy is the measurement of the mapping
out of the impedance as a function of frequency so that Z(ω) is known.
This is done by introducing a sinusoidal current or voltage into the sample
at a known frequency and measuring the relative phase and amplitude of
the other quantity at the same point. The impedance can be calculated
mathematically as:

V (ω)

I(ω)
= Z(ω) (2.6)

Provided that the response of the material is linear, both voltage and cur-
rent will have the same frequency. If we consider a reference voltage with
amplitude V0 and zero phase, we can write this as V = V0e

iωt. In this case
the resulting current will be given by I = I0e

i(ωt+φ) where φ is the relative
phase. This will result in:

Z(ω) =
V0e

iωt

I0ei(ωt+φ)
=

V0

I0
e−iφ (2.7)

In this case a positive φ denotes current which is leading voltage. Thus
φ = π/2 corresponds to a negative imaginary impedance, a purely capacitive
element, and φ = −π/2 corresponds to a positive imaginary impedance, a
purely inductive element. We will not consider inductive elements further in
this document. See any standard text on circuit theory. This relation allows
us to directly map out Z(ω) using sinusoidal excitations. This forms the
fundamental theoretical basis of impedance spectroscopy. Although we do
not directly measure these currents and voltages, instead using an impedance
analyzer, understanding this relation between relative amplitude and phase
and impedance is important to understand the theory employed in analyzing
the results further.
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2.2 Equivalent Circuit Models and Deriva-

tions

2.2.1 Models

Introduction

In order to apply impedance spectroscopy to the problem of determining the
electrical properties of dielectric materials, it is useful to employ an idealized
circuit model to describe the material and derive formulas describing its
impedance. We will discuss four such models of increasing complexity. All
of the models we will address are only appropriate in a small-signal regime
where non-linear and breakdown effects can be neglected.

Ideal Capacitor Model

The simplest circuit model is a single ideal capacitor (See Figure 2.1). This
will give dielectric behavior but assumes infinite breakdown voltage, no leak-
age current at DC, and zero contact resistance. This model is appropriate
for modeling a single layer of a very good insulator with good contacts and
no grain boundary effects. For a capacitor the impedance is [9, pg. 395-396]:

Z(ω) =
−i

ωC
(2.8)

where ω is radian frequency.

Series Resistor and Capacitor Model

We can use a somewhat more complex model and treat the material as a
series combination of a resistor and capacitor (see Figure 2.2). This will take
into account contact resistances, but not leakage currents. This model is
appropriate for a single layer of a good insulator with contact resistance and
no grain boundary effects. For this model the impedance is:

Z(ω) = Rc − i
1

ωC
(2.9)
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Figure 2.1: Circuit diagram of ideal capacitor model (left) and real versus
imaginary impedance plot (right).

If the impedance Z(ω) is given, we can find the two parameters of this model,
Rc and C, as:

Rc = <{Z} (2.10)

C =
−1

ω={Z}
(2.11)

Parallel Resistor and Capacitor Model

The next circuit model we may use to model a dielectric material is an ideal
resistor in parallel with an ideal capacitor (see Figure 2.3). This takes into
account leakage conduction in the material and allows us to determine both
the small signal conductivity of the material and the dielectric constant. This
model is appropriate for a leaky dielectric with good contacts and no grain
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Figure 2.2: The circuit model for the simple series resistor capacitor model
(left) and the real versus imaginary impedance plot for the same, in units of
R and C (right).

boundary effects. For this configuration the impedance is:

Z(ω) =
R

(ωRC)2 + 1
− i

ωR2C

(ωRC)2 + 1
(2.12)

If the real and imaginary parts of the impedance Z are known, we can find
the parameters of the model as:

R =
|Z|2

<{Z}
(2.13)

C =
−={Z}

ω|Z|2
(2.14)

The conductance G is equal to R−1 so

G =
<{Z}

|Z|2
(2.15)

For the derivation of these results, see Section 2.2.2.
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Figure 2.3: The circuit model for the simple parallel resistor capacitor model
(left) and real versus imaginary impedance plot for the same, in units of R
and C (right).

Parallel Resistor and Capacitor with Contact Resistance

Combining the two previous models yields the more complete model with a
contact resistance in series with a parallel combination of a capacitor and
resistor (see Figure 2.4). This model takes into account leakage currents and
contact resistance and is appropriate for a single layer of a leaky dielectric
with resistive contacts and no grain boundary effects.

Z(ω) = Rc +
R

(ωRC)2 + 1
− i

ωR2C

(ωRC)2 + 1
(2.16)
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Figure 2.4: The circuit model for the parallel resistor-capacitor model with
a contact resistance (left) and real versus imaginary impedance plot (right).

2.2.2 Deriving impedances for circuit models

Using the relations introduced in Section 2.1 the total impedance Z(w) of any
of the given circuit models can be calculated using the known impedances of
the component elements in the model, in this case resistors (R) and capacitors
(C) and the rules for parallel and series combinations of these elements.
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Deriving the RC Series Model

The simplest model to derive the impedance of is a series combination of a
resistor and capacitor because the elements are simply added.

Z1 = R (2.17)

Z2 =
−i

ωC
(2.18)

And combining these in series yields:

Z = Z1 + Z2 (2.19)

= R − i
1

ωC
(2.20)

Or equivalently:

<{Z} = R (2.21)

={Z} =
1

ωC
(2.22)

Note that in this case the real part is independent of both frequency and
capacitance, and the imaginary part is independent of resistance.

Deriving Parallel RC model

Deriving the impedance of a parallel combination of a a resistor and capacitor
is a direct application of the impedance of the two elements and the rule for
parallel combinations, with:

Z1 = R (2.23)

Z2 =
−i

ωC
(2.24)
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Applying the parallel combination rule gives:

Z = Z1‖Z2 (2.25)

=
Z1Z2

Z1 + Z2
(2.26)

=
−i
ωC

·R

R − i
ωC

(2.27)

=
−Ri

ωRC − i
(2.28)

=
−Ri(ωRC + i)

(ωRC)2 + 1
(2.29)

=
R − ωR2Ci

(ωRC)2 + 1
(2.30)

=
R

(ωRC)2 + 1
− i

ωR2C

(ωRC)2 + 1
(2.31)

We could equivalently write the above as:

<{Z} =
R

(ωRC)2 + 1
(2.32)

={Z} = −
ωR2C

(ωRC)2 + 1
(2.33)

We can see that both components of the impedance depend on R, C and the
frequency ω.

Solving Parallel RC Model for R and C

We can also solve the model presented in the previous section for the pa-
rameters R and C in terms of Z, which is useful if the impedance is known
(for example from impedance analyzer data) and one wishes to calculate the
equivalent circuit parameters. We can begin by writing Equation (2.26) in a
different form:

Z =
1

R−1 + iωC
(2.34)

or
Z−1 = R−1 + iωC (2.35)
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Splitting Z−1 into its real and imaginary parts gives:

<{Z−1} = R−1 (2.36)

={Z−1} = ωC (2.37)

Now we must determine the value of <{Z−1} and ={Z−1}. Note that in
general <{Z−1} 6= <{Z}−1, and likewise for the imaginary part. To begin,
by definition:

Z = <{Z} + i={Z} (2.38)

And so

Z−1 =
1

<{Z} + i={Z}
(2.39)

=
(<{Z} − i={Z})

(<{Z} + i={Z}) · (<{Z} − i={Z})
(2.40)

=
<{Z} − i={Z}

<{Z}2 + ={Z}2
(2.41)

=
<{Z} − i={Z}

|Z|2
(2.42)

Split into real and imaginary parts, this gives us:

<{Z−1} =
<{Z}

|Z|2
(2.43)

={Z−1} =
−={Z}

|Z|2
(2.44)

Plugging the first of these into Equation (2.36) gives us:

R−1 =
<{Z}

|Z|2
(2.45)

R =
|Z|2

<{Z}
(2.46)

Plugging Equation (2.44) into Equation (2.37) yields:

ωC =
−={Z}

|Z|2
(2.47)

C =
−={Z}

ω|Z|2
(2.48)

These are the two relations we wished to derive.
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Deriving parallel RC model with contact resistance.

The model with contact resistance and a parallel RC circuit is simply a
series combination of the a parallel RC circuit derived earlier and a resistor
Rc representing the contact resistance.

Z1 = Rc (2.49)

Z2 =
R

(ωRC)2 + 1
− i

ωR2C

(ωRC)2 + 1
(2.50)

Using the series combination rule yields:

Z = Z1 + Z2 (2.51)

= Rc +
R

(ωRC)2 + 1
− i

ωR2C

(ωRC)2 + 1
(2.52)

Or equivalently:

<{Z} = Rc +
R

(ωRC)2 + 1
(2.53)

={Z} = −
ωR2C

(ωRC)2 + 1
(2.54)

We can see that this is very similar to the model without contact resistance;
only the Rc in the real part is changed.

2.3 RC parallel Model From Complex Dielec-

tric Constant

In this section, we wish to show that one can derive the model of a material
as a parallel combination of a resistor and capacitor by introducing a complex
dielectric constant (permitivity) εc.

We begin with the complex form of the permittivity of a material, given
on page 341 of [3] as:

εc = ε − i
σ

ω
(2.55)
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If we plug this into the standard form of the capacitance of a parallel plate
capacitor to arrive at a “complex capacitance”, we get the following:

Cc =
A

d
εc (2.56)

=
A

d

(

ε − i
σ

ω

)

(2.57)

=
A

d
ε − i

(

A

d
σ

)

ω−1 (2.58)

= C − iR−1ω−1 (2.59)

Note that in the last step I have simply identified the (strictly real) forms of
R and C.

If we now proceed to calculate the complex impedance Z using this ‘ca-
pacitance’ Cc, we arrive at the following:

Z =
1

iωCc

(2.60)

=
1

iω (C − iR−1ω−1)
(2.61)

=
1

iωC + R−1
(2.62)

=
R

iωRC + 1
(2.63)

=
R(−iωRC + 1)

(ωRC)2 + 1
(2.64)

=
R

(ωRC)2 + 1
− i

R2Cω

(ωRC)2 + 1
(2.65)

This is the same form of the impedance derived earlier from the parallel RC
circuit model. We can also rewrite Equation (2.62) as:

Z−1 = iωC + R−1 (2.66)

=

(

1

iωC

)−1

+ (R)−1 (2.67)

Which is the formula for the parallel combination of an impedance 1/iωC
and R. Thus we can model a material with permittivity given in (2.55) as a
parallel combination of an ideal resistor and ideal capacitor.
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Figure 2.5: A capacitor formed by a small dot above a very large plane, with
a charge Q transported from the lower plate to the upper plate.

2.4 Capacitance Derivation

In this section we wish to derive the capacitance C of the configuration of a
small top contact of area A above an infinite ground plane bottom contact
and show that this is the same as the result for a standard parallel plate
capacitor with two plates of equal area.

This system can be seen in cross section in Figure 2.5. We model the
upper plate as a thin conducting plane and the lower plate as a thick con-
ducting grounded slab We introduce a charge Q on the upper plate. Because
we are modeling the lower plate as a conducting slab, this will create an im-
age charge −Q at a distance d inside the plane. The real top contact and its
image will both have charge densities σ = ±Q/A where the plus corresponds
to the upper plate and the minus to the lower. The net electric field in the
ẑ direction will thus be:

~E = −
( σ

2ε
+

σ

2ε

)

ẑ = −
σ

ε
ẑ (2.68)
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We can now find the voltage across the the capacitor as:

V = −

∫ B

A

~E · d~r (2.69)

= −

∫ z0

z0+d

(

−
σ

ε
ẑ
)

· (−ẑ) dz (2.70)

=
σ

ε

∫ z0+d

z0

dz (2.71)

=
σ

ε
d (2.72)

=
Q

Aε
d (2.73)

From this we can calculate the capacitance using the definition of capacitance:

C =
Q

V
(2.74)

= ε
A

d
(2.75)

This is the standard result for a parallel plate capacitor. This shows us that
the in a parallel plot capacitor, the effective area is dominated by the smaller

of the two plates. Only the portion of the structure that lies between two
plates contributes to the total capacitance.

2.5 Two Layer Capacitor Model

2.5.1 Introduction

We wish to calculate the capacitance C and conditions for dielectric break-
down for a capacitor made up of layers of two different materials. Let us
assume that the first layer has thickness d1, dielectric constant εr1 and break-
down field strength EB1, and that the second material correspondingly has
thickness d2, dielectric constant εr2 and breakdown field strength EB1.

In order to calculate the capacitance and field strength within the mate-
rial, we need to introduce the ‘electric displacement’, denoted by ~D and for
linear media given by[5, pg. 180]:

~D = ε ~E (2.76)
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where ~E is the electric field strength and ε ≡ εrε0. Gauss’s Law can be
written in terms of ~D as[5, pg. 175]:

~∇· ~D = ρf (2.77)

where ρf is the free charge density, or in integral form as

∮

~D · d ~A = Qf,enc (2.78)

Where Qf,enc is the total enclosed free charge. We can see from these formu-

lations that ~D depends only on charge densities, not dielectric properties of
the media.

2.5.2 Infinite plane charge

An useful intermediate result is the electric displacement due to an infinite
plane charge with free surface charge density σ. If we enclose the plane charge
in a gaussian pillbox and apply the integral form of Gauss’s Law, we get:

∫

top

~D · d ~A +

∫

bottom

~D · d ~A +

∫

sides

~D · d ~A = σA (2.79)

DA + DA + 0 = σA (2.80)

D =
σ

2
(2.81)

This result is analogous to the standard result for the electric field of an
infinite plane charge in free space:

E =
σ

2ε0
(2.82)

2.5.3 Capacitance

We can now use the result of the last section to calculate the capacitance
of our two layered capacitor. Let us assume the capacitor is charged to a
voltage V with a charge Q, and note that the capacitance C is defined as [5,
pg. 104]:

C ≡
Q

V
(2.83)
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If we treat the top and bottom contacts of our capacitor as infinite charged
plates with charge densities of σ and −σ respectively, then total electric
displacements between the plates will be:

D =
σ

2
+

σ

2
= σ (2.84)

and D will point from the positively charged plate to the negatively charged
plate. In order to calculate the capacitance we next need to find the voltage
between the two plates. In order to do this we need to know the electric field
strength in the two different materials. We can solve Equation (2.76) for ~E
and get:

~E =
1

ε
~D (2.85)

So in the the two materials we have:

E1 =
D

ε1
(2.86)

E2 =
D

ε2
(2.87)

We can now calculate the voltage V as:

V =

∫ −plate

+plate

~E · d~r (2.88)

= E1d1 + E2d2 (2.89)

=
D

ε1
d1 +

D

ε2
d2 (2.90)

= D

(

d1

ε1
+

d2

ε2

)

(2.91)

= σ

(

d1

ε1
+

d2

ε2

)

(2.92)

We can plug this result together with Q = σA into (2.83) to get a expression
for the capacitance C.

C =
σA

σ
(

d1

ε1
+ d2

ε2

) (2.93)

=
A

d1

ε1
+ d2

ε2

(2.94)
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This is a compact form of the result. We can continue to manipulate the
expression to put it in terms of the separate capacitances of the two layers.

C =
A

d1ε2
ε1ε2

+ d2ε1
ε1ε2

(2.95)

=
Aε1ε2

d1ε2 + d2ε1
(2.96)

=
A

d1d2

·Aε1ε2

A
d1d2

· (d1ε2 + d2ε1)
(2.97)

=

(

A ε1
d1

)(

A ε2
d2

)

A ε2
d2

+ A ε1
d1

(2.98)

=
C1C2

C1 + C2
(2.99)

=

(

1

C1
+

1

C2

)−1

(2.100)

where the last step recovers the standard circuit theory formula for a series
combination of two capacitors if C1 and C2 represent the capacitances of the
layers treated separately.

C1 ≡ ε1
A

d1
(2.101)

C2 ≡ ε2
A

d2
(2.102)

The form in Equation (2.100) has the property that the result will be
dominated by the smallest capacitance: if C1 � C2 then C ≈ C1. This result
is useful because the capacitance of a given layer is inversely proportional to
the thickness of that layer. Particularly, in the case with a thick layer of
desired material and thin layer of unwanted material (for example, oxide
layer on a silicon substrate), assuming the two materials’ dielectric constants
are of a similar order the thinner material will have a much higher capacitance
and will largely not affect the overall capacitance.

2.5.4 Breakdown Field Strength

Let us assume that we have applied a known voltage V across the same
capacitor discussed in the previous section and that we also now know the
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overall capacitance C for the capacitor. We are now in a position to calculate
the electric field strength in the two regions and determine if breakdown will
occur in either or both. We can first calculate the total charge as:

Q = CV (2.103)

and surface charge density as:

σ =
Q

A
=

CV

A
(2.104)

And since in this geometry we know from Equation (2.84) that σ = D we
also know the electric displacement and can now calculate the electric fields
in either of the two layers as:

En =
σ

εn
=

CV

Aεn
(2.105)

where n can be either 1 or 2. So we can see that in the case where neither
material has broken down, the electric field strength inside a given layer
of the material depends on the dielectric constant of that material and the
overall capacitance and applied voltage, but does not depend directly on the
composition of the other layer. We can also place the dielectric constant on
the other side of the equation:

Enεn =
CV

A
(2.106)

We can recognize the left hand side as similar to the metric we are using to
define the quality of an insulator: the product of the breakdown voltage and
the dielectric constant of the material. This tells us that in this configuration,
whichever material is a poorer insulator by that metric will breakdown first,
regardless of the relative thickness of the two layers. Note that this is under
the assumption of no ohmic leakage currents.

Let us now consider the case where the field strength rises such that one
material breaks down and the other does not. Let us consider the case where
the first material breaks down before the second. If we assume1 that once
breakdown occurs, charges in layer one are free to move and the layer will

1Temporary Note: I don’t know if this is a good assumption or not, my E&M references
don’t talk much about breakdown mechanisms.
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act as a conductor, then we essentially have only layer two remaining and
C ′ = C2, where C ′ is the total capacitance after breakdown.

If we further assume that one layer was much more capacitive then the
other, this gives two cases for C ′.

C ′ ≈ C where C1 � C2 (2.107)

C ′ � C where C1 � C2 (2.108)

The first case corresponds to the situation where a very thin contamination
layer breaks down before the sample layer. This will not change the overall
capacitance of the system significantly and so will not change the electric
field strength in the other layer; the second layer will not break down as a
result of the break down of the first. The second case corresponds to the
much thicker desired sample layer breaking down before the thin contami-
nation layer. In this case the overall capacitance of the configuration will
be dramatically higher then it was before the breakdown occurred and the
electric field strength in the second material will likewise increase dramati-
cally. Unless the second material is a much better insulator then the first,
this dramatic increase in field strength will likely cause the second material
to break down as well, thus breaking down the entire stack and ending the
experiment.

2.5.5 Conclusions

Under the conditions that the desired sample material layer is much thicker
then any contaminating oxide layers and has a dielectric constant as good
as or better than the contaminating layer, the presence of a second contam-
inating layer will not have a large impact on the capacitance of the overall
configuration. Under the same assumption and the added assumption that
the breakdown strength of the two materials is of somewhat similar order,
the overall configuration of materials will show breakdown only when the
sample material itself breaks down.
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Chapter 3

Data and Results

A series of samples were prepared and measured as described in Section 1.6.
We obtained results for a series of gadolinium scandate film samples prepared
under different conditions. The results of this experiment are given in the
following two sections.

3.1 GSO Results

We measured seven films prepared under different conditions. The films are
denoted by GSO-N , where N identifies a particular film. However, the N
number refers to deposition order and not all deposited films were used in
this experiment.

All of the GSO series films exhibit poor breakdown characteristics, with
the tenth film, numbered GSO-10, having the highest average breakdown
(0.91 MV/cm). Most films in the series had dielectric constants of approx-
imately 25, while GSO-10 was somewhat lower with a dielectric constant
of approximately 20 and GSO-9A and GSO-9B were aberrantly high with
dielectric constants of approximately 60 and 48 respectively. The dielectric
constants and breakdown can be seen plotted in Figures 3.1 and 3.2. The
solid line in the figures represents combinations of breakdown and dielectric
constant equal to that of SiO2. The area outside of the solid line (above and
to the right) represents materials that perform better then SiO2, which we
have not yet achieved. The same data and the deposition parameters of the
films is given numerically in Table 3.1. The far left column of this table gives
the product of the dielectric constant and breakdown field strength, which is

32



a measure of insulator performance; for SiO2 this value is approximately 40,
whereas for GSO-10, which is our best film, it is only 18.
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Figure 3.1: Plot of breakdown versus dielectric constant for all GSO films, far
view. The solid line is the set of points having the same product of dielectric
constant and breakdown field strength as SiO2.

3.2 GSO-10 Results

3.2.1 Film Parameters

GSO-10 was the last GdScO3 film we deposited and was deposited at a higher
temperature than the earlier films. Because of the high temperature, the
film could not be deposited on a tantalum wafer, as some of the earlier lower
temperature films had been, but was deposited on a doped silicon substrate.
The detailed parameters are given in Table 3.2.

3.2.2 Data

The impedance analyzer used in this experiment is configured to give results
in terms of a resistance and capacitance, or equivalently, conductance and di-

33



Film Substrate Tsub O2 pp d εr Ebreak Quality

(◦C) mtorr nm MV/cm MV/cm

GSO-2 Ta-coated Si 140 5 141 25 0.25 6.25
GSO-3 Ta-coated Si 140 5 130 28 0.35 9.80
GSO-5 Ta-coated Si 230 5 ≈140 27 0.32 8.64
GSO-6 Ta-coated Si 230 10 ≈140 26 0.5 13.00
GSO-9A ITO-coated Si ≈450 10 ≈140 48 0.36 17.28
GSO-9B bare Si > 450 10 ≈140 60 0.24 14.40
GSO-10 bare Si ≈650 10 ≈140 20 0.9 18.00

Table 3.1: Table of GSO film parameters and results. Where Tsub is substrate
temperature, d is film thickness, εr is the dielectric constant and Ebreak is the
breakdown field strength.

Name Value
ID GSO-10
Material GdScO3

Thickness ∼ 140nm
Substrate Base Si
Substrate Temp ∼ 650◦C
O2 pp 10 mtorr
Dot Area 0.011 cm2

Table 3.2: GSO-10 Film and Deposition Parameters
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Figure 3.2: Plot of breakdown versus dielectric constant for all GSO films,
close view.

electric constant as a function of frequency. This uses the simple two element
model at every point in the data set and neglects contact resistance. The
data in this form are given in Figures 3.3 and 3.4. The breakdown measure-
ment is a separate measurement from the impedance analysis measurements
and is shown in Figure 3.5. The conductance and dielectric constant as func-
tions of frequency form the input of the curve fitting process to determine
the correct parameters, taking into account contact resistance.

3.2.3 Results

Using the data in the previous section as input, the data were curve fit
against the three element model with contact resistance. The dielectric con-
stant and other small signal results are given in Table 3.3. These values
were determined by using capacitance and conductances values given by the
impedance analyzer to calculate the overall impedance of the film and fitting
this impedance to a three element model including a contact resistance. The
breakdown field strengths are given in Table 3.4. These were obtained di-
rectly from the breakdown measurement apparatus. A scatter plot combining
the dielectric constant and breakdown strength is given in 3.6. A representa-
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Figure 3.3: ]
The conductance data for GSO-10 given by the impedance analyzer,

without curve fitting.

tive plot of real versus imaginary impedance from one sample point is shown
in Figure 3.7.

The GSO-10 film showed the highest breakdown field strength of any of
GSO series of films and was our most successful attempt. Over the dots
tested, the breakdown voltage1 was 0.91 ± 0.37MV/cm. The dielectric con-
stant was 20.0 ± 0.6. Multiplying this together to give an estimate of the
quality of the insulator yields 18.2±7.40MV/cm, whereas the same measure
for SiO2 is ∼ 40MV/cm; although this film was one of the best of the GSO
series, it is not a good enough insulator to be competitive with silicon.

3.3 MTO Results

We also performed a single measurement run on a magnesium tin oxide sam-
ple using the same procedure. This gave the results given in Tables 3.5 and
3.6. The raw breakdown data is shown in Figure 3.8. Note that unlike the

1Temporary Note: I’ve calculated the error bars as 1 standard deviation here. There
may be a better metric for this.

36



10
2

10
3

10
4

10
5

10
6

10
7

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

Frequency (Hz)

D
ie

le
ct

ric
 C

on
st

an
t

GSO−10 Dielectric Constant

 

 

GSO−10 4,4 (#150)
GSO−10 5,4 (#154)
GSO−10 6,4 (#156)
GSO−10 4,5 (#158)
GSO−10 5,5 (#160)
GSO−10 4,6 (#164)
GSO−10 5,6 (#166)
GSO−10 6,6 (#168)

Figure 3.4: ]
The dielectric constant data for GSO-10 from the impedance analyzer,

without curve fitting.
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Figure 3.5: Data from breakdown measurement on GSO-10 sample.
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Figure 3.6: Plot of GSO-10 breakdown versus dielectric constant

Run# Position R C Rc RMSE εr σ
(MΩ) (nF) (Ω) (Ω) (nS/m)

150 4,4 1.69 1.36 30.7 10.2 19.5 75.2
154 5,4 1.60 1.38 32.6 7.2 19.8 79.4
156 6,4 1.47 1.48 32.9 9.7 21.3 86.7
158 4,5 1.79 1.35 33.5 8.3 19.4 71.1
160 5,5 1.95 1.37 33.5 6.1 19.7 65.2
164 4,6 1.43 1.36 34.3 11.3 19.5 89.2
166 5,6 1.44 1.43 35.5 9.7 20.6 88.2
168 6,6 1.84 1.40 36.1 6.8 20.1 69.1
Mean 1.65 1.39 33.7 20.0 78.0
St. Dev. 0.20 0.04 1.7 0.6 9.3

Table 3.3: Results of curve fitting GSO-10 small-signal data to the three
element RC parallel model with contact resistance.
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Figure 3.7: Impedance plot of the 5,4 dot on GSO-10

Run# Position Breakdown
(MV/cm)

151 4,4 0.43
155 5,4 1.64
157 6,4 0.67
159 4,5 0.69
161 5,5 1.24
163 6,5 1.08
165 4,6 0.59
167 5,6 0.95
169 6,6 0.88
Average 0.91
St. Dev. 0.37

Table 3.4: GSO-10 Breakdown Results
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Run# Position R C Rc RMSE εr σ
(MΩ) (nF) (Ω) (Ω) (nS/m)

209 4,5 1.10 0.49 21.1 6.5 18.2 299.0
211 5,5 1.30 0.46 22.0 6.7 17.0 253.3
213 6,5 1.28 0.44 22.7 6.5 16.5 258.2
215 7,5 1.25 0.42 23.7 7.6 15.8 265.0
217 8,5 1.14 0.44 24.0 7.6 16.5 288.4
219 5,6 1.06 0.48 20.2 7.5 17.9 312.6
221 6,6 1.09 0.46 21.3 7.6 17.1 301.8
Mean 1.17 0.46 22.2 17.0 282.6
St. Dev. 0.10 0.02 1.4 0.8 23.6

Table 3.5: MTO-1 Small Signal Results

GSO-10 sample shown earlier, this sample shows poor breakdown dielectric
behavior by allowing significant leakage current even at small field strengths
rather than very small current followed by an abrupt breakdown. As such the
breakdown numbers quoted in Table 3.6 indicate the point where the sample
passed the programmed threshold current rather then a true breakdown. The
small signal dielectric constant and conductance values are likewise shown
in Figures 3.9 and 3.10. Because of the poor breakdown characteristic, this
material is not suitable as dielectric.
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Run# Position Breakdown
(MV/cm)

202 4,4 0.11
204 5,4 0.13
206 6,4 0.17
208 7,4 0.11
210 4,5 0.10
212 5,5 0.13
214 6,5 0.15
216 7,5 0.16
218 8,5 0.16
220 5,6 0.12
222 6,6 0.14
Average 0.13
St. Dev. 0.02

Table 3.6: MTO-1 Breakdown results.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1

2

3

4

5

6

7

8

9

10

Field Strength (MV/cm)

C
ur

re
nt

 D
en

si
ty

, (
uA

/c
m

2 )

MTO−1 Breakdown Field Strength

 

 

Figure 3.8: Breakdown data for MTO-1 showing poor dielectric behavior.
Different symbols denote different sample points. The legend has been omit-
ted to show the results more clearly.
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Figure 3.9: Raw dielectric constant data from MTO-1 sample.
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Figure 3.10: Raw conductance data from MTO-1 sample.
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Chapter 4

Conclusion

In the preceding chapters we have analyzed the properties of a good dielectric
material with an emphasis on applications as a gate dielectric. We have intro-
duced the concepts and theory behind impedance spectroscopy as a method
to determine dielectric properties of materials and developed several differ-
ent circuit element models for representing a thin film dielectric material.
We also derived the impedances of these models in order to compare them
with experimental results and allow curve fitting. We also used impedance
spectroscopy and these results to measure dielectric properties of samples of
several materials. We also measured dielectric breakdown strength and com-
bined these results to arrive at figure of merit. Most significantly, we mea-
sured a series of samples of gadolinium scandate oxide films prepared under
different conditions and measured their dielectric properties. We found that
our highest-performing sample had a dielectric constant of approximately 20
and a breakdown strength of 0.9 MV/cm, resulting in a figure of merit of 18
MV/cm. For comparison, SiO2 has a figure of merit of 40MV/cm. Thus we
found that gadolinium scandate oxide does not perform well enough to com-
pete with existing dielectric materials. We also performed a single sample
measurement on a magnesium tin oxide sample. However this sample did
not show dielectric breakdown behavior, instead allowing conduction at any
field strength, and thus was not suitable for dielectric applications.
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