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Abstract 

 Wien2k was used to calculate the band structure and the density of states of bismuth 

telluride.  It was confirmed from previous computational research, that spin-orbit coupling 

needs to be included in the calculations to give more accurate results.  Including spin-orbit 

coupling resulted in the band structure size to decrease from 0.33 eV to 0.11 eV. Including spin-

orbit coupling also caused the band gap to change from being a direct band gap to an indirect 

band gap.  These results will be used as a foundation for more in depth calculations, which will 

include calculating the band structure and the density of states of bismuth telluride with the 

addition of dopants, calculating the electrical and thermal conductivity, and calculating the 

Seebeck coefficient. 

 

 

 

 

 

 

 

 



 

1.0 Background 

1.1 Bismuth Telluride 

 Bismuth telluride is a narrow band gap semiconductor with good thermoelectric 

properties that will be discussed later in this paper.  It has a hexagonal lattice type in space 

group 𝑅3̅𝑚.   All hexagonal crystals have the lattice parameters a=b≠c, α=β=90°, and γ=120°.  

The space group refers to the symmetry operations that when performed on the unit cell form 

the larger crystal structure.  The “R” stands for rhombohedral.  The rhombohedral unit cell is 

shown in Figure 1, three rhombohedral unit cells form the hexagonal unit cell. The “3̅” in the 

space group refers to rotation-inversion.  The unit cell is rotated three times before returning to 

its original position then the rotation is followed by inversion.  The “3” also refers to the crystal 

structure having 3-fold symmetry and 
360°

3
= 120° degrees of rotation.  The “m” in the space 

group represents “mirror” and that there is a plane within the unit cell that reflects the 

molecule onto itself. 

  There are three different types of atoms in the structure, one type of bismuth atom, and 

two types of tellurium atoms.  In the figure the purple atoms are tellurium atoms and the blue 

are bismuth atoms.  The molecular formula for bismuth telluride is 𝐵𝑖2𝑇𝑒3 but can be rewritten 

as 𝐵𝑖2𝑇𝑒22𝑇𝑒11 to show that there are twice as much of one type of tellurium atom.  To 

differentiate between the two types of tellurium atoms one type will be referred to as “Te1” or 

“the first tellurium atom” and the other type will be referred to as “Te2” or “the second 



tellurium atom.”  The difference between the types of tellurium atoms is the distances to their 

nearest neighbors and what their nearest neighbors are.  These differences are important to 

the crystal properties of the material.  The atoms in 𝐵𝑖2𝑇𝑒3 are arranged in layers, and so can 

be classified as a layered semiconductor.  The layers are in the order Te2-Bi-Te1-Bi-Te2 and are 

labeled in Figure 1.  Te2 atoms have a layer of more Te2 atoms on one side and a layer of Bi 

atoms on the other, whereas Te1 atoms are surrounded by only Bi atoms.  The bonding 

Between the Te2 and Bi atoms and between the Te1 and Bi atoms are covalent and ionic but 

between the Te2 atoms they are held together by weaker Van der Waals bonding. 



 

Figure 1 The rhombohedral unit cell of bismuth telluride.  The purple atoms are tellurium atoms and the 
blue atoms are bismuth atoms.  The layers are labeled on the right.  From XCrySDen. 
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1.2 K-space 

 To find the allowed energy levels that an electron in a solid can have, the Schrödinger 

equation for the molecular state, Equation 1, has to be solved. 

𝐻|𝛹⟩ = 𝐸|𝛹⟩        (1) 

The molecular wave function, |𝛹⟩, is a linear combination of atomic wave functions and is a 

function of the wave vector k. 

K-space is the reciprocal space of real space and the first Brillouin zone is the reciprocal 

lattice in k-space where all eigenstates can be labelled uniquely (Sutton 51). 

 

1.3 Band structure 

 The band structure, or dispersion relation, of a material is the allowed energies that an 

electron in the material can have as a function of 𝑘.  The band structure consists of energy 

bands that can be classified as either conduction bands, valence bands, or core electron bands.  

The conduction and valence bands are of the most interest and give information on whether 

the material is a metal, a semimetal, a semiconductor, or an insulator.  

 The most important feature of the band structure is the region where electrons cannot 

have a range of energies for any value of k and is called the band gap.  The band gap is 



measured from the conduction band minimum to the valance band maximum.  Semiconductors 

and insulators have band-gaps but metals and semi-metals do not and is part of what places a 

material in one of these categories.   

 The size of the band gap and whether it is a direct or indirect gap is important to the 

electronic and optical properties of a solid.   A direct band gap occurs when the conduction 

band minimum, called the conduction band edge, and the valance band maximum, called the 

valence band edge, are at the same k-point and an indirect band gap occurs when the 

conduction band edge and the valance band edge are at different k-points.  Another important 

feature is the Fermi Energy, this is the energy where at 0 K all states below it are filled and all 

states above it are empty.   

A related property of a material is the density of states.  The density of states is the 

number of states that an electron can occupy in a material per unit of energy as a function of 

the energy. 

 

1.4 Spin-orbit Interaction 

 Spin-orbit interaction describes the interaction between electrons in an atom and the 

nucleus of the atom.  This interaction causes a shift in the allowed energy levels of the 

electrons.  The simplest case of this is in the hydrogen atom where one electron orbits a 

proton.  The electron moves through the electric field of the proton resulting in a motional 

magnetic field, or from the electron’s perspective, as shown below in Figure 2, the proton is 

orbiting around it and the proton acts like a current loop, which creates a magnetic field at the 



center of the loop where the electron is (McIntyre 2012, 388).  The energy shifts are caused by 

the interaction between the intrinsic spin magnetic moment of the electron and the magnetic 

field resulting from the orbit of the proton (McIntyre 2012, 388).  

 

 

 

 

 

 

 

 The larger an atom is, the more spin-orbit interaction affects the allowed energy levels 

by causing energy levels to lose some of their degeneracy.  Bismuth with an atomic mass of 

208.9804 u and tellurium with an atomic mass of 107.06 u are relatively large atoms so spin-

orbit interaction is expected to have a noticeable effect.  

 

1.5 Thermoelectric Materials 

 Thermoelectric materials are materials that display the Seebeck effect and the Peltier 

effect.  They are typically narrow band gap semiconductors with a band gap of less than 0.25 eV 

at 300 K (Tritt and Subramanian 2006).   A thermoelectric device is made from an array of 
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Figure 2  Spin-orbit coupling from the perspective of the electron in a hydrogen atom. 



thermoelectric couples.  A thermoelectric couple consists of a p-type and an n-type 

semiconductor that are connected through metallic electrical contact pads (Tritt and 

Subramanian 2006).   

A semiconductor can be made p-type or n-type with doping, the addition of impurities in 

a material.  For a semiconductor to be made n-type a donor impurity is added to the crystal 

(Kittel 209).  This donor atom is added to the crystal by replacing an atom, it is not placed in an 

interstitial location, and contains one more valence electron than the atom that it replaces.  

When the donor atom is ionized it contributes an electron to the conduction band (Kittel 209).  

To make a semiconductor p-type it is doped with acceptor impurities that contain one less 

valance electron than the atom that it replaces.  When the acceptor atom is ionized it accepts 

an electron from the valance band (Kittel 211).  Impurities in a semiconductor can also be 

caused by a missing atom in the crystal, these are called deficit semiconductors (Kittel 209).  

Bismuth telluride is naturally a p-type semiconductor but it can be doped with excess tellurium 

atoms to replace bismuth atoms, and iodine or bromine to replace tellurium atoms to become 

n-type (Tritt and Subramanian 2006). 

 The Seebeck effect, or thermopower, is when there is a temperature difference across a 

material which induces an electrical potential difference across it that is proportional to the 

temperature difference (Tritt and Subramanian 2006).  This effect is used in power-generation 

devices.  The ratio of the voltage difference to the temperature different is called the Seebeck 

coefficient and is an intrinsic property of the material.  The Seebeck coefficient is α in Equation 

2 below.  Figure 3 shows this effect in a thermoelectric couple. 



∆𝑉 = 𝛼∆𝑇        (2) 

   

 

Figure 3 A diagram of thermoelectric couples in the refrigeration mode (left) and the power-generation 
mode (right).  Taken from Tritt and Subramanian (2006). 

 

 The Peltier effect is similar to the Seebeck effect.  When a current is run through a 

thermoelectric couple, as shown in Figure 3, heat is rejected on one sides and absorbed on the 

other causing a temperature gradient.  This effect is used for thermoelectric refrigeration 

devices (Tritt and Subramanian 2006).  The Peltier coefficient is related to the Seebeck 

coefficient in Equation 3 below, where Π is the Peltier coefficient. 

𝛱 = 𝛼𝑇    (3) 

 There are many factors that contribute to whether a material is a good thermoelectric.  

A large factor is the materials figure of merit, ZT, which is dependent on the temperature.  The 

larger the ZT is the more efficient the material is.  The figure of merit can be represented by 



Equation 4 below where α is the Seebeck coefficient, σ is the electrical conductivity, ρ is the 

electrical resistivity, T is the temperature, and к is the total thermal conductivity (the lattice and 

the electronic contributions.) 

𝑍𝑇 =
𝛼2𝜎𝑇

к
=

𝛼2𝑇

𝜌к
    (4) 

Equation 4 is the figure of merit for a material, the figure of merit for a thermoelectric couple is 

shown in Equation 5 below. 

𝑍𝑇 =
(𝛼𝑝 − 𝛼𝑛)

2
𝑇

[(𝜌𝑛к𝑛)1/2 + (𝜌𝑝к𝑝)
1/2

]
        (5) 

For a material to be a good thermoelectric it needs to have a high merit factor, so it 

must have a high electrical conductivity, a low thermal conductivity, and a large Seebeck 

coefficient, around 150-250 𝜇𝑉 𝐾⁄  or larger  (Tritt and Subramanian 2006).  A high electrical 

conductivity is considered to be on the order of 103  1 𝛺𝑐𝑚⁄  and a low thermal conductivity is 

considered to be less than 2 𝑊 𝑚𝐾⁄  (Tritt and Subramanian 2006).  A good thermoelectric 

material is generally also a narrow band-gap semiconductor with a band gap of less than 0.25 

eV at 300 K (Tritt and Subramanian 2006).  Bismuth Telluride has a thermal conductivity of 

about 1.9 𝑊 𝑚𝐾⁄  and a measured Seebeck coefficient of 260 𝜇𝑉 𝐾⁄  for p-type and 250 𝜇𝑉 𝐾⁄  

for n-type (Mishra et al. 1997). 



 

Figure 4  The merit factor for different materials.  Taken from Tritt and Subramanian 2006. 

 

Figure 4 shows the merit factors of eight materials.  Thermoelectric materials tend to 

peak at around ZT = 1 but there are no theoretical or thermodynamic reasons for this limit (Tritt 

and Subramanian 2006).  The merit factor for bismuth telluride peaks at about 400 K which is 

shown in Figure 3, so at that temperature it is most efficient.  Bismuth telluride may not be the 

best thermoelectric material but it is the most studied, and has been studied for over thirty 

years and this is one of the reasons it was chosen for this project.   

 

1.5 Wien2k 

 Wien2k is a program package that uses density functional theory (DFT) and the full-

potential (linearized) augmented plane wave + local orbitals ((L)APW+lo) method to calculate 

electronic properties of solids (www.wien2k.at). 



 DFT uses the Born-Oppenheimer approximation which assumes that the electrons in a 

solid are in their ground state and it uses the independent electron approximation.  The 

independent electron approximation assumes that all the electrons in a solid are moving 

independently from one other but experience and effective potential from the other electrons 

(Sutton 206).  DFT states that when assuming these approximations it is only necessary to know 

the electronic charge density to find the ground state properties of the solid (Sutton 206).  The 

local density approximation (LDA) is also used in DFT calculations.  This approximation takes the 

charge density in a volume element in the solid then uses the exchange-correlation potential to 

find the exchange correlation energy of the volume element while ignoring that the charge 

density varies throughout the solid (Sutton 209).  Part of the effective potential felt by an 

electron in the solid is the exchange-correlation potential. 

   

2.0 Methods 

 Wien2k and XCrySDen was used for the band structure and density of states 

calculations.  XCrySDen is a program used for Crystalline and molecular structure visualization 

(www.xcrysden.org).  For each calculation done a new session should be made, and each 

session should have a different name to avoid possible errors.  To create a structure for the 

material the user opens “StructGen” in Wien2k and then inserts “3” in the box labeled “Number 

of atoms,” this is the number of inequivalent atoms in the crystal.  After clicking “Generate 

Template,” the space group, lattice parameters and lattice type can be entered.  The structure 

also needs a title, and as with the session name this title should be different from other crystal 

http://www.xcrysden.org/


structure names in other sessions to avoid possible errors.  The user choses “166_R-3m” for the 

space group and the lattice parameters are entered, which  are 𝑎 = 𝑏 = 4.38029, 𝑐 =

30.54569, 𝛼 = 𝛽 = 90° and 𝛾 = 120°.  These values are from the article by Aliabad and 

Kheirabadi (2014).   

As previously mentioned bismuth telluride has one type of bismuth atom and two types 

of tellurium atoms, the positions of one of each type of atom needs to be specified. The 

positions used were also from the article by Aliabad and Kheirabadi (2014).  This is done in the 

boxes labeled “Pos 1” by the labels “Atom 1,” “Atom 2’” and “Atom 3.”  The first box by each of 

these labels is what atom it is by the symbol, bismuth is “Bi” and tellurium is “Te.”  The second 

box by each label is the name chosen for each atom.  The first set of boxes labeled “Atom 1” is 

bismuth and was named “Bi.”  The position used was (0.4001,0.4001,0.4001).  “Atom 2” is the 

first tellurium atom and was named “Te1.”  The position used was (0,0,0).   “Atom 3” the 

second tellurium was named “Te2.”  The position used was (0.2095,0.2095,0.2095).  In these 

boxes the atomic number Z can also be specified however putting this in manually often causes 

an error and it is better to leave them as zero and let the program put in the atomic number 

from the type of atom it is.  Once this is done the structure is saved by clicking “Save Structure” 

at the bottom of the page.  There are four options given “Set RMT automatically and continue 

edited” is done once and the user can chose to reduce the RMTs (radial muffin tin) by a 

percentage, 0% is chosen and the structure is saved again.  This time out of the options given 

“save file and clean up” is chosen and the structure file is complete. 

 Next the calculation is initialized.  In the initialize calculation page every button needs to 

be clicked through in order that it is highlighted.  If there is a file with the option of being saved 



it should be saved.  Most of the options given can be left as default.  Under the “x lstart” button 

the exchange correlation potential can be chosen but it is left as the default “PBE_GGA” or the 

Generalized Gradient Approximation.  This exchange correlation potential was used in the 

article that the results were compared to.  When the “x kgen” button is reached the number of 

k-points was chosen to be 200 for the density of states calculation and 100 for the band 

structure calculation.  Because the k-points are only quasi-continuous it is not always best to 

have a larger number.  Once all the options have been gone through the SCF cycle is ran and 

spin-orbit coupling can be added to the calculations at this point.  It takes ten cycles for the 

program to calculate the correct charge density??  Under “Utils.” there is a “show dayfile” 

option that displays when the program goes through a cycle and when the calculation is 

completed.  

 At this point the band structure and density of states can be calculated.  To calculate the 

density of states the user choses the option “DOS” under “Tasks.”   Most of the options are left 

as default but for the program to calculate the partial density of states the “(session name).int” 

file needs to be edited.  Figure 5 is the default file and the file is changed to contain information 

for the s and p orbitals of all three atoms and the interstitial states as in Figure 6. 



 

Figure 5 The default (session name).int file 

 

Figure 6 The (session name).int used to plot the partial density of states. 

 

The numbers in the first column in Figure 6 correspond to which atom it is, “0” is for all 

atoms, “1” is bismuth, “2” is the first tellurium atom, “3” is the second tellurium atom, and “4” 

is for the interstitial states.  The “11” is the total number of partial density of states specified in 

the file.  The numbers in the second column correspond to the orbitals, “1” is the total, “2” is 

for s-orbitals, and “3” is for p-obitals.  Wien2k can calculate the partial density of states for 

other orbitals but the s-orbitals and p-orbitals are relevant for Bismuth Telluride.  After this file 



is edited the remaining options are gone through and the “(session name).outputt file is saved 

and the density of states can be plotted. 

 To obtain a value for the band gap the user selects “show all files” under “files.”  There 

are two files “(session name).dos1ev” and “(session name).dos2ev.”  The “.dos1ev” file contains 

information about the total density of states, the bismuth atom contributions to the density of 

states, and the first tellurium atom contributions to the density of states.  The “.dos2eV” file 

contains information about second tellurium atom and the interstitial states.  Because the band 

gap is where the total density if states is zero for the “.dos1ev” file is selected. The energy 

ranges where the total density of states is zero (<10−4) is the band gap. 

 To calculate the band structure XCrysden is used to choose a k-path in the first Brillouin 

zone.  After the k-path is saved under “Tasks” there is the option titled “bandstructure” that is 

chosen.  “from xcrysden” is chosen from the pull-down menu then the button “create (session 

name).klist_band” is clicked on.  All the options are gone through, the option “edit (session 

name).insp” needs to be edited.  At the top of the file there is a value for the Fermi Energy that 

needs to replace the “0.xxxx” in the file then the file is saved.  The remaining option is selected 

and the band structure can be plotted. 

 

3.0 Results/Discussion 

3.1 Density of States 



The results for the band structure and the density of states were compared to the 

results in the article by Aliabad and Kheirabadi (2014) and were found to match.  These results 

were also obtained using Wien2k and were done with and without spin-orbit coupling.  

However in this article the band structure was only shown for the energy ranges 1.0 eV to -1.0 

eV.   

The density of states without including spin-orbit coupling are shown in Figures 7-10 and 

are very similar to the density of states including spin-orbit coupling shown in figures 11-14.  

When not including spin-orbit coupling, the band gap was found to be 0.19049 eV when 

considering the total density of states to be exactly zero.  When considering values less than 

10−4 to be zero the band gap is 0.32654 eV.  The band gap found when including spin-orbit 

coupling and considering the density of states to be exactly zero was found to be 0.02721 eV 

and when considering values less than 10−4 the band gap is 0.10885 EV. The band gap found in 

the article also decreased when including spin-orbit coupling, from 0.28 eV to 0.12 eV. The 

measured value for the band gap have been found to be 0.11 eV and 0.16 eV (Aliabad and 

Kheirabadi).  The results for the density of states from the article are shown in Figure 15. 

 

Figure 7 Total density of states not including spin-orbit coupling. 



 

 

Figure 8 Bismuth atom contributions to the density of states not including spin-orbit coupling. 

 

 

Figure 9  The first tellurium atom contributions to the density of states not including spin orbit coupling. 

 



 

Figure 10 The second tellurium atom contributions to the density of states not including spin-orbit 
coupling. 

 

 The partial density of states shows that the s-orbitals of both types of tellurium atoms 

contribute the most states to the core bands and that the p-orbitals of both types of tellurium 

atoms contribute the most states to the valance bands.  The p-orbitals of the bismuth atoms 

contribute the most to the conduction bands and most of the bismuth atoms s-orbital 

contribute to the core bands but not as much as the tellurium atoms. 

 Figures 11-14 are the density of states and partial density of states including spin-orbit 

coupling.  The results for which atoms contribute the most to either the core, valance, and 

conduction bands are the same.   

 



 

Figure 11  The total density of states including spin-orbit coupling. 

 

 

 

Figure 12  The bismuth atom contributions to the density of states including spin-orbit coupling. 

 

 

Figure 13  The first tellurium contributions to the density of states including spin-orbit coupling. 



 

 

Figure 14  The second tellurium atom contributions to the density of states including spin-orbit coupling. 

 

 

Figure 15  The density of states results from Aliabad and Kheirabadi (2014). 

 

   

3.2 Band structure 

 XCrySDen shows the reciprocal lattice of the crystal and with this the path in k-space for 

the band structure to be calculated can be chosen.  Figure 16 shows the reciprocal lattice and 

the path that was chosen is shown in blue and goes from Γ to Z to F and then back to Γ.  These 



points were chosen so the results could be compared to the results in the article by Aliabad and 

Kheirabadi (2014) which used the same k-path.  The results from the article are shown in Figure 

18.  

   

Figure 16 The first Brillouin zone of bismuth telluride.  From XCrySDen. 

 

 The band structure without spin orbit coupling was done first and is shown in Figure 17.  

The conduction band minimum and the valance band maximum are both at the Γ point making 

it a direct band gap, with a size of 0.33 eV.  This area is magnified on the right.   
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Figure 17  The band structure of bismuth telluride without including spin-orbit coupling. 

 

 The band structure including spin orbit coupling is shown in figure 18.  At the Γ point 

there is no longer a conduction band minimum or a valence band maximum.  The conduction 

band minimum is now between the Γ and the Z points and the valance band maximum is now 

between the Z and F points, because they are not at the same k point the band structure now 

has an indirect band gap, with a size of 0.11 eV.  Including spin-orbit coupling in the calculations 

brings the band gap closer to the experimental values of 0.11 eV and 0.16 eV (Aliabad and 

Kheirabadi 2014). 



 

Figure 18  The band structure of bismuth telluride including spin-orbit coupling. 

 

 The sharp vertical lines that deviate from the dotted lines in Figure 18 are errors, 

however the dotted lines match the calculated band structure in the literature that it was 

compared to. 

 



 

Figure 19  The band structure results from Aliabad and Kheirabadi 2014.  Including spin-orbit coupling is 
on the left and not including spin-orbit coupling is on the right. 

 

4.0 Conclusion/ Future Work 

 Using Wien2k the density of states and the band structure of bismuth telluride and be 

calculated.  The calculated band gap was found to decrease from 0.33 eV to 0.11 eV when 

including spin orbit coupling and it was found to change from a direct band gap to and indirect 

band gap.   

 Future work would include further exploration of the thermoelectric properties of 

bismuth telluride.  This would include calculating crystal properties including dopants such as 

excess tellurium, iodine, and bromine.  The electrical conductivity, thermal conductivity, and 

the Seebeck coefficient could also be calculated. 
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