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THE SYNTHESIS, OPTICAL, AND TRANSPORT PROPERTIES OF

SnZrS3

1. INTRODUCTION

The sulfides of Sn and Zr are known to be semiconducting materials, some with

transport properties of interest in solar cells. The crystal structure of SnZrS3 has been

studied [1], but little is published about its transport properties. There are no reports of

values for the bandgap, resistivity, or Seebeck coefficient of SnZrS3. In this dissertation

we investigate the synthesis and transport properties of bulk SnZrS3 and the related

compound Sn2S3.

While there are many studies done on the transport properties of the sulfides of Sn

(SnS, SnS2, and Sn2S3) and the sulfides of Zr (ZrS2, ZrS3), the range of reported values is

wide. Since these materials will be present in some SnZrS3 samples that have not achieved

phase purity, we will also measure the transport and optical properties of SnS, SnS2, ZrS2,

and ZrS3 as necessary. This will aid us in determining what contributions to measured

values are coming from phase impurities, and what can be attributed to SnZrS3 itself.

1.1. The sulfides of Sn and Zr

1.1.1 SnMS3

SnZrS3 crystallizes in the Pnma space group [1]. The prototypical compound for

this structure is NH4CdCl3. Many other chalcogenides of the form ABCh3 occur in this

crystal structure, including SnHfS3, Sn2S3, and PbZrS3, among others. Figure 1.1 shows
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this crystal structure. The Sn has a valence of 2+, and is in a distorted tetrahedron of S

atoms. The Zr has a valence of 4+, and is in an octahedron of S atoms. These octahedra

form double columns which share two edges, and these columns are linked together by Sn

atoms. The unit cell is orthorhombic, with a = 9.188 Å, b = 3.717 Å, and c = 13.839 Å.

SnZrS3 has a density of 4.302 g/cm3. SnZrS3 forms a grey-black powder. Single crystals

are red and needle shaped.

Since Sn will also readily take the 4+ valence state, Sn can replace the Zr in SnZrS3

to form the mixed valence compound Sn2S3, which can be formally written as SnIISnIVS3.

This compound also crystallizes in the space group Pnma [2]. The unit cell is orthorhom-

bic, with a = 8.878 Å, b = 3.751 Å, and c = 14.020 Å. Sn2S3 has a density of 4.754 g/cm3.

Sn2S3 single crystals are metallic in appearance [3].

Band structure calculations in Wien2k indicate that SnZrS3 is semiconducting, with

an indirect bandgap of approximately 0.8 eV [4]. This band structure is presented in Figure

1.2. It is known that calculations using linear combinations of atomic orbitals (LCAO)

will underestimate bandgap values, and so a measured bandgap of higher than 0.8 eV is

expected. Sn2S3 is predicted to have an indirect bandgap of 0.55 eV. The band structure

for Sn2S3 is also shown in Figure 1.2.

The phases of the tin-sulfur system have been studied extensively by Moh, who

published an updated Sn-S phase diagram [5]. In his work he attempted the synthesis of

Sn2S3 at temperatures between 200 and 760 ◦C. He found that regardless of the tempera-

ture, stoichiometric mixtures of the elements Sn and S produced Sn2S3 mixed with SnS or

SnS2. He found that at 750 ◦C the system would reach equilibrium in 48 hours, whereas

at 200 ◦C he sintered the material for over 2300 hours before equilibrium was achieved.

Samples that were heated for large periods of time were periodically removed from the

oven, ground, and then replaced into the oven. A melting point of 760 ◦C was found for

Sn2S3. Sn2S3 has a dark grey to slightly metallic color.
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FIGURE 1.1: SnZrS3 crystal structure (M = Zr).

Single crystal measurements of Sn2S3 give a room temperature resistivity of 33

kΩ-cm [3]. This paper also reported a bandgap of 0.85 eV from temperature dependent

conductivity measurements, and a bandgap of 0.95 eV from optical absorption measure-

ments. The absorption spectra was characteristic of direct forbidden transitions.

1.1.2 Tin Sulfides

In addition to Sn2S3, the only known tin sulfides which are stable at low tem-

peratures are SnS and SnS2 [5]. SnS and SnS2 are known to tolerate some amount of

non-stoichiometry. SnS will remain stoichiometric under Sn rich conditions, but will form

Sn1−xS in sulfur rich conditions. SnS2 will tolerate S deficiencies, forming Sn1+xS2. Sn2S3

does not sustain measurable non-stoichiometries at room temperature.

The tin in SnS is in a 2+ valence state. As is the case in SnS, Sn(II) is commonly

in a trigonal pyramidal arrangement, with three longer essentially non-bonding contacts

which form a distorted octahedron. The longer contacts arise because of the non-bonding

electrons on the Sn(II) preventing the ligands from more closely approaching the tin [6]. In
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FIGURE 1.2: Band structures of SnZrS3 and Sn2S3. Calculated in Wien2k [4].
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FIGURE 1.3: SnS crystal structure. The Sn atoms are grey, the S atoms are yellow.

SnS the bond lengths to the nearest neighbor S atoms are 2.62 Å, 2.66 Åand 2.66 Å. The

next nearest sulfur atom is at a distance of 3.29 Å. The unit cell of SnS is orthorhombic,

with a = 11.18 Å, b = 3.982 Å, and c = 4.329 Å. The crystal structure belongs to the

Pnma space group, and is shown in Figure 1.3. The density of SnS is 5.196 g/cm3 [7]. It

is metallic in appearance.

The optical absorption coefficient for SnS is larger than 104 cm−1 [8]. Because of

the large absorption coefficient and a bandgap in the ideal range for solar cells , SnS is

studied as a possible solar cell absorber layer. Other advantages that SnS has are the

relatively high abundance of Sn and S compared Ga and In, which are used in CIGS cells,

and the lack of toxicity of its constituent elements, which is a problem for cells containing

Cd.

SnS thin films have been grown by thermal evaporation [9], chemical deposition [10],

electrodeposition [8], as well as other techniques. The optical bandgap for this material has

been found to vary significantly depending on deposition technique, deposition conditions,

and film thickness. Direct bandgaps in the range of 1.3 to 1.7 eV are reported [9]. Indirect
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FIGURE 1.4: SnS2 crystal structure. The Sn atoms are grey, the S atoms are yellow.

bandgaps in the range of 0.9 - 1.1 eV are also reported [11]. LCAO calculations show that

SnS has an indirect bandgap [12].

SnS is generally reported as being p-type[9, 13]. The electrical properties are

strongly influenced by stoichiometry [8, 13]. Frequently films will also contain small

amounts of other Sn-S phases, such as SnS2 or Sn2S3, which will also affect the carrier

type and resistivity. Resistivities in the range of 16.8 - 43.1 Ωcm are reported [8].

Moh reports that SnS2 forms thin plates and twinned crystals that are golden yellow

in color [5]. Its unit cell is hexagonal, with a = 3.647 Åand c = 11.811 Å[14]. The crystal

structure belongs to the P63mc space group. SnS2 is a layered structure. The layers are

formed by sheets of Sn sandwiched between sheets of S. The crystal structure is shown in

Figure 1.4. SnS2 has a density of 4.463 g/cm3.

SnS2 films have been grown using various chemical deposition techniques [15, 16].

Bandgaps are reported in the range of 1.6 - 2.44 eV[16, 17]. Resistivities on the order of 100

Ω-cm have been reported, exhibiting n-type conductivity [16]. As in SnS, stoichiometry
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FIGURE 1.5: ZrS2 crystal structure. The Zr atoms are green, the S atoms are yellow.

in SnS2 can have an affect on the properties exhibited.

1.1.3 Zirconium Sulfides

ZrS2 and ZrS3 are both stable sulfides of Zr, with the Zr atom in the 4+ valence

state.

ZrS2 is an n-type semiconductor reported to have an indirect bandgap of 1.68 eV

[18]. Bulk ZrS2 forms a violet powder [19], and single crystals are reported to be a metallic

red color [20]. It belongs to the space group P3m1, with a hexagonal unit cell. The lattice

parameters are a = 3.68 Åand c = 5.85 Å. The Zr in is sandwiched between sheets of S

atoms. These S-Zr-S layers are then bound to one another by Van der Waals forces [20].

The crystal structure is shown in Figure 1.5.

ZrS3 belongs to the family of transition metal trichalcogenides TX3, where T is

a transition metal of Group IVB, VB, or VIB, and X is S, Se, or Te. These materials

possess a pseudo one-dimensional structure [21]. The T atom will occupy the center of a
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FIGURE 1.6: ZrS3 crystal structure. The Zr atoms are green, the S atoms are yellow.

trigonal prism with chalcogenide atoms at the corners. Neighboring prisms will share faces,

creating an infinite chain along the b-direction of the crystal. The inter-chain bonding

tends to be weak, and the inter-chain distances are much large. This gives rise to strongly

anisotropic material properties, which has caused interest in this family of materials.

ZrS3 crystallizes in a monoclinic structure in the P21/m space group [22]. The

representative compound for this structure is ZrSe3. The lattice parameters are a = 5.1243

Å, b = 3.6244 Å, and c = 8.98 Å, with α = 97.28◦ [23]. Each Zr is bonded to three S

atoms, with two of those S atoms bonding to each other. The crystal structure is shown

in Figure 1.6.

Resistivity and Seebeck measurements have been carried out along the b-axis of ZrS3

single crystals [21]. A room temperature resistivity value of 15 Ωcm is reported. Pressed
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pellets of powders have a resistivity which is 104 times greater than that of single crystals

along the b-axis. The reported Seebeck coefficient is −850 µV/K. Bandgaps in the range

of 1.95 eV to 2.56 eV are reported.
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2. THEORY AND METHODS

This chapter describes the production and characterization of samples, as well as

the theory behind the characterization methods. In the first section production methods

will be described, as well as some of the rationale for choosing specific dopants. In the

second section X-ray diffraction for phase identification is discussed. The third section is on

bandgap determination by diffuse reflectance. The fourth discusses Seebeck measurements

as used for determination of majority carrier type. The final section is on resistivity

measurements.

2.1. Synthesis and sample preparation

Elemental powders are weighed and then mixed in a mortar and pestle. The powders

used for undoped samples are: tin (Sn) (Cerac 99.99%, 200 mesh), zirconium (Zr) (Cerac

99.7%, 325 mesh), and sulfur (S) (Alpha Aesar 99.8%, 325 mesh). This mixture is placed

into a fused silica tube which is then evacuated and sealed with an oxygen-hydrogen torch.

Typically the tubes are evacuated using a Varian V-70 Turbo vaccuum pump, reaching

a pressure of 10−6 Torr before being sealed. If the Varian pump is not available, tubes

are evacuated on a Welch Duo Seal 1376, which pumps down to 30-50 mTorr. The sealed

tubes are then sintered in a Thermolyne 1300 box furnace controlled by a Eurotherm

808 controller. Sinter times are typically 12 hours, and temperatures are detailed in the

results section as they vary from material to material. Samples are typically between 0.5

g and 2 g. In samples larger than ∼ 3 g, there is the risk of the silica tube popping during

sintering due to high vapor pressures inside the tube.

Sintered powders are ground with a mortar and pestle for X-ray diffraction and

diffuse reflectance measurements, or they are ground and then pressed into pellets for
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transport measurements. The pellets are cold pressed in a 1⁄2-inch die to a pressure of 9

metric tons and held there for 10 minutes. Over this time the pressure in the press drops

slowly, so periodically the pressure is pressed back up to 9 metric tons. The final density

achieved is generally 80% of the theoretical density of the material. The pellets are made

from about 1 gram of powder, which produces a 12.7 mm diameter (1/2”) pellet 1-2 mm

in thickness.

Dopants are introduced into a sample by adding other elemental powders in place

of a small amount of the Sn or Zr in a sample prior to sintering. Typically the amount

of dopant will not exceed 10 atomic % of the element it is replacing. Dopants used are:

niobium (Nb) (Alfa Aesar, 99.8%, 325 mesh), bismuth (Bi) (Strem Chemicals, 99.999%),

antimony (Sb) (Alfa Aesar, 99.5%), and indium (In) (Alfa Aesar, 99.9%).

It is important that we are able to predict how the dopant might behave when

introduced to the system we wish to modify. There are several criteria that must be

examined when choosing a dopant. In a given environment every atomic species will

favor certain coordinations, valence states, or some combination of the two. In addition

to coordination and valence, the ionic radius of the dopant atom is important. If the

ionic radius of the dopant is very different from the element it is replacing, it is likely the

crystal lattice will become strained, and the possibility of undesired phases being formed

may increase.

Zunger published a paper giving general “doping rules”, which give guidelines ex-

plaining under what conditions a material is easily dopable n- or p-type [24]. His rules

are as follows:

1. n-type doping is facilitated in materials with large electron affinities. Conversely,

n-type doping is more easily compensated in materials with small electron affinities.

2. p-type doping is facilitated in materials with small ionization energy. Conversely,

p-type doping is more easily compensated in materials with large ionization energy.
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3. Cation vacancies compensate n-type dopants. If n-type conductivity is desired,

design growth conditions which inhibit cation vacancies.

4. Anion vacancies and cation interstitials will compensate p-type dopants. If p-type

conductivity is desired, design growth conditions which inhibit anion vacancies

and/or cation interstitials.

5. Dopants which substitute for anions are more soluble under cation rich growth con-

ditions.

6. Dopants substituting for cations are more soluble under anion rich growth conditions.

7. The local chemical bonding energy around the dopant could be enhanced via deco-

rating the dopant by strongly bonding ligands which do not disrupt the host bonds.

An example of this is doping N onto the O site of ZnO. The Zn-N bonds are weak,

but Al-N bonds are much stronger. If you then replace one Zn with Al for every

four N, then the resulting dopant structure is much more stable.

This paper was discovered after the doping work in this thesis was performed, and so

these rules will primarily be of use in directing any future doping studies. After it has

been proven whether or not the system can be doped n- or p-type, there may also be

considerations that affect dopant selection apart from whether or not the dopant will

function as intended. These include cost, toxicity, and natural abundance. SnS is being

considered as a solar cell absorber material in part because of the abundance and non-

toxicity of its components. There have been questions about the extent of the Earth’s

supply of In [25], for example, so even if In will act as a dopant it may not be the most

ideal candidate.
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2.2. X-ray diffraction

2.2.1 Theory

XRD on powders is commonly used today in material phase identification [26]. A

powder in this sense is any material which contains a large number of small crystals, which

are randomly oriented. The basis for XRD is Bragg reflection, where the incident X-rays

are reflected off of crystal planes in the sample. Light reflected off of nearby crystal

planes will interfere constructively when the path difference between the two beams is

a whole number multiple of the incident wavelength. For light with wavelength λ, the

incident angles θhkl which will produce constructive interference from a crystal plane

(hkl) a distance dhkl away is found by

nλ = 2dhklsin (θhkl) (2.2..1)

where n is the order of the reflection [27].

For a given material, dhkl should be constant from one sample to another for a given

(hkl), which means the locations as a function of θhkl of high intensity reflections should

be the same from one sample to another. This gives a method of determining possible

phases for a material. Within a given crystal structure the dhkl are generally of similar size

from one material to another. This means that the high intensity reflections for materials

with a single crystal structure will be in the same general location, but shifted by small

angles.

There are two primary methods for measuring diffraction patterns, and angular

dispersive method and an energy dispersive method. In the angular dispersive method, a

monochromatic X-ray source is used, and the detector is scanned over the desired angle

range. In the energy dispersive method, a polychromatic X-ray source is used with the

detector held at a constant position. The energies of the reflected X-rays are measured in
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addition the intensities at each energy, which effectively scans over λ for a fixed angle.

2.2.2 Experimental

XRD patterns are taken on a Rigaku MiniFlex II benchtop XRD system, which uses

Cu Kα radiation. About 0.2 g of prepared powder is packed into an aluminum sample

holder. The powder is leveled with a glass slide. For phase identification, scan rates are 3

to 5 degrees per minute. The 2θ increment is 0.02◦. Typically the scan is from 2θ = 15◦

to 50◦, but if it is suspected that there is ZrS3 present, scanning must begin below 10◦ as

the primary ZrS3 peak is located between 9◦ and 10◦. Recorded patterns are viewed in

JADE, and compared with known patterns for the desired phase and possible impurities.

2.3. Diffuse reflectance

2.3.1 Theory

Diffuse reflectance measurements on powders can be used directly to determine the

optical bandgap of a material [28]. The onset of optical transitions between the valence

band maximum and conduction band minimum is known as the fundamental absorption

edge [29]. The energy of the incident photons at the fundamental absorption edge is equal

to the bandgap of the material.

In a semiconductor, the diffuse reflectance will decrease linearly with energy at the

absorption edge [28]. Examples of diffuse reflectance spectra for several semiconductors

are shown in Figure 2.1. The linear regions of these spectra occur at the absorption edge.

If there is a clear absorption edge, then the bandgap can be extracted directly from the

diffuse reflectance data.

Frequently the onset of absorption will not be clear, as there is not a clear linear

region in the reflectivity. In this case we use plots of the absorption coefficient to obtain

the bandgap energy. For a semiconductor with a direct bandgap Eg and parabolic energy



15

FIGURE 2.1: Diffuse reflectance spectra of several semiconducting powders. The region
in which the diffuse reflectance changes linearly with energy indicates the absorption edge
for that powder. Image taken from [28].
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bands, it can be derived [30, 31] that, near the absorption edge, the absorption coefficient

α for direct transitions can be found by

αhν = A (hν − Eg)1/2 (2.3..1)

where A is a constant which depends on material properties and hν is the energy of the

incident photons.

A similar relation for indirect bandgaps can be found. Indirect transitions require

the assistance of a phonon, and so its energy must also be accounted for. The relation for

indirect bandgaps is

αhν = A(hν ± EP − Eg)2. (2.3..2)

where EP is the energy of the phonon. The + sign is used when a phonon is emitted, and

the - sign is used when a phonon is absorbed. The phonon energy will be on the order of

kBT , which at 300 K is approximately 25.9 meV. The bandgaps we will be measuring are

on the order of 1 eV, and our resolution is not finer than ∼ 0.1 eV, and so we will drop

the EP term from our equations for indirect bandgaps.

Rearranging Equation (2.3..1) gives

(
αhν

A

)2

= (hν − Eg). (2.3..3)

When hν is above the bandgap energy, a plot of (αhν)2 as a function of hν should be

linear. This line will cross the hν-axis at the bandgap energy, as when the left hand side

of Equation (2.3..3) is zero, hν will be equal to the bandgap energy. This gives a method

of determining the bandgap energy from absorption data. For indirect bandgaps, the

relation is (
αhν

A

)1/2

= (hν − Eg), (2.3..4)
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and one will plot (αhν)1/2 against hν and extrapolate to zero absorption.

Now that we have a method of obtaining the bandgap from absorption data, we

must extract this data from the diffuse reflectance spectrum. We are able to obtain

information about absorption because not all of the light is reflected at the surface of

the sample. There will be some penetration depth, and reflection will occur off of layers

that are in the bulk of the sample. As the light passes through the material there will

be some probability of absorption rather than reflection or transmission. High absorption

will cause the measured reflectivity to drop significantly. At zero absorption we would see

a reflectivity of 1, as all of the incident light will eventually reflect out of the sample.

We determine the absorption spectrum through a modified Kubelka-Munk equation

[32]. The Kubelka-Munk theory gives a relation between R∞, the reflectance of an in-

finitely thick sample, and K/S. K and S are related to the absorption and scattering

coefficients, respectively. The Kubelka-Munk equation is

K/S =
(1−R∞)2

2R∞
. (2.3..5)

It will be assumed that our samples are sufficiently thick, and R∞ will be replaced with

the measured diffuse reflectance R. It has been shown [33] that K/S = 2α/s, where α is

the absorption coefficient and s the scattering coefficient. We will assume that s does not

vary much over the measured range, and so a plot of K/S will give a good representation

of α. We then have a method of converting diffuse reflectance data into absorption data,

and can determine the optical bandgap for a material.

2.3.2 Experimental

There are two systems that we use for recording diffuse reflectance spectra. In

one system, a diffraction grating is used to select a single wavelength of light. This

monochromatic beam is steered with mirrors onto a sample inside an integrating sphere.
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The light intensity reflected off the walls of the sphere is recorded by a single detector as

we scan through the desired wavelength range. This system will henceforth be referred to

as the integrating sphere system.

The second system uses a broadband light source incident on the sample via a fiber

optic cable. The reflected signal is then sent via another fiber to a diffraction grating

which splits the reflected signal into single wavelength components that are incident on

an array of detectors that each measure a specific wavelength region. This system will

henceforth be referred to as the fiber optics system. These two systems are diagrammed

in Figure 2.2. In both systems a BaSO4 white reference is used.

In the integrating sphere system a tungsten lamp is used as the light source. The

light from this lamp is passed through a monochromator, typically with a 1 µm grating.

After passing through the monochromator, the light is passed through a filter wheel, which

has a set of filters which block light with wavelengths below 300 nm, 600 nm, and 1200

nm. These filters are used to block out higher order light from the diffraction grating.

There are also empty slots which provide no filtering.

After passing though the necessary filter, the light is incident upon the sample

powder in an integrating sphere. The light is partially reflected off the sample and partially

absorbed. The walls of the integrating sphere are diffusely reflective. On the side of the

sphere is a photodetector. The spectral intensity is first measured with a BaSO4 reference,

then a dark measurement is taken, and then the intensity is measured with the sample in

place. The reflectance is the ratio (sample - dark)/(reference - dark). The photodetectors

used are a silicon detector which will accurately detect photons with energies above 1.2

eV, and an InGaAs detector which is accurate from 0.6 to 1.3 eV.

For the fiber optics system, there is a separate light source for the UV to visible

range (200-1100 nm) and for the near infra-red (NIR) (800-2600nm) range. The UV-vis

spectrum is provided by an Ocean Optics Mikropack DH-2000-BAL Deuterium Tungsten
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FIGURE 2.2: Integrating sphere and fiber optic setups.
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Halogen light source. The NIR spectrum is provided by an Ocean Optics Mikropack

HL-2000 Tungsten Halogen light source. The reflectance spectra are measured by an

Ocean Optics HR 4000 spectrometer in the UV-vis and by an Ocean Optics NIR256-2.5

spectrometer in the NIR. The NIR measurement used an Ocean Optics QBIF400-VIS/NIR

Bifurcated Optical Fiber with a diameter of 400 m. The UV-vis setup utilized an Ocean

Optics ZFQ-9803 Bifurcated Optical Fiber with a diameter of 455 m. The other ends of

the bifurcated optical fiber were connected to the spectrometer and light source.

The sample is placed approximately 3 mm below the end of the fiber. Measurements

are averaged over 1-3 minutes, depending on the intensity of the reflection. By default

100 samples are averaged. The duration of each sample is determined by the number of

samples and the integration time. A reference pattern from BaSO4 is first taken, then a

dark measurement, then a measurement with the sample in place. The reflectance is found

by (sample - dark)/(reference - dark) as before. If both UV-Vis and NIR measurements

are desired, the light source must be switched and the measurements repeated.

2.4. Seebeck measurements

2.4.1 Theory

When two different conducting materials A and B are joined at their ends, forming

a loop, and their junctions held at different temperatures, a current will flow through the

loop. This is called a thermoelectric current. If this loop is broken as in Figure 2.3a, one

can measure the potential difference ∆VAB driving this current. We define the differential

thermoelectric power SAB as [34]

SAB =
dVAB

dT
(2.4..1)

This differential thermoelectric power is the difference between the absolute thermoelectric

power for each material, that is SAB = SA− SB. The thermoelectric power is also known
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FIGURE 2.3: Seebeck voltage (a) and Seebeck measurement system. In (a), A and B are
two different conducting materials. The voltage VAB arises as a result of the temperature
gradient. The voltage polarity in (b) has been flipped from (a) to follow the sign convention
that n-type materials have a negative Seebeck coefficient.
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as the Seebeck coefficient, and is a material property. The most common unit for the

Seebeck coefficient is µV/K.

The Seebeck effect arises from a concentration gradient in the carrier concentration

as a result of a temperature gradient. Suppose we have a piece of material which is in

thermal equilibrium. Since the temperature is the same everywhere in the material, then

the carrier concentration should also be the same. If we now heat one side of the material,

there will be more thermally generated carriers on that side than the cold side, creating

a carrier concentration gradient. Carriers will then diffuse from the high concentration

area to the low concentration. This will cause an accumulation of charge at the cold end

of the sample, creating an electric field which opposes the diffusion of more carriers from

hot end to cold end.

We can determine the type of majority carrier in a material by measuring the sign

of the voltage resulting from this electric field. If the material is n-type, then electrons

will have diffused from the hot to the cold end. The resulting electric field will point from

hot to cold to stop more electrons from diffusing, and thus VHot − VCold will be positive.

For holes, the electric field will have to point from cold to hot to oppose their diffusion,

and VHot − VCold will be negative. In this way a measurement of the voltage difference

from hot to cold will tell you what the majority carrier type is.

We have defined the Seebeck coefficient to be S = dV/dT , which can be calculated

from measurements as ∆V/∆T = (VHot − VCold)/(THot − TCold) when the temperature

difference is small compared to the temperature at either end. Since ∆T is always positive,

the sign on S is determined by ∆V . This would give a negative Seebeck coefficient for

holes and a positive coefficient for electrons. However, by convention we wish those signs

to be opposite, so when measuring the Seebeck voltage we take ∆V to be (VCold − VHot).

This gives n-type materials negative Seebeck coefficients and p-type materials positive

coefficients.
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It is interesting to note that highly resistive materials will generally give a negative

Seebeck coefficient, even if they are weakly p-type [35]. In these materials the electron

and hole concentration will be approximately equal. Electrons generally have a higher

mobility than holes and will diffuse more easily, giving a negative Seebeck coefficient.

Now, measuring the Seebeck voltage will tell you the difference in Seebeck coeffi-

cients between the two materials involved, not the absolute coefficient for your sample.

One possible solution to this problem is to use a superconductor as your second ma-

terial. Superconductors do not display thermoelectric effects, thus SSuperconductor = 0,

and you measure only the coefficient for your sample. The downside is this greatly

limits the temperatures at which you can do your measurement. In our case, we will

generally be measuring semiconductors, which tend to have high Seebeck coefficients

(> 100µV/K). These samples are placed on copper blocks, which have SCu < 2µV/K

[36]. Since SSample >> SCu, we ignore the contribution to the coefficient from the copper

blocks.

2.4.2 Experimental

Our Seebeck system is of in-house design, shown in Figure 2.3b. The sample pellet

is placed across two copper blocks, one of which has a resistor in it for heating to provide

the temperature gradient. The current to heat the resistor is supplied by a Keithley

2400 Digital SourceMeter. The induced voltage between the two blocks is measured by a

Tektronix DM 5120 Digital Multimeter. The temperature difference between the copper

blocks is found by measuring the voltage on a differential thermocouple between the two

blocks. This voltage is measured by a Keithley 195A Multimeter. All of the multimeters

and sources are controlled by a LabView program.

Before the sample is placed on the copper blocks, the blocks are cleaned with sand-

paper, and then cleaned with methanol. Indium foil is then placed on the blocks to help

make better contact between the blocks and the sample. The sample is also sanded down
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to expose a new surface before measurements. After the blocks and sample have been

cleaned and In contacts have been laid, the sample is placed on the contacts and then

fastened in place with plastic strips which are attached to each block by screws. It is im-

portant to make sure the sample is fastened tightly to ensure good thermal and electrical

contact, but be aware that the sample will break if it has been screwed down too tightly.

The block cleaning procedure should be repeated between every measurement.

Before any samples are measured, a chromel wire is measured which has a known

Seebeck coefficient of +20 µV/K. This is done to ensure that the polarity of the voltage

measurements is correct, so that positive coefficients do in fact correspond to hole majority

carriers, and also to make sure that the values measured are reasonable.

In a measurement, the block is heated to achieve a 5 Kelvin temperature difference,

and then the heating current is turned off. Measurements are then recorded every few

seconds until a temperature difference of approximately 1 Kelvin is reached, after which

the measurements are not reliable. The Seebeck voltage is then plotted against the tem-

perature difference, and a line is fitted to the data. The slope of this line gives the Seebeck

coefficient.

2.5. Resistivity

2.5.1 Theory

Electrical resistivity ρ is an important material parameter to measure, as it will

dictate the kinds of applications the material can be used for. The electrical conductivity

σ of a material is the inverse of its resistivity, σ = 1/ρ. In a semiconductor, the resistivity

can be controlled by adding dopants, and so resistivity measurements at different doping

levels can be used to help verify whether a particular dopant species is producing the

desired effects. In general, resistivity and conductivity are tensor quantities which depend
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on the direction in which the current is applied. In a pressed powder sample, one expects

the sample grains to be randomly oriented, and so we are effectively measuring an average

over all the tensor components of the resistivity.

The resistivity of a sample could be measured by either a two-point or a four-point

probe. In a two-point probe measurement, each probe acts as both a current and a voltage

probe [35]. That is, the voltage drop across the sample is measured between the probes

that are sourcing the current. In general the two-point probe is easier to implement,

but will include contact and probe resistances in addition to the sample resistance. In

a four-point probe measurement, two probes are used to source the current and another

two probes are used to measure the voltage drop across the sample. Since the voltmeter

will have a high input impedance (≥ 1012Ω), the current flowing through the voltmeter

will be very small, causing the voltage dropped across the probe/contact resistances to

be negligible. The only significant voltage drop measured will be that dropped across the

sample. For this reason, four-point probe measurements are used to determine sample

resistivity.

Resistivity is related to the resistance R of a sample by

ρ = R
A

l
, (2.5..1)

where A is the cross sectional area of the sample and l is the length through which the

current flows. This formulation is useful in when there is a uniform current flowing through

a well defined A and l. The two contact geometries we use to measure resistivities are the

collinear and Van der Pauw geometries; resistances are measured between nearest-neighbor

contacts, and the current density is non-uniform.

The collinear contact arrangement is shown in Figure 2.4a. The current I flows

between the outer two contacts (1 and 4), and the voltage drop V is measured between

the inner two contacts (2 and 3). Contacts are placed as close to the middle of the sample
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FIGURE 2.4: Collinear (a) and van der Pauw (b) contact arrangements. The contacts are
typically 1 mm in diameter. In the collinear arrangement the contact spacing is 2 mm. In
the van der Pauw arrangement the nearest neighbor contacts are 8 mm apart. With the
current and voltage as shown in (b), the resistance R12,34 can be determined.

as possible, and typical spacing between contacts ranges from 0.5 to 1.5 mm [35]. In

general, the contacts will be equally spaced. For a sample which is infinitely wide and

infinitely thick, the resistivity in the collinear geometry can be found by

ρ = 2πs
V

I
, (2.5..2)

where s is the spacing between contacts [35].

Real samples will not have infinite dimensions, and so correction factors must be

introduced. For collinear contacts, this is accomplished by multiplying Equation 2.5..2 by
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the correction factor F .

ρ = 2πsF
V

I
(2.5..3)

If sample thickness is on the order of the probe spacing, then F can be written as a

product of three independent factors

F = F1F2F3. (2.5..4)

F1 corrects for sample thickness, F2 for lateral sample dimensions, and F3 for placement

of the probes relative to the sample edges.

In addition to depending on the sample thickness, the functional form of F1 de-

pends on whether the sample is measured on an insulating or conductive substrate. The

substrates we use for measurement are insulating, and so F1 can be found by

F1 =
t/s

2ln [sinh (t/s) /sinh (t/2s)]
, (2.5..5)

where t is the sample thickness [35]. For conducting substrates, sinh is replaced with cosh.

A plot of F1 vs. t/s is shown in Figure 2.5. For our samples the thicknesses are between

1 and 2 mm, and the contact spacing is 2 mm, which gives F1 ∼ 0.5.

For a circular sample of diameter D, F2 is given by

F2 =
ln(2)

ln (2) + ln
[

(D/s)2+3
(D/s)2−3

] . (2.5..6)

For D ≥ 40s, F2 goes to 1. For our samples D is 12.7 mm and s is 2 mm, giving F2 ∼ 0.8.

F2 vs. D/s is shown in Figure 2.6.

F3 corrects for edge effects, and is also dependent on whether the substrate is con-

ducting or insulating. If the distance d from the edge of the sample to the contacts is ≥ 3s,

then F3 is approximately 1. In our samples, this is true when measuring perpendicular
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FIGURE 2.5: Correction factor F1. F11 is used for insulating substrates, F12 for conductive
substrates. Image taken from Schroder [35]

FIGURE 2.6: Correction factor F2. Image taken from Schroder [35]
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FIGURE 2.7: Correction factor F3. F31 and F32 are for insulating substrates, F33 and F34
are for conductive substrates. Image taken from Schroder [35]

to the line of contacts. From the end contacts to the nearest edge is approximately 1.5s,

giving F3 between 0.9 and 1. F3 vs. d/s is shown in Figure 2.7. For our samples F3 will

be closer to 1 than to 0.9, and so we will assume it is 1 for simplicity.

Van der Pauw gave a method [37] for determining the resistivity of an arbitrarily

shaped sample, given the following conditions: (a) the contacts are at the circumference

of the sample, (b) the contacts are sufficiently small, (c) the sample has uniform thickness,

and (d) the surface of the sample is singly connected, i.e., the sample does not have

isolated holes.

Figure 2.8 shows an arbitrarily shaped sample with four contacts. We will assume

that it satisfies the four criteria above. Define the resistance Rab,cd as

Rab,cd =
Vcd

Iab
. (2.5..7)

where the current Iab flows from contact a to contact b, and the voltage Vcd is the voltage

difference between contact c and contact d. The resistivity of the sample is given by [37]

ρ =
π

ln(2)
t
R12,34 +R23,41

2
f (2.5..8)
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FIGURE 2.8: Arbitrary sample for four-point probe resistivity measurement. The resis-
tance R12,34 is defined to be V34/I12, where I12 is a current flowing between contacts #1
and #2, and V34 is the voltage difference between contacts #3 and #4.

where t is the thickness of the sample and f is a function of the ratio R12,34/R23,41 which

satisfies the relation

R12,34 −R23,41

R12,34 +R23,41
=

f

ln(2)
arccosh

(
exp [ln(2)/f ]

2

)
(2.5..9)

The dependence of f upon R12,34/R23,41 is given in Schroder Figure 1.9 [35].

When the contacts are placed symmetrically on the sample sample and R12,34 =

R23,41, then f = 1 and Equation 2.5..8 becomes

ρ =
π

ln(2)
tR12,34 ≡ 4.532tR12,34 (2.5..10)

Figure 2.4b shows our van der Pauw contact arrangement. Even when the contacts are

placed symmetrically on the sample, the various Rab,cd will generally not be equal due

non-uniformities in the sample. It is useful to obtain an average resistivity by including

the remaining two contact permutations and reversing the current for all measurements
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[38]. The resistivity is then found by

ρ =
πt

8ln(2)
(R21,34 −R12,34 +R32,41 −R23,41 +R43,12 −R34,12 +R14,23 −R41,23) (2.5..11)

The above equations are derived assuming that the contacts are of negligible size

and located on the periphery of the sample. Van der Pauw gave a correction for contacts

of finite size on a circular sample [37]. For each contact of finite size, the percent change

in the resistivity ∆ρ/ρ is given by

∆ρ
ρ

= − 1
16ln2

d2

D2
(2.5..12)

where d is the diameter of the contact and D the diameter of the sample. Since there

will be four contacts, this percent change must be multiplied by 4. The overall correction

factor for four contacts is then

1− 1
4ln2

d2

D2
(2.5..13)

For a 1 mm contact on a 12.7 mm disk gives a correction of 0.998. Since this correction

is so small for our samples, it will be ignored.

Cold-pressed pellets will generally not achieve 100% theoretical density, and will

thus contain non-conducting pores. These pores will increase the measured resistivity of

the sample, and must be corrected for. In this work we will use the minimum solid area

model presented by Rice [39].

The minimum solid area model assumes that any flux through a material is limited

by the smallest cross-sectional area through which it passes. It has been found [39] that

for a volume fraction of pores p <∼ 0.3 the correction factor from this model has an

exponential form:

ρactual = e−bpρmeasured (2.5..14)
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where b is a parameter which depends on the nature of the pores. We will assume that

we have spherical pores in our pellets, in which case b = 3. Our pellets are typically

80% dense, which gives a volume fraction of pores p = 0.2. The correction factor for this

density is e3∗0.2 ≈ 0.549.

2.5.2 Experimental

Four-point probe resistivity measurements are taken on a Lakeshore Hall effect

system. Both collinear and Van der Pauw contact geometries are used. Contacts are

made of evaporated gold, deposited directly on freshly cleaned sample surfaces. Sample

thicknesses are typically 1 to 2 mm. In both contact geometries, I-V curves are taken for

each nearest neighbor contact pair to check that contacts are Ohmic.

In the collinear geometry, circular contacts 1 mm in diameter are placed 2 mm

apart, measured from the center of the contacts. Current is sourced between probes #1

and #4, the voltage drop measured between probes #2 and #3, and the resistance is

determined. The direction of the current is then reversed and the measurement repeated.

The two resistances are then averaged. This resistance is used to calculate the resistivity

from Equation 2.5..3, using appropriate correction factors.

In the Van der Pauw geometry, contacts are placed evenly around the edge of the

sample. The distance to the nearest neighbor contact is 8 mm. Eight sets of measurements

are done, to find the resistances R12,34, R23,41, R34,12, and R41,23 and then reversing the

current for each measurement. An average resistivity is then found by Equation 2.5..10.
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3. RESULTS AND DISCUSSION

3.1. Impurity phases

3.1.1 XRD and physical characteristics

The most common impurities found during SnZrS3 synthesis are SnS and ZrS2. The

largest peaks of ZrS2 and SnS2 tend to be very close to each other, or are obscured by

SnZrS3 peaks, making XRD identification of which impurity phase is present difficult at

times. We synthesized both materials to find distinguishing physical characteristics for

visual identification. When SnZrS3 is formed under very sulfur rich conditions, ZrS3 will

form. For Sn2S3 the only observed impurity phases have been SnS and SnS2.

ZrS2 forms a dark red powder. When found in SnZrS3, the ZrS2 powder is inter-

spersed with the SnZrS3 powder, which is dark grey. When interspersed like this, the ZrS2

takes on more of a purple hue. Because the two powders are mixed, it is very difficult

to separate them. The XRD pattern for ZrS2 is shown in Figure 3.1. This sample was

sintered at 800 ◦C for 12 hours, which are the same oven conditions we make SnZrS3 in.

This yielded a quite pure powder.

SnS2 forms a bright orange plate-like structure, which leads to easy visual identifi-

cation between ZrS2 and SnS2. SnS2 tends to accumulate on tube walls during synthesis,

allowing some mechanical separation. However, in Sn2S3 synthesis, some SnS2 will be

interspersed among the Sn2S3 powder, preventing complete separation. When made at

800 ◦C for 12 hours, the result was primarily SnS2 with a small amount of Sn2S3. The

XRD pattern is shown in Figure 3.2.

The measured peak intensities very poorly fit the peak intensities indicated by the

PDF from [14]. However, there seems to be some regularity to the mismatch. The (0 0

X) peaks tend to be at a much higher intensity than would be expected, and the (1 0
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FIGURE 3.2: SnS2 XRD pattern. The reference pattern is from [14]

X) peaks are at a much lower intensity, becoming entirely suppressed at large 2θ. This

likely means that the powder is not randomly oriented, instead it seems that there is a

preferential orientation along the (0 0 X) direction. This may be due to SnS2’s layered

structure.

SnS has a metallic appearance. It will tend to accumulate on tube walls during

synthesis of SnZrS3 and Sn2S3, making mechanical separation of the bulk of the impurity

phase possible. The XRD pattern for SnS synthesized at 800 ◦C for 12 hours is shown

in Figure 3.3. This sample had a small Sn2S3 impurity phase which was mostly removed
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before XRD analysis.

ZrS3 forms a red, very low density material which is almost sponge-like in texture.

The elemental powders for most materials in this work will occupy perhaps a tenth of

the silica tube prior to sintering. After sintering they will tend to occupy 10-20% of the

tube. For ZrS3, if the elemental powders occupied 10% of the tube, the resulting ZrS3 will

occupy nearly 50% of the tube space. When grinding in a mortar and pestle, the powder

will tend to clump together. When appearing as an impurity phase in SnZrS3, ZrS3 is

bright red and is interspersed with the SnZrS3 powder. ZrS3 tends to be somewhat more
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segregated within the SnZrS3 powder than is ZrS2, and is a much brighter red compared

to the purple hue that ZrS2 has in SnZrS3.

Figure 3.4 shows the XRD pattern for ZrS3 grown at 900 ◦C. This pattern was made

in two separate runs, as it was not initially realized the largest ZrS3 peak is just below

the normal 10◦ starting angle. There is a ZrS2 impurity phase present in this sample.

There are also low, broad humps through some sections of the pattern, which are possibly

indicative of an amorphous phase.
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3.1.2 Optical and Transport properties

Reported bandgaps for ZrS2 and SnS2 are around 1.7 eV and above [16, 18]. Bandgaps

for SnZrS3 and Sn2S3 appeared to be around 1.3 eV or lower, which means that near the

absorption edges for these materials, ZrS2 and SnS2 are transparent. As a result, these

impurities will not affect optical measurements to determine the bandgaps of SnZrS3 and

Sn2S3. As such, we did not make optical measurements for the disulfides. Reported

bandgaps for SnS vary from 0.9 up to 1.7 eV, which covers the range in which we expect

to find the bandgaps for SnZrS3 and Sn2S3. We took diffuse reflectance measurements on

SnS to get a better idea of what bandgap we expect to see in our SnS impurity phases.

Figure 3.5 shows the reflectivity andK/S data for SnS. There is a slight discontinuity

between the NIR data set and the UV-Vis data set. This was also seen in a Sn2S3 sample

measured immediately after the SnS sample. Data from other Sn2S3 samples shows that

the NIR data is more consistent than the UV-Vis data, and so we take our bandgaps for

SnS from the NIR data. The bandgap as found by the method described by Fochs [28]

from the reflectivity data is 1.11 eV. Figure 3.6 shows the ((K/S)E)2 and ((K/S)E)1/2

versus energy plots. LCAO calculations have shown SnS to be an indirect semiconductor

[12], so the ((K/S)E)1/2 plot is used to find bandgap values. The bandgap found from

this plot was 1.10 eV. This value agrees with the reported range of 0.9-1.1 eV for indirect

gaps for SnS [8].

Seebeck measurements indicate ZrS2 has n-type conductivity and SnS has p-type

conductivity, with Seebeck coefficients of -600 µV/K and +520 µV/K respectively. These

results both agree with majority carrier types found in literature. SnS2 was measured to

have p-type conductivity as well, which does not agree with most literature. The measured

Seebeck coefficient for SnS2 was in the range of 1600-1700 µV/K. Our SnS2 samples were

not phase pure, which could explain the lack of agreement. The large magnitude of the

Seebeck coefficient indicates that the SnS2 sample was highly resistive.
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3.2. SnZrS3 and Sn2S3

3.2.1 Synthesis and Structure

It was found that at all synthesis temperatures up to 1000 ◦C, a stoichiometric

mix of tin, zirconium, and sulfur will result in a combination of SnZrS3, ZrS2, and SnS.

The amount of SnZrS3 present is maximized at 900 ◦C, but the two impurity phases are

still present. As the synthesis temperature is lowered, the impurity levels increase. At a

temperature of 500 ◦C the reaction products are predominantly ZrS2 and SnS, and there

is very little SnZrS3 present. Above 900 ◦C there is a rise in impurity levels. Figure 3.7

shows XRD patterns for growths between 825 ◦C and 1000 ◦C.

The largest SnS XRD peak is obscured by peaks already present in the SnZrS3

pattern, and so in small quantities it is sometimes difficult to detect in XRD patterns. As

a result, in analyzing our XRD patterns for our early synthesis attempts, we thought there

was only a ZrS2 impurity phase. It was hypothesized that the ZrS2 impurity was a result

of the preferential loss of Sn, either through the Sn powder being lost in the mixing process

before being sealed in the synthesis tube, or from deposition of Sn on the tube walls during

sintering. The Sn powder that we used had a tendency to stick to the weighing paper and

to get blown off into the air from the weighing paper while transporting it to the mortar

for mixing. To minimize the effects from this we switched to a coarser Sn powder. There

was less Sn that stuck to the weigh paper, and there wasn’t a visually noticeable loss of

Sn during transportation, but no noticeable change in the XRD patterns was effected. To

try to reduce the effects of Sn deposition on the tube walls, we tried adding excess Sn

to tube. At 15% excess Sn we no longer had a ZrS2 impurity, but we did have Sn metal

peaks in the XRD pattern. It was assumed that we would then be able to reduce the Sn

excess to remove the Sn impurity, leaving just SnZrS3. However, as the Sn excess was

reduced we again had ZrS2 being produced.

After making the known impurity phases by themselves to attempt visual identifica-
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tion of impurities, it was realized that there was in fact a SnS impurity in addition to the

ZrS2 in the stoichiometric syntheses of SnZrS3. While the SnS is hard to identify in small

quantities in the XRD pattern, it is very easy to indentify visually in the synthesis tube as

a metallic deposit on the tube wall. It is hypothesized that these impurities arise together

because of local deficiencies in the sulfur content during synthesis. Sulfur becomes a gas

at approximately 445 ◦C, which is well under all of our synthesis temperatures. Both Sn

and Zr have boiling points of over 2000 ◦C, and so are not gaseous during synthesis. When

sulfur becomes a gas during the synthesis, it will spread itself around the volume of the

tube. Since the Zr and Sn are localized to a small extent of the tube, if a stoichiometric

mix of Sn, Zr, and S are put in, then the Sn and Zr will locally experience a S concen-

tration far below that of stoichiometric SnZrS3. If this is true, then increasing the sulfur

content should increase the yield of SnZrS3.

A sulfur excess of 8% was first tried (for a stoichiometry of SnZrS3.25), at a synthesis

temperature of 900 ◦C. This entirely eliminated the ZrS2 and SnS impurities, but produced

ZrS3 in addition to the desired SnZrS3. At both 3% and 2% excess sulfur, pure SnZrS3

was sometimes obtainable, but sometimes the synthesis will result in a mix of SnZrS3

and ZrS3. The result appears to depend very much on the conditions in the oven, which

were not stable in the oven being used at the time. After changing ovens, it was found

that SnZrS3 can be made phase pure at 800 ◦C with a sulfur excess of 1.67% (SnZrS3.05).

Figure 3.8 shows the XRD pattern obtained for SnZrS3 made with 1.67% excess S at 800

◦C compared with the powder diffraction file (PDF) pattern, from [1].

Since Sn2S3 has a melting point of 760 ◦C [5] and we wish to sinter the material

below its melting temperature, we first tried a sinter temperature of 750 ◦C for 12 hours,

with a stoichiometric mixture of the elements. At this temperature, a mixture of Sn2S3

and SnS2 was formed. At 725 ◦C a mixture of Sn2S3 and SnS was obtained. At 650

◦C there was again a mixture of Sn2S3 and SnS, in about the same proportions as at
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FIGURE 3.8: SnZrS3 XRD pattern. The top pattern is measured, the bottom pattern is
from [1].
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tom are SnS2 [14], SnS [7], and Sn2S3 [41].

725 ◦C. These results are consistent with those of Moh [5], who found that from 650-

750 ◦C mixtures of elemental Sn and S produced Sn2S3 and that from 750-850 ◦C the

same mixtures produced Sn2S3 and SnS2. Figure 3.9 shows the XRD patterns for Sn2S3

synthesized at 650 ◦C, 725 ◦C, and 750 ◦C. Since there was not any appreciable gain in

sintering at 725 ◦C over sintering at 650 ◦C, we chose to continue our syntheses at the

lower temperature.



46

15 20 25 30 35 40 45 50

2 Theta (Degrees)

(1
 0

 2
) (1

 0
 3

)

(2
 0

 2
)

(1
 1

 1
)

(2
 0

 3
)

(1
 1

 2
)

(2
 1

 1
)

(3
 0

 1
)

(2
 1

 0
)

(2
 0

 4
)

(1
 0

 5
)

(2
 1

 2
)

(2
 0

 5
) (1

 0
 6

),
 (

3
 0

 4
)

(0
 1

 5
)

(4
 0

 2
)

(1
 1

 6
),

 (
3

 1
 4

)

(4
 0

 4
),

 (
0

 2
 0

)

Sn2S3 powder

Sn2S3 reference

FIGURE 3.10: Sn2S3 XRD pattern. Synthesis at 650 ◦C for 12 hours, with 1.66% excess
S. The reference patternis from [41].

For synthesis conditions which produce a mixture of SnS and Sn2S3, we would like

to be able to simply add more S to cause the SnS to convert to Sn2S3. An excess of 1.67%

S (Sn2S3.05) was tried at a sinter temperature of 650 ◦C for 12 hours. This resulted in a

phase pure powder. The XRD pattern for this sample is shown in Figure 3.10. However,

efforts to replicate this success under ostensibly the same conditions have failed. When

excess S has been added to subsequent samples, an SnS2 impurity phase is formed. When

excess S is not added, SnS is present in the samples, and at times both SnS and SnS2.
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We believe that the reason for our lack of phase purity in the Sn2S3 system is the

duration of our sinters. We sinter our samples typically for 12 hours. The sinter times

reported by Moh [5] were at least 100 hours, and frequently much more than that. It is

possible that the reactions to form SnS and SnS2 happen relatively quickly, whereas the

reaction to form Sn2S3 happens quite slowly.

The vacuum achieved seemed to have a significant effect on the phase purity for

both SnZrS3 and Sn2S3. When the Varian TMP was not available and we were only able

to pump down to 10−3 Torr, I was unable to create phase pure materials. The higher

vacuum of the TMP (10−6 Torr) greatly improved the purity of the samples.

3.2.2 Transport Properties

When made phase pure, the Seebeck coefficient for SnZrS3 ranges from 600 to 700

µV/K, indicating that it is natively p-type. Early results had given a negative Seebeck

coefficient, but in every sample of SnZrS3 that we have measured a negative Seebeck

coefficient there has been a ZrS2 impurity phase. ZrS2 is known to be n-type [18], and so

could cause the SnZrS3 sample to have a negative Seebeck coefficient.

Sn2S3 also appears to have a positive Seebeck coefficient, indicating p-type conduc-

tivity. The measured samples did contain SnS impurities, which may alter the Seebeck

coefficient. The coefficient was measured to be +1000 µV/K. We would expect to see a

Seebeck coefficient smaller in magnitude than that of SnZrS3 due to the smaller resistiv-

ity for Sn2S3. It is possibly that non-stoichiometries in the measured sample caused the

electrical properties to be altered.

The lowest measured electrical resistivity for SnZrS3 has been 13 MΩcm. A resistiv-

ity of 216 kΩcm has been measured for Sn2S3 with evaporated gold contacts in a collinear

arrangement. Single crystal resistivities of Sn2S3 have been reported to be 33 kΩcm [3],

which is significantly lower than the bulk powder measurement.
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3.2.3 Optical Properties

The diffuse reflectance spectra for several SnZrS3 samples are shown in Figure 3.11.

Bandgaps as found by the method described by Fochs [28] are indicated on this plot,

which range from 1.16 eV to 1.21 eV. The K/S spectra as found through Equation 2.3..5

are also shown in Figure 3.11. Figure 3.12 shows the ((K/S)E)2 and ((K/S)E)1/2 versus

energy plots for these spectra. Since SnZrS3 has been calculated to be an indirect bandgap

material, we use the ((K/S)E)1/2 to determine the bandgap. The bandgaps obtained from

this plot range from 1.16 eV to 1.19 eV, which agrees with the values obtained from the

reflectivity data.

Reflectivity and K/S spectra for Sn2S3 are shown in Figure 3.13. Bandgaps found

from the reflectivity data range from 1.14 eV to 1.15 eV. Figure 3.14 shows the ((K/S)E)2

and ((K/S)E)1/2 versus energy plots for Sn2S3. Sn2S3 is calculated to have an indirect

bandgap, and so we use the ((K/S)E)1/2 to extract bandgap values. The bandgaps

found from this plot range from 1.15 eV to 1.16 eV. These values agree well with the

bandgaps found from the reflectivity. In one of the spectra from the fiber optic system the

reflectivities from the NIR lamp and the UV-Vis lamp did not line up, possibly from the

light source not being centered correctly on the sample during one of the data collection

periods. Annette Richard provided a diffuse reflectance spectrum for Sn2S3 from the fiber

optic system that did not have this issue. The NIR data from the split set more closely

matches Annette’s data than does the UV-Vis, and so we use the NIR data when finding

the bandgaps.

Band structure calculations in Wien2k indicated that there should be a difference

of approximately 0.3 eV between the bandgap for SnZrS3 and Sn2S3 [4]. However, our

measurements indicate that the bandgaps are almost identical, differing only by a few

hundredths of an eV. One possible explanation of this is that Sn and Zr are chemically

very different, because the valence orbitals are p-orbitals for Sn and d-orbitals for Zr.
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FIGURE 3.11: SnZrS3 diffuse reflectivity (top) and K/S (bottom) plots. The blue and
red data sets are from two different samples on the fiber optic system. The green data is
the same sample as the blue set, but using the integrating sphere setup with a Si detector.
Bandgaps as found via [28] are indicated on the reflectivity plot.
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with a Si detector. Since SnZrS3 is calculated to have an indirect bandgap, we use the
((K/S)E)1/2 plot to determine the bandgap. Extrapolating the linear region down to the
baseline ((K/S)E)1/2 value gives bandgaps of 1.16 eV to 1.19 eV.
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FIGURE 3.13: Sn2S3 diffuse reflectivity (top) and K/S (bottom) plots. The red data set
is from the integrating sphere setup with an InGaAs detector. The blue and green data
sets are two different samples measured on the fiber optics system. The green data set was
provided by Annette Richard. Bandgaps as found via [28] are indicated in the reflectivity
plot.
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Bandgap trends from DFT calculations may not hold as we would expect them to when

substituting similar elements, such as in SnZrS3 and SnZrSe3.

3.2.4 SnZrS3-Sn2S3 Solid Solution

Due to the similar composition and lattice parameters between SnZrS3 (a = 9.188

Å, b = 3.717 Å, c = 13.839 Å) and Sn2S3 (a = 8.878 Å, b = 3.751 Å, c = 14.020 Å), it

was believed that a solid solution between these two materials could be obtained. If these

materials were fully soluble, then material properties such as the bandgap and resistivity

could be tuned by substituting appropriate amounts of Sn for Zr. Elemental powders were

mixed with the stoichiometry of Sn2−xZrxS3, with x ranging from 0 to 1 in increments of

0.1. For x = 0 the samples were sintered at 650 ◦C, 0.1 and 0.2 at 675 ◦C, 0.3 and 0.4 at

700 ◦C, 0.5 and 0.6 at 725 ◦C, 0.7 and 0.8 at 750 ◦C, and 0.9 and 1.0 at 775 ◦C.

If a solid solution forms, we expect there to be a smooth transition in XRD peak lo-

cations as Sn is substituted for Zr. Figure 3.15 shows the XRD patterns for the Sn2−xZrxS3

samples. It can be seen from these patterns that there is not a smooth transition of peaks

between SnZrS3 and Sn2S3. Instead, we see that from x = 0.2 to 0.7, there is the presence

of peaks from both SnZrS3 and Sn2S3, which would indicate a mixture rather than a solid

solution. We also have the presence of SnS2 in the Sn rich samples, which scales with the

amount of Sn. One possible reason for this is that SnS2 takes a very long time to form,

whereas SnZrS3 forms very quickly. It is possible that sinter times in excess of 100 hours

as those in [5] would yield a solution.

3.2.5 Doping

Attempts at doping in the SnZrS3 system have been made, but without consistent

results. Doping was attempted early on in the project when we had not yet determined

the most appropriate synthesis conditions, and so the doped samples were also prone to

impurity phases which affected the results.
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FIGURE 3.15: SnZrS3-Sn2S3 solid solution XRD patterns. The bottom pattern (red)
reference pattern is for SnZrS3, from [1]. The top (blue) reference pattern is for Sn2S3,
from [41]. The measured patterns are for Sn2−xZrxS3, with the bottom (red) pattern for
x = 1 (SnZrS3), the top (blue) for x = 0 (Sn2S3), and the patterns in between are in
increments of x = 0.1. As the Sn content is increased we see an SnS2 impurity forming,
whose main peak lies at 15◦. The doublets of peaks that form at 31-32◦, 40◦, and 47◦
indicate that a mixture forms, rather than a solid solution.
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Replacing 5, 10, or 15 % of the Zr with In produced a powder which was too

resistive to measure the Seebeck coefficient. Bi doping on the Sn site have given samples

with positive Seebeck coefficients. However, Bi doping in the selenide system (SnZrSe3)

has produced negative Seebeck coefficients.

Doping with 10 % Sb on the Sn site consistenly produced p-type conductivity, with

a Seebeck coefficient which ranged from +170µV/K to +2200µV/K. Previous work had

shown Sb to be an n-type dopant, however, there were large ZrS2 impurity phases in those

samples. Doping with Sb in SnZrSe3 has produced both n- and p-type conductivity.
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4. CONCLUSIONS AND FUTURE WORK

A method for making phase pure SnZrS3 has been found. Solid state reaction of

the elements at 800 ◦C for 12 hours in the stoichiometry SnZrS3/05 will consistently make

phase pure powder. A suitable method has not yet been found for phase pure synthesis of

Sn2S3. Solid state reaction of the elements at 650 to 750 ◦C for 12 hours will yield Sn2S3

and a small amount of SnS. The complete solid solution of SnZrS3 and Sn2S3 does not

seem to form, though replacing up to 20% of the Zr with Sn does not noticeable Sn2S3

peaks or impurity phases. At 10% Zr for Sn there are no detectable traces of SnZrS3, but

at 20% we begin to see shoulders where SnZrS3 peaks will form. Table 4.1 summarizes

the optical and transport results for SnZrS3 and Sn2S3.

Material Eg Seebeck coefficient Resistivity
SnZrS3 1.16-1.21 eV 600-700 µV/K 13 MΩcm
Sn2S3 1.14-1.16 eV +1000 µV/K 216 kΩcm

TABLE 4.1: Results summary

If Sn2S3 phase purity is desired, longer sinter times are likely to be necessary. Raising

the synthesis temperature from 650 ◦C to 750 ◦C may help quicken the reaction. If phase

purity is achieved through increased sinter temperatures and times, then perhaps the

SnZrS3-Sn2S3 solid solution will also benefit from the same growth modifications.

Further work is required to make conclusive statements about doping in the SnZrS3

system. In view of Zunger’s doping rules [24], investigations into electron affinities and

ionization energies may be useful for this system, and for any future system we wish to

dope. In materials which form solid solutions, conduction band minima and valence band

maxima could possibly be shifted by varying the solution composition, which will change

the electron affinity or ionization energy. While the SnZrS3-Sn2S3 might not be a viable



57

option for such band structure modification, there are other possible solutions to be made.

Hf could replace Zr with no change in valence. Ti is another possibility for an isovalent

dopant on the Zr site. Ge and Pb could be put in the Sn site, and Se and Te could be used

on the S site. Band structure calculations for each of these materials could be utilized to

determine if these replacements might change the structure enough to significantly change

the electron affinity or ionization energy.

Since all of our doping efforts to date have been on the cation sites, the synthesis of

SnZrS3 with excess S appears to have the potential to make doping efforts more fruitful,

due to creating an anion rich synthesis environment. Doping with In currently does not

seem to be a productive route, but is perhaps worth revisiting under anion rich conditions.

There has been some success with using Nb as an n-type dopant in the SnZrSe3 system,

perhaps similar success will be found in the sulfide system. A possible p-type dopant is

Y.
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