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Resistivity Measurements on Germanium

for Transistors*
L. B. VALDESt, MEMBER, IRE

Summary-This paper discusses a laboratory method which has
been found very useful for measuring the resistivity of the semi-
conductor germanium. The method consists of placing four probes
that make contact along a line on the surface of the material. Current
is passed through the outer pair of probes and the floating potential
is measured across the inner pair. There are seven cases considered,
the probes on a semi-infinite volume of semiconductor mateiial and
the probes near six different types of boundaries. Formulas and
curves needed to compute resistivity are given for each case.

INTRODUCTION
r[-IHE PROPERTIES of the bulk material used for

the fabrication of transistors and other semi-
conductor devices are essential in determining the

characteristics of the completed devices. Resistivity and
lifetime' (of minority carriers) measurements are gen-
erally made on germanium crystals to determine their
suitability. The resistivity, in particular, must be meas-
ured accurately since its value is critical in many de-
vices. The value of some transistor parameters, like
the equivalent base resistance,2 are at least linearly re-
lated to the resistivity.
Many conventional methods for measuring resistivity

are unsatisfactory for germanium because it is a semi-
conductor and metal-semiconductor contacts are usually
rectifying in nature. Also there is generally minority
carrier injection by one of the current carrying contacts.
An excess concentration of minority carriers will affects
the potential of other contacts3 and modulate the re-
sistance of the material.4
The method described here overcomes the difficulties

mentioned above and also offers several other advan-
tages. It permits measurement of resistivity in samples
having a wide variety of shapes, including the resistivity
of small volumes within bigger pieces of germanium.
In this manner the resistivity on both sides of a p-n
junction can be determined with good accuracy before
the material is cut into bars for making devices. This
method of measurement is also applicable to silicon and
other semiconductor materials.
The basic model for all these measurements is indi-

cated in Fig. 1. Four sharp probes are placed on a flat
* Decimal classification: R282.12. Original manuscript received

by the Institute, March 26, 1953; revised manuscript received, Aug-
ust 14, 1953.
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4 W. Schockley, G. L. Pearson, J. R. Haynes, "Hole injection in
germanium-quantitative studies and filamentary transistors," Bell
Sys. Tech. Jour., vol. 28, pp. 344-366; July, 1949.

surface of the material to be measured, current is
passed through the two outer electrodes, and the float-
ing potential is measured across the inner pair. If the
flat surface on which the probes rest is adequately large
and the crystal is big the germanium may be con-
sidered to be a semi-infinite volume. To prevent minor-
ity carrier injection and make good contact, the surface
on which the probes rest may be mechanically lapped.
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Fig. 1-Model for the four probe resistivity measurements.

The experimental circuit used for measurement is il-
lustrated schematically in Fig. 2. A nominal value of
probe spacing which has been found satisfactory is an
equal distance of 0.050 inch between adjacent probes.
This permit measurement with reasonable currents of
n- or p-type germanium from 0.001 to 50 ohm-cm.
The simple case of four probes on a semi-infinite vol-

ume of germanium, which has been solved previously by
W. Shockley and others,5 is repeated here for complete-

GALVANOMETER

Fig. 2-Circuit used for resistivity measurements.

5The author has been informed that this method is the same as
used in earth resistivity measurements. Some of the more pertinent
references in that field are:

(a) F. Ollendorff, "Erdstrome," Julius Springer, Berlin, Ger-
many; 1928.

(b) J. Riordan and E. D. Sunde, "Mutual impedance of grounded
wires for horizontally stratified two-layer earth," Bell Sys.
Tech. Jour., vol. 12, pp. 162-177; April, 1933.

(c) E. D. Sunde, "Earth Conduction Effects in Transmission
Systems," D. Van Nostrand Co., Inc., New York, N. Y., pp.
47-51; 1949.
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ness. Three cases of plane boundaries parallel and per-
pendicular to the surface where the measurement is
made are solved for both conducting and nonconduct-
ing boundaries.

In order to use this four probe method in germanium
crystals or slices it is necessary to assume that:

1. The resistivity of the material is uniform in the
area of measurement.

2. If there is minority carrier injection into the semi-
conductor by the current-carrying electrodes most of the
carriers recombine near the electrodes so that their
effect on the conductivity is negligible. (This means that
the measurements should be made on surfaces which
have a high recombination rate, such as mechanically
lapped surfaces.)

3. The surface on which the probes rest is flat with
no surface leakage.

4. The four probes used for resistivity measurements
contact the surface at points that lie in a straight line.

5. The diameter of the contact between the metallic
probes and the semiconductor should be small com-
pared to the distance between probes.

6. The boundary between the current-carrying elec-
trodes and the bulk material is hemispherical and small
in diameter.

7. The surfaces of the germanium crystal may be
either conducting or nonconducting.

(a) A conducting boundary is one on which a mate-
rial of much lower resistivity than germanium (such as
copper) has been plated.

(b) A nonconducting boundary is produced when the
surface of the crystal is in contact with an insulator.
The derivation of equations is considered in the ap-

pendix. Only the final results for each of the cases are
presented here.

Case 2. Resistivity Probes Perpendicular to a Noncon-
ducting Boundary

The model is in Fig. 3. The boundary is perpendicular
to the surface where the measurement is made and is
also nonconducting. The probes are perpendicular to the
boundary. The resistivity may be calculated from

P = POF2Q) (3)

where po is computed from (2) and F2(l/s) is plotted in
Fig. 4. The distance I between the nearest probe and the
boundary and the point spacing s are defined in Fig. 3.
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Fig. 3-Resistivity probes perpendicular to a boundary.

Case 1. Resistivity Measurements on a Large Sample

The model for a semi-infinite volume of material is
in Fig. 1. This is approximated by a large sample, such
as a crystal or part of it. The resistivity is computed as

V 27r
P1 1-

I /S1 1 1S\

iSI 53 Sl + S2 S2 + 53/

(1)

where

V= floating potential difference between the
inner probes, volts

I=current through the outer pair of probes,
amps

Si, S2, s3=point spacing, in cm

p =resistivity in ohm-cm.
When S1=S2=S3=S (1) simplifies to:

V

p=-27rs. (2)

_____
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Fig. 4-Correction factor for probes perpendicular to a

nonconducting boundary.

The resistivity po may be computed from (1) if the
point spacings differ but are approximately equal to
within 5 per cent.

/
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Fig. 5-Resistivity probes parallel to a boundary.
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Fig. 6-Correction factor for probes parallel to a
nonconducting boundary.

Case 3. Resistivity Probes Parallel to a Nonconducting
Boundary
The model is given in Fig. 5. It is the same as for

Case 2 except that the probes are parallel to the
boundary. The resistivity is

P = PoF3 ) (4)

where po is defined as before and F3(l/s) is plotted in
Fig. 6.

Case 4. Resistivity Probes Perpendicular to a Conducting
Boundary

This differs from Case 2 only in that the boundary is
a good conductor of electricity. Such boundary might be
obtained by plating that face of the semiconductor with
a metal such as copper. The model of Fig. 3 essentially
describes the geometry of this case. The resistivity is

p IF
p = poF4 - (5)
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Fig. 7 Correction factor for probes perpendicular to a
conducting boundary.

0 2 3 4

Fig. 8-Correction factor for probes parallel to a
conducting boundary.

where po is defined as before and F4(1/s) is plotted in
Fig. 7.

Case 5. Resistivity Probes Parallel to a Conducting
Boundary
The same model of Fig. 5 is applicable except for the

conducting type of boundary. The resistivity is

p = poF5 (-) (6)

and F5(l/s) is plotted in Fig. 8.

Case 6. Resistivity Measurements on a Thin Slice-Con-
ducting Bottom Surface

Fig. 9 shows the resistivity probes on a die of mate-
rial. If the side boundaries are adequately far from the
probes the die may be considered to be identical to a
slice. For this case of a slice of thickness w and with a
conducting bottom surface the resistivity is computed

4
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Fig. 9-Resistivity measurements on a thin slice.
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Fig. 10-Correction divisor for probes on a thin slice
with a conducting bottom surface.
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by means of the divisor G6(w/s) of Fig. 10 as:

Po
P(=

G6 -
\s/

(7)

This method is not recommended for wls very small.

Case 7. Resistivity Measurements on a Thin Slice-Non-
conducting Bottom Surface

For the case of a nonconducting bottom on a slice
like that of Case 6, the resistivity is computed from

Pop__P (8)

G7

The function G7(w/s) is shown in Fig. 11 and po is ob-
tained as defined previously from either (1) or (2).

RESULTS
An experimental check has been obtained from Cases

2 and 3. These are the two cases where a nonconducting
side boundary was considered. Case 2 is for the probes
perpendicular to the boundary and the agreement be-

Fig. 11-Correction divisor for probes on a thin slice
with a nonconducting bottom surface.
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Fig. 12-Experimental check for resistivity probes perpendicular

to a nonconducting boundary.

tween theory and experiment is shown in Fig. 12. Case
3 assumes the probes to be parallel to the boundary and
the results are in Fig. 13. Both of these curves show the
uncorrected value of resistivity po calculated from (1) at
different ratios i/s. These values are shown as circled
dots. The corrected experimental values p obtained by
means of (3) and (4) and of Figs. 4 and 6 are shown by
crosses. Using the mean value of p smooth curves have
been drawn to indicate the way that po should vary if
the material is of constant resistivity and there is almost
perfect agreement between theory and experiment. All
experimental values shown on these curves represent
the average of four readings taken with probes spaced
about 0.050 inch apart.
The effect of the current flowing through the outer

probes on the measured resistivity has been investi-
gated by one set of readings taken on a 6.3 ohm-cm
sample. The results are plotted in Fig. 14. The 37 per

cent reduction in resistivity at 100 ma is believed to be
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due primarily to heating of the sample, since its tem-
perature was at least 300 C above ambient with this
high current. All resistivity measurements are ordinarily
done with 1 ma through the probes.
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0

Fig. 13-Experimental check for resistivity probes parallel
to a nonconducting boundary.

APPENDIX

Case 1. Resistivity Mfeasurements on a Large Sample

One added boundary condition is required to treat
this case, namely, that the probes are far from any of
the other surfaces of the sample and the sample can
thus be considered a semi-infinite volume of uniform
resistivity material. Fig. 1 shows the geometry of this
case. Four probes are spaced s1, S2, and S3 apart. Cur-
rent I is passed through the outer probes (1 and 4) and
the floating potential V is measured across the inner
pair of probes 2 and 3.
The floating potential Vf a distance r from an elec-

trode carrying a current I in a material of resistivity p
is given by6

(9)
pI

'Vf=--
27rr

In the model shown in Fig. 1 there are two current-
carrying electrodes, numbered 1 and 4, and the floating
potential Vf, at any point in the semiconductor is the
difference between the potential induced by each of the
electrodes, since they carry currents of equal magnitude
but in opposite directions. Thus:

DEVIATION OF FORMULAS

In this appendix are derived the formulas used in
this paper for the computation of resistivity. This dis-
cussion will be limited to the four point method.
To treat the various models several general assump-

tions have been made. These were stated in the text and
are not repeated here.

z

Q-to

/-20

z

-30

-40'
o. ,. to too

CURRENT THROUGH PROBES - tm A

Fig. 14-Effect of current on measured resistivity.

Seven different geometries will be analyzed here.
These are: 1. the four point probes on a semi-infinite
volume of germanium; 2. the probes near a nonconduct-
ing boundary and perpendicular to it; 3. the probes
parallel to a nonconducting boundary; 4. the probes
perpendicular to a conducting boundary; 5. the probes
parallel to a conducting boundary; 6. the probes on a

thin slice where the bottom surface is conducting; and
7. the probes on a slice with a nonconducting bottom
surface.

Vf =-- - -
2w \ rl r

(10)

where:
ri =distance from probe number 1.
N =distance from probe number 4.
The floating potentials at probe (2) Vf2 and at probe

(3) Vf3 can be calculated from (10) by substituting the
proper distances as follows:

p1 /1
V =

PI
(_±

27r si S2 + S3

Vf3=- )
27r XSl + 52 S3/

(11)

(12)

The potential difference V between probes is then

pI I/ 1 1 1 \

2Vf?-Vf3=-( + l (13)
2ahr nsd 53 S2 + S3 Sc + S2a

and the resistivity p is computable as

V 2ir

I 1 1 1 1

51 S3 Sl + S2 S2 + S3

(14)

When the point spacing is equal, that is Sl -S2=S3=S,
the above simplifies to

V

p =- 27rs. (15)

6 L. B. Valdes, "Effect of electrode spacing on the equivalent base
resistance of point-contact transistors," PROC. I.R.E., vol. 40, pp.
1429-1434, eq. (26); November, 1952.
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Case 2. Resistivity Probes Perpendicular to a Noncon-
ducting Boundary

Consider as a boundary condition that the reflecting
(nonconducting) boundary is a plane perpendicular to
the plane which describes the surface of the material on
which the resistivity measurements are done. For this
case the line on which the resistivity probes lie is as-
sumed to be perpendicular to the line which corre-
sponds to the intersection of the planes of the top sur-
face and the boundary.
The relation between measured voltage and current

in the four point probes and the resistivity of the mate-
rial can be obtained from the model of Fig. 3. Images of
the current sources are used and the floating potential
at the potential probes is calculated as before. If the
boundary is reflecting (nonconducting) the images are
current sources of the same sign. Equal spacing between
probes is assumed for simplicity.
The floating potential Vf2 at probe (2) is given by

Case 3. Resistivity Probes Parallel to a Nonconducting
Boundary
The boundary of the surface on which the measure-

ments are made is assumed to lie on a nonconducting
plane perpendicular to the surface. The four probes are
assumed to lie in a line parallel to the intersection of the
two planes.
The model for this case is in Fig. 5. As in the previous

case, the images are current sources of the safme sign
since the boundary is reflecting or nonconducting. The
floating potentials Vf2 and Vf3 at probes (2) and (3)
are identical in form so that the difference is

V = Vf2 - Vf= 2Vf2 (21)

and

V
p = - 2rs

1

2 V 2 2+ 2
-\2/SI + (21)2 -\1(2s)l + (21,) 2,

(22)

pI 1 1 1 1 \
Vf2 =-I ---- ++ +

2ir s 2s 21l+2s 21 +5s/

Similarly the floating potential Vf3 at probe (3) can be
obtained and the difference is

pI s s s s\
V=-_ 1+_ + -- (17)

27rs 21+s 21+2s 21+4s 21+5ss

The resistivity then is

V
p=- 2ws

I

1

s s s s\
1+ -+

21+s 21+2s 21+4s 21+5s/
or

P = POF2 - (19)

where po is the resistivity computed from (15) and
F2(l/s) is the function plotted in Fig. 4.

TABLE I

i/s F2(I/s) F3 (I/s) F4 (I/s) F5(I/s)

o 0.69 o.5 1.82 00
0.2 O.79 0.533 1.365 8.07
0.5 0.882 0.658 1.182 2.08
1.0 0.947 0.842 1.060 1.232
2.0 0.992 0.965 1.010 1.038
5.0 0.996 0.997 1.004 1.003
10.0 0.9995 0.9996 0.0005 1.0004

p = peF3 (-), (23)

The resistivity po can be computed from (14) or (15)
and

F3(l=_
2

1+s~~~~~1+ 2(18)

(24)

This function is tabulated in Table I and plotted in
Fig. 6.

Case 4. Resistivity Probes Perpendicular to a Conducting
Boundary
The same geometry as in Case 2 is assumed here, ex-

cept that the boundary is conducting and the sign of
the images has to be reversed. Fig. 3 serves as a model,
except that image (5) is positive and image (6) is nega-
tive. Then

V
p=- 27rs

I

1

/ s s s s\
1- + +

21+s 21+2s 21+4s 21+5s /

(25)

and
The resistivity po may be obtained from (14) when

the probe spacings s1, S2, and s3 are approximately
equal. Table I shows the values of F2(l/s) used for
plotting Fig. 4. The function was calculated from

F2()
1

F4()

(20)

1

1 1 1 1
1 +- + -__

21 21 21 21
1+- 2+- 4+- 5+-

s s s s

(26)

The function F4(1/s) is tabulated in Table I and
plotted in Fig. 7.

(16) or

1 1 1 1
1+ +

1+21/s 2 +21/s 4+21/s 5+21/s

1954 425



PROCEEDINGS OF TIHE I-R-E

Case 5. Resistivity Probes Parallel to a Conducting
Boundary

The same geometry as in Case 3 is assumed here, ex-
cept that the boundary is conducting and the sign of
the images must be reversed. Therefore, Fig. 5 is the
model with image (5) negative and image (6) positive.
From this

V
p=- 27rs

I 1s -. (27)
2 - +

\ 2 ,s'2+ (2l)2 1\(2s) + (2l)/

equal probe spacing s shall be assumed. The width of
the slice is w. The array of images needed is indicated in
Fig. 15, where the polarity and spacings of the first few
images are as shown.
The floating potential Vf2 at electrode (2) is:

Vf=2[= + (2w )2

n=oc 1

n=-oc V1(2s) 2 + (2nw) 2_
(29)

The function

F5 = 2 1 1 (28)
11- ~+

V'±(+)2 I +QJj
is tabulated in Table I and plotted in Fig. 8.

Case 6. Resistivity Measurements on a Thin Slice-Con-
ducting Bottom Surface
Two boundary conditions must be met on this case;

the top surface of the slice must be a reflecting (non-
conducting) surface and the bottom surface must be an
absorbing (conducting) surface. Since the two bound-
aries are parallel a solution by the method of images
requires for each current source an infinite series of
images along a line normal to the planes and passing
through the current source.

- 1 -In=+z 0 ° T

2W

-I +1
fl:+

2W

fl:O +I0GI 2 o21-i)4 -, TOP SURFACE
n: I II3 I (N4ON-CONDUCTING)kSAS W_S A w SLICE

i J BOTTOM SURFACE

'(CONDUCTING)
w

-I +I
n--l~~ ,

A

43SA

n=-2

Fig. 1'

2W

-I+I
0

5-Images for the case of the resistivity probes oni a
thin slice with a conducting bottom surface.

The model for this case is shown in Fig. 9. The side
surfaces of the die are assumed to be far from the area

of measurement and, therefore, only the effect of the
bottom surface needs to be considered. In this analysis

Likewise, the floating potential at electrode (3) can be
obtained and

v = --+ E (-1)it
27- s n=l

4

/S2 + (2nw)2
l--C 4

- Z (-l)n
nl V(2s)2 + (2nw)2J

(30)

The resistivity then becomes

Po
p=

G6()
s/

(31)

Where resistivity po is computable from (15), and (14)
can be used if the point spacings are different, but ap-
proximately equal. The function G6(w/s) is computed
from7

sG6 )=1+4wE(-1 _ __

1

2/(22s)2
(32)

which is tabulated in Table II and plotted in Fig. 10.

TABLE II

W/S

0.100
0. 141
0.200
0.333
0.500
1 .000
1.414
2 .000
3.333
5.000
10.000

G6(W/S)

0.0000019
0.00018
0.00342
o.0604
0.228
0.683
0.848
0.933
0.983
0.9948
0.9993

I A neat way of summing the series has
Uhlir, to be published.

G7(W/S)
13.863
9.704
6.931
4.159
2.780
1.504
1 ..223
1 .094
1 .0228
1.0070
1.00045

been suggested by A.

l~~~
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Case 7. Resistivity Measurements on a Thin Slice-Non-
conducting Bottom Surface
The model for these measurements is like for Case 6,

except that the bottom surface of the slice is noncon-
ducting. This means that all the images of Fig. 15 have
the same charge as the current source. Thus all the
images on a row have equal charges and (30) describes
the potential difference across the inner pair of probes
if (- 1)n is removed from the equation. Then,

Po
P(=

G7
s

(33)

where

G7()
S n1

= 1 ±4 -
Wn~- 1

+ (2n)2

- -2 4 ~~~~(34)
I~/ (2-1)± (2n)2 (

This function G7(w/s) is tabulated in Table II and
plotted in Fig. 11. For smaller values of wls the function
G7(w/s) approaches the case for an infinitely thin slice, or

/w 2s
G7 | - In 2.

\s w
(35)
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A General RLC Synthesis Procedure*
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Summary-Any physically realizable RLC transfer function-
impedance, admittance, or dimensionless ratio-can be realized
within a multiplicative constant by the synthesis procedures pre-
sented in this paper. The form of network achieved is a lattice with
these significant features: (a) it may have any desirable termination;
(b) it contains no mutual inductance; (c) every inductance in the net-
work appears with an associated series resistance so that, in building
the network, low-Q coils may be used.

In addition, the lattice arms are of so simple a form relative to
each other that many of the achieved lattices are amenable to re-
duction to unbalanced networks. Further, in case of a transfer admit-
tance, reduction can be achieved with the use at most of real trans-
formers i.e., transformers with winding resistance, finite magnetiz-
ing inductance, and a coupling coefficient smaller than one.

* Decimal classification: R143. Original manuscript received by
the Institute, July 15, 1953. This paper is based on a chapter of
Technical Report No. 201, Research Laboratory of Electronics,
M.I.T., Cambridge, Mass. The research was conducted under the
supervision of Prof. E. A. Guillemin and was supported in part by
the Air Materiel Command, Army Signal Corps, and the Office of
Naval Research. The paper was presented in an abridged version at
the 1953 I.R.E. National Convention and was published in the Con-
vention Record.

t Hughes Research and Development Labs., Culver City, Calif.

I. INTRODUCTION
pT HERE IS A wide variety of existing synthesis

procedures, but as anyone conversant with the
synthesis field fully realizes much remains to be

done. The inadequacy of available procedures shows up
particularly in a broad field of communications, namely,
synthesis for prescribed transient response.' In this
synthesis both magnitude and phase are important, so
that the methods for realizing a prescribed magnitude of
transfer function are inapplicable. Up to the present
time one of the principal procedures that could be used
for the realization of both minimum-phase and non-
minimum-phase transfer functions has been the one that
yields a constant-resistance lattice. This type of lattice
suffers from many disadvantages. In general each of the

I D. F. Tuttle, Jr.: "Network Synthesis for Prescribed Transient
Response," Sc.D. thesis in electrical engineering, M.I.T., Cambridge,
Mass.; 1948.
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