Hall Effect Measurements for Semiconductor and Other Material Characterization

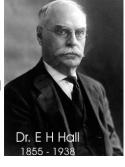
Robert Green Keithley Instruments, Inc.

A GREATER MEASURE OF CONFIDENCE

© Copyright 2011 Keithley Instruments, Inc.

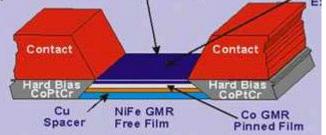
Seminar Overview

- What are Hall effect measurements?
- Industry trends driving the need for Hall effect measurements
- Key considerations when selecting equipment for Hall effect measurements
- Measurement techniques



Hall Effect Measurement Overview

- A Hall effect measurement system is used to measure a material's electrical properties such as:
 - Carrier mobility (μ) and concentration (n)
 - Hall voltage (V_H)
 - Hall coefficient (R_H)
 - Resistivity (ρ)
 - Magnetoresistance (R_B)
 - Conductivity Type (N or P)
 - I-V curves (optionally)
- The Hall effect refers to the potential difference (Hall voltage) on the opposite sides of an electrical conductor through which an electric current is flowing, created by a magnetic field applied perpendicular to the current. Edwin Hall discovered this effect in 1879. <u>http://en.wikipedia.org/wiki/Hall_effect</u>



Materials Types

The Hall Effect is used to measure:

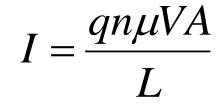
- Semiconductor materials such as Si, Ge
- Most compound semiconductor materials including pHEMTS, SiGe, SiC, GaAs, AlGaAs, InAs, InGaAs, InP, AlGaAs, and CdTe HgCdTe (including thin films for solar cell/photovoltaics)
- Organic semiconductors and nano-materials
- Low resistance materials including metals, transparent oxides, highly doped semiconductor materials, high temperature superconductors, dilute magnetic semiconductors, GMR/TMR materials, and graphene-based materials
- High resistance semiconductor materials including semi-insulating GaAs and GaN, and CdTe

Why the Resurgence in People Doing Hall Effect? Some "Simple" Math...

$$I = \frac{V}{R} = \frac{V}{\frac{\rho L}{A}} = \frac{VA}{\rho L} = \frac{qn\mu VA}{L}$$

- I =Current (A) V =Voltage (V)
- $R = \text{Resistance of sample } (\Omega)$
- $\rho = \text{Resistivity of sample } (\Omega-cm)$
 - L = length of sample (cm)
 - A = cross sectional area
 - of sample (cm²)

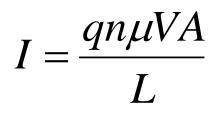
For a doped semiconductor:


$$\rho = \frac{1}{qn\mu}$$

- q = Electron charge (C/cm²) n = Carrier carrier concentration (cm⁻³) u = Carrier mobility (cm²/Vs)
- μ = Carrier mobility (cm²/Vs)

Why the Resurgence in People Doing Hall Effect? Some "Simple" Math...

- n = electron carrier density (cm⁻³)
- μ = electron mobility (cm²/Vs)
- V = voltage applied (V)
- L = length of sample (cm)
- A = cross sectional area of sample (cm^2)

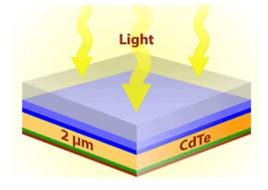


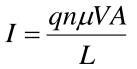
- To increase I (higher drive current, faster switching, etc.)
 - Increase voltage, V,
 - Increase number of electrons, n
 - Increase area of sample, A
 - Increase mobility of electrons, μ

The Goal: Maximizing Current Flow

- n = electron carrier density (cm⁻³)
- μ = electron mobility (cm²/Vs)
- V = voltage applied (V)
- L = length of sample (cm)
- A = cross sectional area of sample (cm²)

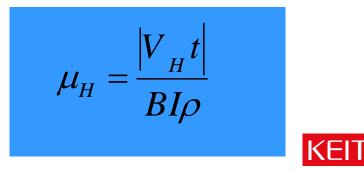
- To increase I (higher drive current, faster switching, etc)
 - Increase voltage, V
 - Increase number of electrons, n
 - Increase area of sample, A
 - Increase mobility of electrons, μ

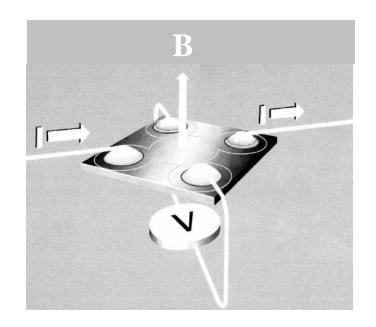

Becoming more difficult


KEITHLEY INSTRUMENTS

Hall Effect Measurements are the Quantitative Tool for Determination of Mobility on New Materials

- Can no longer just keep shrinking devices to get performance
 - Moore's Law collides with photolithography limits
- Therefore, materials are no longer just Si
 - People adding Ge to Si to strain lattice to get higher mobility $\boldsymbol{\mu}$
- Materials are no longer bulk
 - Thin films like in CIGS solar cells
 - Single-atom layer materials, Graphene

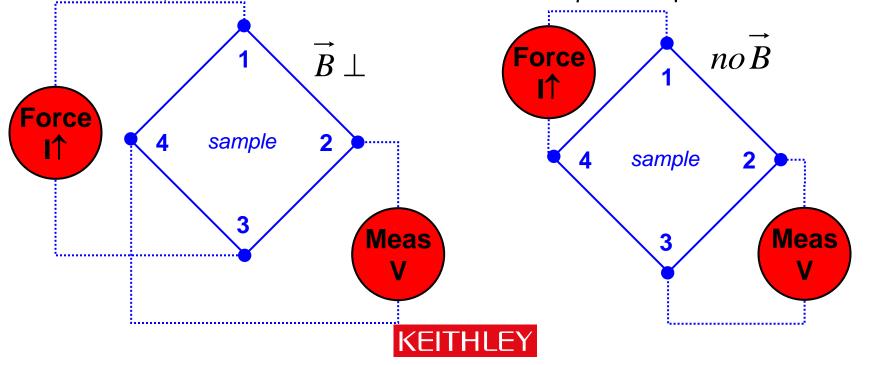

• HALL effect measurement derives μ



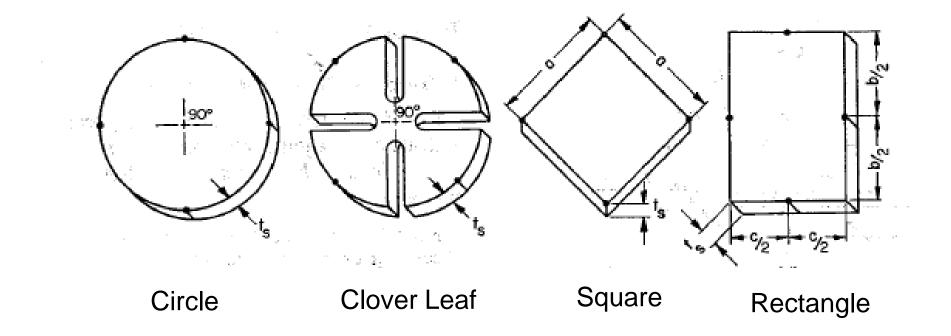
How to Measure Mobility, μ, Using Hall Effect Techniques Overview

- First measure Hall Voltage, V_H
 - Force magnetic field B
 - Source I
 - Measure V_H
 - t is sample thickness
- Next, measure resistivity, p
 - Use the van der Pauw technique
- Then calculate Hall mobility, μ_H :

How to Measure Mobility, μ, Using Hall Effect Techniques Measurement Configuration


Hall Effect:

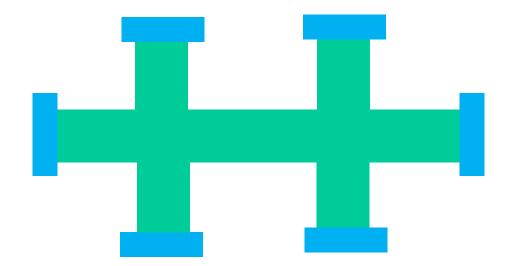
uV-mV)


- Force I on *opposite* nodes
- Meas V on the other opposite nodes
 - V typically ~ nV V (typically

van der Pauw resistivity:

- Force I on *adjacent* nodes
- Meas V on the opposing adjacent nodes
 - V should be <5V, typically mV
- \bullet Gives ρ so that μ can be calculated

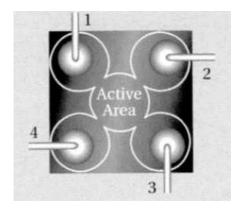
ASTM Recommended Sample Specimens for Hall Effect and van der Pauw Measurements


Recommended sample thickness is ≤ 0.1 cm

Reference: ASTM F76

A GREATER MEASURE OF CONFIDENCE

Additional ASTM Sample Geometries Bridge-Type or Hall Bar Configurations


Typical configuration used by graphene researchers

Reference: ASTM F76

A GREATER MEASURE OF CONFIDENCE

Good Sample Preparation Technique Ensures Good Measurements

- Ohmic contact quality, symmetry, and size
- Sample uniformity
- Accurate knowledge of thickness
- Temperature uniformity
- Photoconductive and photovoltaic effects

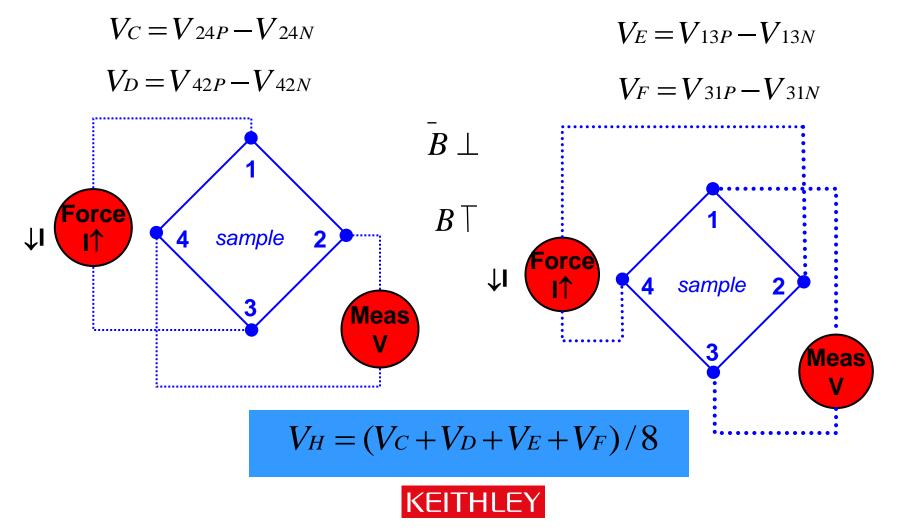
How to Measure Mobility, μ , Using Hall Effect Techniques Determining an Accurate V_H

www.nist.gov/eeel/

- 1. Apply a **Positive** magnetic field B
- 2. Force a current I_{13} to leads 1 and 3 and measure $V_{\rm 24P}$
- 3. Force a current I_{31} to leads 3 and 1 and measure $V_{\rm 42P}$
- 4. Likewise, measure V_{13P} and V_{31P} with I_{42} and $I_{24},$ respectively
- 5. Reverse the magnetic field (Negative B)
- 6. Likewise, measure V_{24N}, V_{42N}, V_{13N}, and V_{31N} with I₁₃, I₃₁, I₄₂, and I₂₄, respectively
- 7. Calculate Hall voltage, V_H

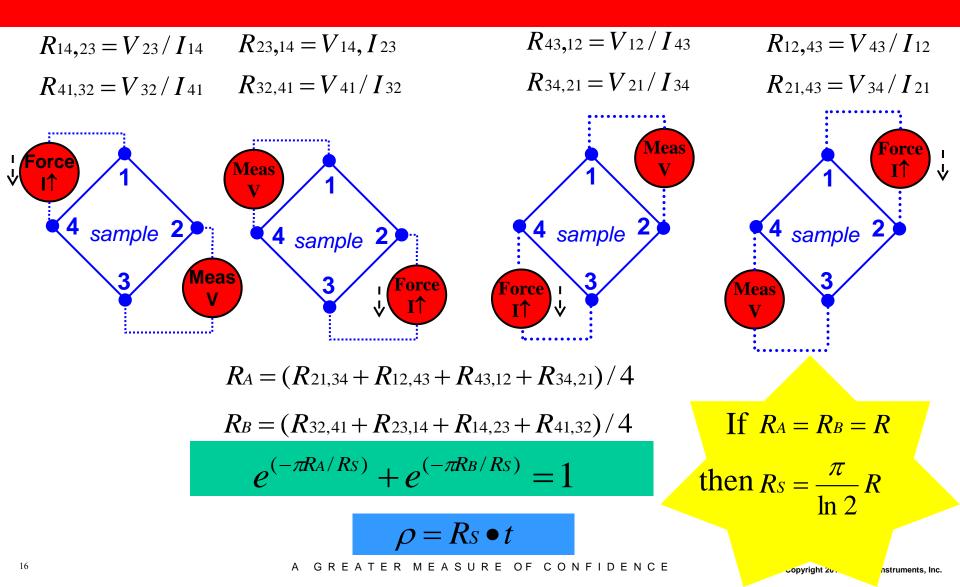
Changing connections during Steps 4 & 6 → automate with a switch matrix Especially if sample is in a liquid nitrogen dewar

 $\vec{B} \perp$


Meas

sample

3


Force

Computing the Hall Voltage

A GREATER MEASURE OF CONFIDENCE

Computing Resistivity, ρ, with the van der Pauw Measurement

Final Computation to Determine Hall Mobility

$$\mu_{H} = \frac{\left| V_{H} t \right|}{B I \rho}$$

A GREATER MEASURE OF CONFIDENCE

Hall Effect Equipment List Measurement Equipment

- Constant-current source, magnitude depends on sample resistance
 - Low resistance material (mA to A)
 - Semi-insulating GaAs, $\rho \sim 10^7 \Omega \cdot cm$, a range as low as 1nA is needed
 - High resistance (intrinsic semiconductors) (nA to pA)
- Voltmeter covering 1µV to 100V
 - Required range depends on material resistivity
 - High resistivity materials may need ultra-high input Z or differential measurement
- Optional:
 - Switch matrix to eliminate manual connection and disconnection
 - Temperature measurement instrument
 - Sample temperature-measuring probe (resolution of 0.1°C for high accuracy work)

Hall Effect Equipment List

Magnetic Field Generation, Sample Holder, and Environmental Control

- Magnet:
 - Fixed/permanent magnet or electromagnet
 - 500 to 5000 gauss

• Prober with manipulators and probe tips

- If doing temperature studies:
 - Appropriate prober chuck or oven
 - Temperature controller
 - Cryostat for holding samples if low-temperature

Other Equipment Needed Other Measurements

- A more general research lab will want Hall effect and more:
 - Collinear resistivity measurements
 - Full I-V sweeps
 - C-V measurements
 - Transient response studies
- So "other equipment" list may include complementary equipment (hardware and software) not just for Hall effect but related measurements

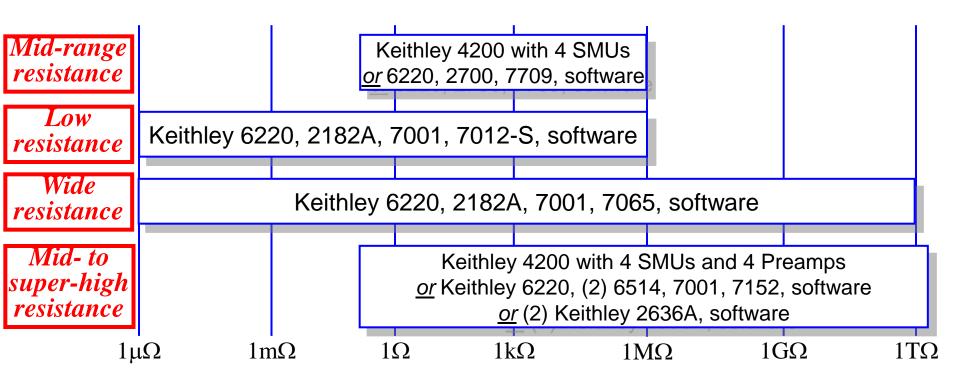
Selecting the Correct Measurement Equipment Based on Sample's Total Resistance

- Total Resistance is Sample Resistance + Contact Resistance
 - Sample Resistance \rightarrow value is primarily based on sample's resistivity, ρ , & sample's thickness, t
 - For square sample, sample resistance $R = \rho/t$
- Contact resistance at metal-semiconductor interface (some nominal approximations):

R

Contact

- GaAs : Contact resistance ~ 1000 * sample resistance
- For Si, Contact resistance ~ 300 * sample resistance


R _{Contact}

Selecting the Correct Measurement Equipment Based on Sample's Total Resistance

- Representative ranges:
 - Mid-range resistance
 - Typically: Nominally doped Si or Ge (~10¹⁵ cm⁻³); Si photvoltaics; pHEMTS; ITO
 - Low resistance
 - Typically metals, highly doped Si or Ge (>10¹⁷ cm⁻³); SiGe; superconductors; GMR/TMR
 - Low-to-high (wide range) resistance
 - Typically thin film photovoltaics like CIGS, CdTe, HgCdTe
 - Mid- to super-high resistance
 - Typically GaAs, GaN, InP, InGaAs, AlGaAs, SiC, semi-insulating Si or CdTe

Overview of Instrumentation Solutions

Sample Resistance (Ω)

(actual selection depends on Total Resistance = Sample Resistance + Contact Resistance)

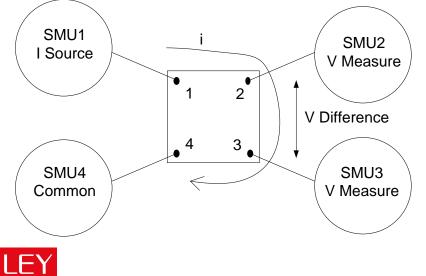
Sample Resistance $\approx \rho/t$

Hall Effect Measurement Equipment

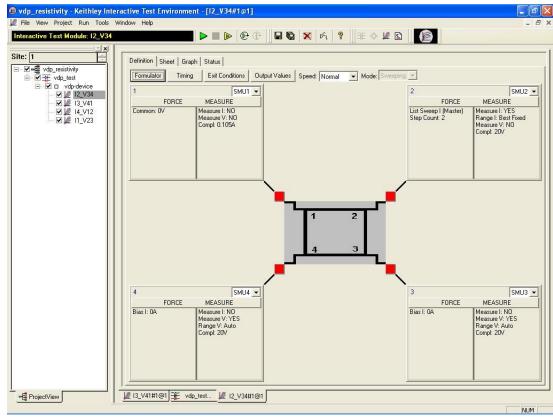
Mid-range resistance

- 100 m Ω to 1 M Ω
 - Typically: Nominally doped Si or Ge (~10¹⁵ cm⁻³); Si photvoltaics; pHEMTS; ITO
- Low resistance
- Low-to-high (wide range) resistance
- Mid- to super-high resistance

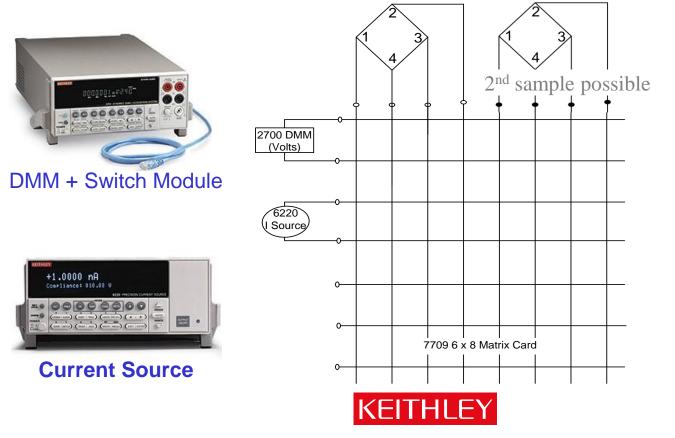
Mid-Range Resistance Measurements (100m Ω to 1M Ω)


- Option 1
 - 1 Model 4200-Semiconductor Characterization System with 4 Source-Measure Units
 - · Includes turn-key software for electrical resistivity measurement
- Option 2
 - 1 Model 6220 Precision Current Source
 - 1 Model 2700 DMM
 - 1 Model 7709 6x8 Matrix Switch Card
 - Can do 2 samples at a time

Mid-Range Resistance Measurements ($100m\Omega$ to $1M\Omega$) (cont'd)

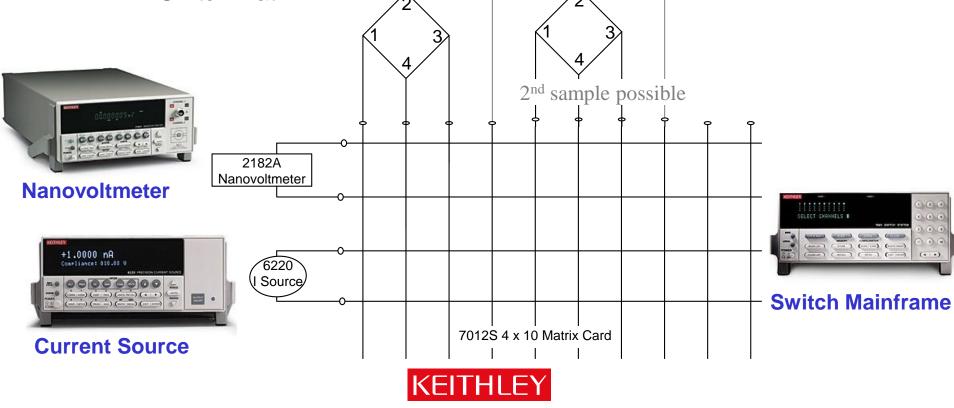

- Option 1: 4200-SCS with 4 Source-Measure Units (SMUs)
 - 4200 includes project to measure van der Pauw resistivity
 - Project changes functions of SMU to be either current source or voltmeter
 - This eliminates the need for a switch matrix

Mid-Range Resistance Measurements ($100m\Omega$ to $1M\Omega$) (cont'd)


- Option 1: 4200-SCS with 4 SMUs
 - Resistivity derived by taking eight current-voltage measurements around periphery of sample
 - The 4200 can also be used to make I-V and C-V measurements on devices

Mid-Range Resistance Measurements ($100m\Omega$ to $1M\Omega$) (cont'd)

- Option 2 connection scheme
 - 6220 Current Source, 2700 DMM, 7709 Matrix Card


Hall Effect Measurement Equipment

- Mid-range resistance
- Low resistance
 - 1 $\mu\Omega$ to 1 M Ω
 - Typically metals, highly doped Si or Ge (>10¹⁷ cm⁻³); SiGe; superconductors; GMR/TMR
 - Challenge here is that the low-resistance sample results in very low measured V
 - Need nV measurements
 - Force higher currents to allow higher measured voltage
 - Low-to-high (wide range) resistance
 - Mid- to super-high resistance

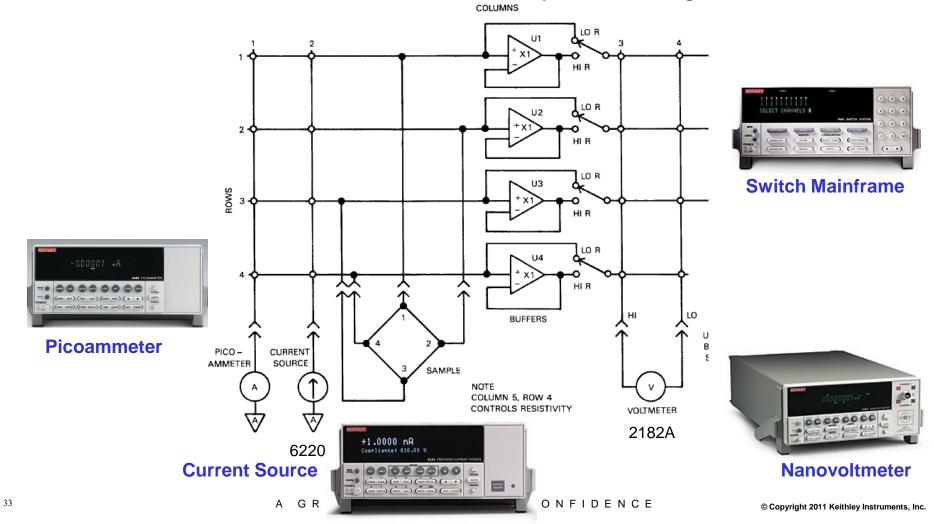
Low Resistance Measurements ($1\mu\Omega$ to $1M\Omega$)

- Connection scheme
 - 6220 Current Source, 2182A Nanovoltmeter, 7001/7012S 4x10
 Switch Matrix

KEITHLEY INSTRUMENTS

Techniques for Eliminating Errors when Making Low Voltage Measurements

- Minimize sources of thermoelectric voltages
 - Whenever possible use the same materials in all connections
 - Use all copper connections and copper wire
 - Reverse current source polarity and average readings
- Allow test equipment to warm up and reach thermal equilibrium
- Minimize temperature gradients across the sample
- Eliminate ground loops
- Shield the system


Hall Effect Measurement Equipment

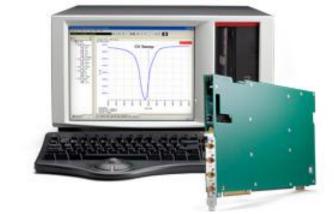
- Mid-range resistance
- Low resistance
- Low-to-high (wide range) resistance
 - $-1\mu\Omega$ to $1T\Omega$
 - Typically thin film photovoltaics like CIGS, CdTe, HgCdTe, increasingly doped material
 - Mid- to super-high resistance

Wide-Range Resistance Measurements ($1\mu\Omega$ to $1T\Omega$) Instrument Setup (cont'd)

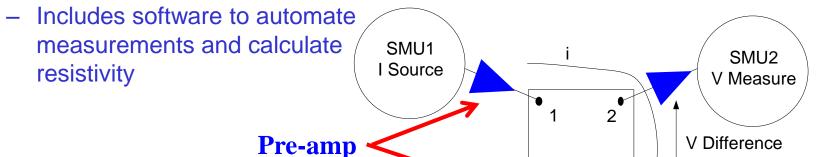
Model 7065 Hall Effect Card Based System Configuration:

Hall Effect Measurement Equipment

- Mid-range resistance
- Low resistance
- Low-to-high (wide range) resistance
- Mid- to super-high resistance
 - 100m Ω to 10T Ω
 - Typically GaAs, GaN, InP, InGaAs, AIGaAs, SiC, semi-insulating Si or CdTe
 - Adds 1 more decade of high resistance compared to "Low-tohigh resistance" configuration


Mid- to Super-High Resistance Measurements (100 m Ω to 10 T Ω)

- Option 1
 - 1 Model 4200-Semiconductor Characterization System with 4 Source-Measure Units (SMUs) and 4 preamps
 - Includes turn-key software for electrical resistivity
- Option 2
 - 1 Model 6220 Precision Current Source
 - 2 Model 6514 Electrometers
 - 1 Model 2000 DMM
 - 1 Model 7001 Switch Mainframe
 - 1 Model 7152 Low Current 4x5 Matrix Switch Card
- Option 3:
 - Use 2 x 2636A SourceMeter® Instruments

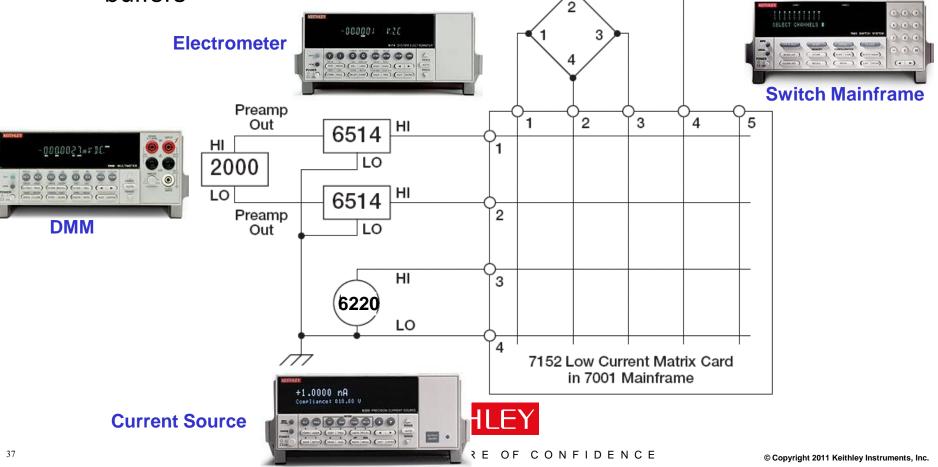


Mid- to Super-High Resistance Measurements ($100m\Omega$ to $10T\Omega$)

- Option 1: Model 4200-SCS with 4 SMUs and 4 pre-amps
 - Input impedance >10¹⁶ Ω
 - Accurate low current sourcing, pA
 - No leakage errors due to mechanical switches

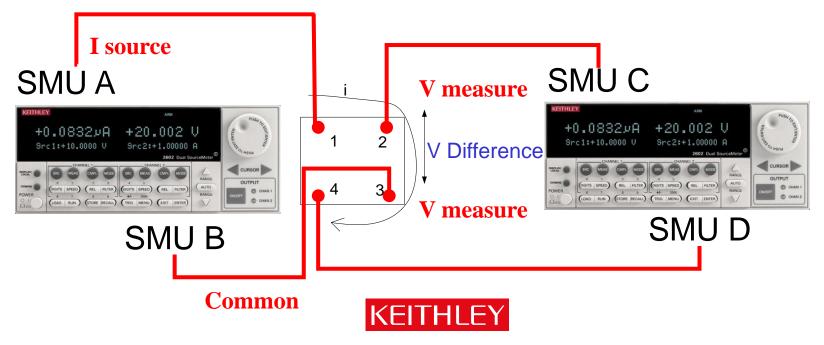
3

SMU4


Common

SMU3

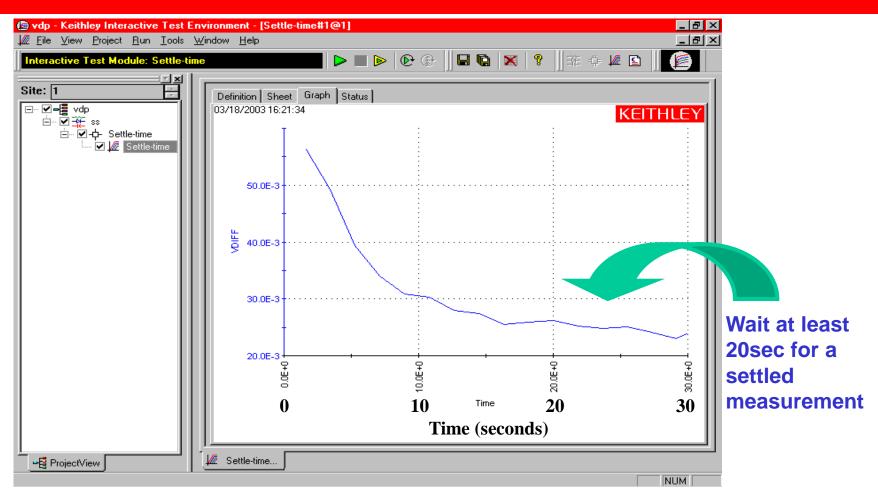
V Measure


Mid- to super-high resistance measurements (100 m Ω to 10 T Ω): Other options

 Option 2: Model 6514 Electrometers used as high impedance buffers

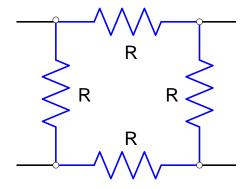
Mid- to Super-High Resistance Measurements (100 m Ω to 10 T Ω): Other Options

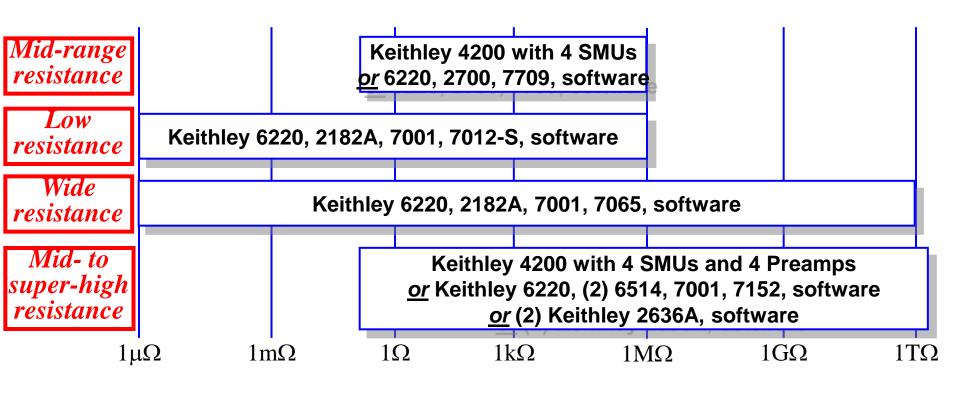
- Option 3: Use 2 x 2636As SourceMeter Instruments
 - Adds I-V sweep capability
 - Software options: ACS-Basic, TSP® Express, downloaded embedded tests scripts, or custom software (Services)
 - No switch needed



Making Good Measurements on High Resistivity Materials

- Electrostatic shielding to minimize electrical interference
 - Shield the DUT and all sensitive circuitry
 - Use shielded cabling
 - Connect the shield to the low terminal of the system
- Use guarding to reduce the effects of leakage current in system
 - Guarded current source
 - Guarded voltmeters
 - Use triax cable instead of coax cable
- Allow sufficient settling time
 - Source I and measure V as a function of time to determine appropriate settling
 - A diamond sample can take 10 15 minutes for settling


Settling Time of a $10^{12}\Omega$ Resistance Sample


Building Confidence in Your System

- Build a test structure using four resistors of equal value that are similar in magnitude to the resistance of the sample under test
- Have a known good sample characterized by a recognized laboratory

Overview of Keithley Offerings

Sample Resistance (Ω)

(actual selection depends on Total Resistance = Sample Resistance + Contact Resistance)

Sample Resistance $\approx \rho/t$

Example Custom GUI from Keithley Software Services

File Instruments Help				
KEITHLEY				
	File Instruments Help			
Configuration Test Results Help A GREATER MEASURE OF CONFIDE		KEI	THLEY	
Test Input Parameters Test I	Identification			
	Sample Name Configuration Test Result	Help A GREATER MEAS	SURE OF CONFIDENCE	
Source Settings		Sample Name	User Name Test Date	
Current Level Compliance Level Soak Time U	User Name Test Settings			
			Voltmeter	Ammeter
	Current Level 0	E+0 A Compliance Level 0 V	Soak Time 0 s NPLC 1	1
Measure Settings Yoltmeter Ammeter	Sample Resistivity	ow Sample Thickness 0 cm Ma	ngnetic Flux 0 T Measure Count 1	1
NPLC Measure Count NPLC Measure Count	Selecting Resisti			
	Van Der Pauw Measure	ments	Hall Measurements	
	Current	V1 V3 V5 V7	Magnet V1 V2 V3	₩4
Other Settings	Parameter Pos 0E+0	0E+0 0E+0 Volts		+0 Volts
Sample Resistivity Sample Thickness Magnetic Flux Units	Input Impedance Neg 0E+0 Input Bias Current	0E+0 0E+0 0E+0 V2 V4 V6 V8		¥0 V8
€ Low € 1 cm € 0.57 € T	Input Voltage Noise* Direction	¥2 ¥4 ¥0 ¥0	Polarity V5 V6 V7	¥0
	*0.1Hz to 10Hz bandwidth Van Der Pauw Resistan	ce Results	Hall Effect Results	
	Geometric Factor	Resistance Ratio Resistivity	Hall Coefficient Hall Mobility uH 0	cm^2/V s
	fa ₀ Q	A 0 PAvg 0 Ohm.cm	RHAvy 0 Ohm cm	cm ⁺ 2/v s
Status	f8_0	B 0 PA 0 Ohm cm	Carrier Concentration n/p 0 RHD 0 Ohm cm	cm^-3
Ide.				
KHE - Config Instruments.vi		PB 0 Ohm cm	RHC 0 Ohm cm	
Configure Instruments	Test Progress		Clear	Save
Model Location				
	Status Idle.		× •	
Ammeter 🔂 648X 🔓 GPIB0::14::INS				ТОР
Construction Construction				
Current Source 622X % GPIB0::12::INS				
Control & many				
Switch	R			
Voltmeter () 2182A	ITR T			
GPIBU:16:1NS				
		HLEY		
ОК	Cancel			

Additional Reference Material

- Application Note: Four-Probe Resistivity and Hall Effect Measurements with the Model 4200-SCS
 - <u>http://www.keithley.com/support/data?asset=15222</u>
- Low Level Measurements Handbook, Section 4.4
- Semiconductor Material and Device Characterization by Deiter Schroder
- 6220 Current Source Datasheet: http://www.keithley.com/support/data?asset=15911
- 2182A Nanovoltmeter: <u>http://www.keithley.com/support/data?asset=15912</u>
- 6514 Electrometer: http://www.keithley.com/support/data?asset=387
- 2000 DMM: http://www.keithley.com/support/data?asset=359
- 7001 Switch Mainframe: <u>http://www.keithley.com/support/data?asset=390</u>
- 7012-C 4x10 Matrix Card: <u>http://www.keithley.com/support/data?asset=393</u>
- 7152 Low Current Matrix Card: <u>http://www.keithley.com/support/data?asset=426</u>
- 7065 Hall Effect Switch Card: <u>http://www.keithley.com/support/data?asset=560</u>

Contact Keithley with Your Questions

Worldwide Headquarters	Europe:	
Within the USA: (+1) 888-KEITHLEY	Germany: (+49) 89-84930740	
Outside the USA: (+1) 440-248-0400	United Kingdom: (+44) 118-9297500	
	France: (+33) 1-64532020	
Email: applications@keithley.com		
	Asia:	
Additional offices: <u>www.keithley.com</u>	China: (+86) 10-82255011	
	Japan: (+81) 3-57337555	
	Korea: (+82) 2-574-7778	
	Taiwan: (+886) 3-572-9077	

