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Preface 

Mesoscopic Transport in High Temperature Superconductors is specifically written in order to 

show how simplistic electron transport equations can be used to describe complex HTS 

phenomena.  My goal when writing on high temperature superconductivity is to lean as much as 

possible about the basics of HTS and solve a variety of electron transport problems.  I have 

consulted several texts in an effort to look at the different pathways that are used when solving 

for useful quantities such as Pairon densities and coherent lengths.   

In order to make sure that I learned something in each chapter, I tried to see if I could use the 

derived formulae to solve for quantities by looking up properties that could be measured.  Thus 

in each chapter there will be at least one problem worked out causing this text to take on a 

tutorial approach.  A discussion section at the end of each chapter also is included to help 

reinforce what was learned.  This work is broken up into 5 chapters covering the basic 

foundation of superconductivity with BCS theory through the future of HTS and applications.  I 

have included references to texts and journals that I found useful when writing this work as well 

as a bibliography that describes how each text was helpful. 
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Chapter 1 

History and Properties of Superconductors 

Superconductors display a variety of unique behavior that cannot be described accurately by an 

independent electron approximation (used to solve the otherwise intractable Hamiltonian in 

equation (1.1) [1-3]. 

 
2 2 2 2 2

2 2
1 2
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  (1.1) 

Some of the properties that can be observed include no measureable DC resistance, perfect 

diamagnetism, and energy gap of width 2  centered about the Fermi energy.  These properties 

motivated the need for theory that would accurately describe the superconductor system.  In the 

1950s, Bardeen, Cooper, and Schrieffer formulated a Hamiltonian describing the 

superconducting system for which they later shared the Nobel Prize.  The important result from 

BCS theory is the relationship between the energy gap at 0 Kelvin and the critical temperature.  

The critical temperature is the temperature above which the bulk metal behaves normally but 

below which the material shows superconducting behavior. 

   B c2 T 0 3.53k T     (1.2) 

But all was not well with the theory.  The BCS Hamiltonian needed a discussion of the band 

structure of electrons if the question of which metals are superconductors is to be answered. 

Generalized BCS theory helped resolve this.  Around the same time that BCS was developed, 

Cooper and Schrieffer arrived at another independent relation for the critical temperature from 

(1.2) [6].   While electrons are fermions, Pairons are composed of a pair of electrons that move 

as a boson.  A composite particles motion is either fermionic or bosonic if it contains odd or even 

integer numbers of fermions respectively.  Pairons moving in 3D were shown to have an energy 

momentum relation given by: 

 

1 2
F

q F 0 F

21
q ,

2 m

 
       

 
  (1.3) 

The ground state energy in equation (1.3) is given by 0 .  The critical temperature for free 

Pairons was also found for both 2D and 3D crystals.  

 
1 3 1 21 1

c B F c B F3D 2DT 1.01 k n , T 1.24 k n       (1.4) 
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Both of these expressions (1.2) and (1.4) are in good agreement. The zero temperature BCS 

coherence length helps to determine the Pairon size. 

 F
0

B c

0.18
k T

 
  


  (1.5) 

We can finally solve for the interpairon distance 0r  by arranging equation (1.4) for number 

density of the bosons [6]. 

 1 3 F
0 0

B c

r n 1.01 5.61
k T

 
      (1.6) 

The utility of these formulae can be seen in the ability to determine Pairon density and Fermi 

velocity by measuring the critical temperature and coherence length.  A novel instructional 

example homework problem is shown below: 

Example Problem 1:  Find the 2D Pairon density and Fermi velocity for Yttrium Barium Copper 

Oxide (YBCO). 

The critical temperature and coherence length for YBCO can be looked up on Wikipedia.  The 

critical temperature is around 93 Kelvin.  The coherence length is different for along the crystal 

axis but is given ab
0 2nm   and c

0 0.4nm  .  We can now calculate the Fermi Velocity and the 

Pairon density. 

 
    

 

F F F
0

B c B

1 2 F F

B c B

20 A
3.53k T 3.53k 93 K

n 1.24 1.24
k T k 93 K



  
    

  

 
 

  (1.7) 

We can solve these equations simultaneously for the Fermi Velocity and the Pairon density. 

 
7

F

10 2
2D

270.1 km s 2.7 10 cm s

n 2.44 10 cm

   

 
  (1.8) 

Both of these numbers are reasonable after comparing with values from the literature. □  

Discussion  

We have learned about basic properties of semiconductors and have gone from an independent 

electron Hamiltonian to a generalized BCS Hamiltonian to describe our superconducting system.  

We have learned how to calculate electron transport system specific properties by knowing the 

critical temperature and the coherence length. 
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Chapter 2 

Type I and II Superconductor Properties 

In the last chapter, we discussed type I superconductors.  Now we will explore the properties of 

type II superconductors [1-3].  Compound superconductors have type II magnetic behavior, that 

is, they form magnetic vortices below a critical temperature and for a critical magnetic field.  

Type II allows partial penetration of magnetic field below the critical temperature while a type I 

repels the field.  What parameter determines whether a superconductor is type I or II?  The 

coherence length depends on the penetration depth is the answer to this question.   

    1 2 1 22 type , 2 type     I II   (2.1) 

The coherence length and the penetration depth depend on the material in question, as well, as 

the temperature and the concentration of impurities.  The London penetration depth can be found 

using the formula: 

 
1 2

e
L 2

0

m

nq

 
     

  (2.2) 

Aluminum is a type I superconductor with a critical temperature of 1.2 K.  A novel instructional 

example homework problem that demonstrates Aluminum is indeed type I is shown below: 

Example Problem 2:  Estimate the London penetration depth of Aluminum and determine the 

coherence length in order to determine whether Aluminum is a type I or II superconductor. 

The number density for Aluminum can be calculated by knowing the lattice constant.  The 

London penetration depth is then easily calculated. 
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m 10
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  (2.3) 

We can estimate the Fermi velocity at about 62 10 m s .  We can now calculate the coherent 

length based off of equation (1.7).  This gives us the following for the coherent length:  
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  (2.4) 

We can compare these to the actual values of 16 nm and 1600 nm for the penetration depth and 

coherent length respectively. 

  1 20

L

1148 nm
52.92 2 , type

21.69 nm


  


I   (2.5) 

 This is quite reasonable and matches up with what is known for Aluminum. □  

Discussion  

We have learned about type I and II superconductors and their properties.  The type of 

superconductor can be determined by knowing the coherence length and the penetration depth.  

We have learned how to calculate whether a superconductor is type I or II based off of the 

penetration depth and coherence length. 

Chapter 3 

Electron Transport in HTS 

We now turn our attention to high temperature superconductors, that is, superconductors with an 

unusually high temperature critical point such as 2 x x 4La Sr CuO  which has a critical temperature 

of 38 Kelvin.  We are interested in the electron transport properties around the critical 

temperature such as resistivity.  Also, we will look at the Seebeck coefficient for HTSs.  Above 

the critical temperature, optimally doped superconductors show linear dependence on the 

temperature while overdoped superconductors display quadratic dependence on the temperature.  

Starting from the Drude-Sommerfeld model, we can write the conductivity in terms of a 

scattering rate.  We will define 1n  and 2n  as hole densities [6]. 

 
2 2

1 1 1
1 1 ph F 1

1 1 1

n e n e 1
, n S

m m

 
      

 
  (3.1) 

In equation (3.1), 1S  is the scattering diameter.  The number phonon density can be calculated if 

the acoustic phonon energies are small compared to Bk T . 
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          (3.2) 

We have assumed that the parameter 0 0.20  .  Now we can solve by substituting (3.2) into 

(3.1) to obtain the following equation: 

 

2 2 2
0 D1 1 1

1 1 1
B1 ph F 1 1 a 1 B F 1

a F 1
0 D

1 2
1 1

n e n e n e1 1
C , C

k Tm n S m T n m k S
n S

1 T

C n e

 
    
      

        

 

  (3.3) 

Now for an overdoped system we consider a positively charged Pairon 2e  and a linear 

dispersion relation.  Using Newton’s Law of motion, we can write the following: 

 
2

x x x x2 2 2

d mc d pc d d
F m 2eE, pc

dt dt dt dtc c c


             (3.4) 

We can solve this differential equation with 2  being the Pairon mean free time and do a thermal 

average to obtain the following: 

 d 2 1
2 22ec E       (3.5) 

Now we can write the conductivity using Ohm’s law: 

 
 

   
d

22 2 2 1 2 1 1 1
2 2 2 2 2 2 2

n 2e
2n e 2ec 2e c n ,

E

   
             (3.6) 

We can then use the Equipartition theorem claiming that the total kinetic energy is shared 

equally among the constituent parts. 

 

 
2 2 2
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2
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T

2e C n

  
     

 

 

  (3.7) 

We have now found the conductivity in both cases and the total conductivity is equal to the sum. 
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2

2
1 2 1 1 2 2

1 1 T

e C n T 2C n
   

   
  (3.8) 

Thus, the resistivity dependence on temperature correlates with the doping concentration. □  

Discussion  

After the critical temperature (before which the resistivity is equal to zero), the resistivity 

dependence can be found using the Drude-Sommerfeld model.  The dependence will be either 

linear or quadratic depending on the doping concentrations.  Quadratic dependence occurs for 

highly overdoped samples indicating that 2 2 1 1C n C n .  The other regime gives linear 

temperature dependence.  

Chapter 4 

The Seebeck Effect in HTS 

We will now discuss the Seebeck effect.  This effect explains the conversion thermal gradients 

into a current density.  Our discussion will begin with the Seebeck Coefficient (thermopower) 

which depends on material properties [1], [3], [6]. 

For a metal we can write classically 

    V A T A T       j E     (4.1) 

For a metal rod, with a thermal gradient between the ends, no current will flow.  Mathematically 

this is given as: 

 q q

A
A T 0, Q T, Q    


E E    (4.2) 

We have defined Q as the Seebeck coefficient or thermopower.  The Seebeck Coefficient can be 

related to the specific heat capacity.  Classically V Bc 3nk 2  and for a statistical Fermi heat 

capacity  2 2
V B 0c 3 k TN  . 

 
2

4B B B
classical Fermi

F

k k k TV
Q 0.43 10 , Q

2e K 3 2e

  
        

 
  (4.3) 

In order to gain some physical insight into the range of statistical Fermi Seebeck coefficients let 

us examine a specific case. 
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Example Problem 3:  Estimate the Seebeck coefficient for Bismuth.  What is the Seebeck 

Coefficient for Copper?  Compare with experimental measurements. 

 

The Fermi energy for Bismuth is about 9.90 eV.  Also, we must remember to make this 

calculation relative to Platinum in order to compare with measured results.  At room temperature 

Platinum is about 5 V K  . 

 
2

B B
F,Bismuth

F

k k T
Q 36.8 V K 5 V K 31.8 V K

3 2e

 
          

 
  (4.4) 

Bismuth at room temperature is about 72 V K  .  We are then off by about a factor of two from 

the measured value, but the sign is correct.  Now for copper we have a Fermi energy of about 7 

eV. 

 
2

B B
F,Copper

F

k k T
Q 52.0 V K 5 V K 47.0 V K

3 2e

 
          

 
  (4.5) 

Copper at room temperature is about 6.5 V K .  The theory clearly does not accurately predict a 

sign change for various materials.  The classical and even semi-quantum theory introduced so far made 

assumptions about the Fermi degeneracy and chemical potential being independent of temperature.  Also, 

the sign cannot account for positive Seebeck coefficients.  Ashcroft and Mermin attempt to correct this in 

equation [13.62] in their classical text, but the formula is difficult to use because of the tensor in [13.65] 

denoted !  We shall therefore follow a derivation by Fujita and Godoy [6] that yields a more easily 

applied result.  Let us begin by writing the thermally excited electron number density:  

  
  

   ex B F ex
F

1
N d Dos k T Dos ln 2 , n N V

exp 1




     

      (4.6) 

Now we will use Fick’s law of diffusion to write the following where D is the diffusion 

coefficient and d is the dimensionality in this case equal to 2. 

 
2
F

particleq qD n q n q n
d d

   
              

j j      (4.7) 

We can use equation (4.6) and take the gradient in order to find n . 

 
 

 B F

ln 2
n k Dos T

dV
     (4.8) 
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We can use equations (4.1), (4.7), and (4.8) to write an expression for A and then Q.  We will 

also need the Drude-Sommerfeld model for conductivity. 

 

 
 

 
     

   

2 2
F B F F F2

2
F B F2

F
F B2

ln 2
A q k Dos , d m

d V

ln 2
q k Dos

ln 2 DosA 1d VQ k
d qn Vnq m

Q 0 for , Q 0 for





      

  
 

    
   

 electrons holes

  (4.9) 

In two dimensions the density of states is given by the following (also an example is given for 

copper): 

  
   

 

 

2 2

F 2 2 2 2

1.3 0.51MeVm m c 1.3mc
Dos

c c 1240eV nm

 

    
    

  (4.10) 

We can now calculate the Seebeck coefficient.  A novel instructional example homework 

problem that demonstrates the correct calculation for copper based off of the refined theory. 

Example Problem 4:  What is the Seebeck Coefficient for Copper using the theory presented in 

equation (4.9)?  Compare with experimental measurements. 

Both gold and copper are hole-dominant [4].  Thus we know that the sign will be positive.  This 

is a critical feature of this theory.   

 

     
 

 

 
 

 

 

F
F B F B F

B2 2

ln 2 Dos ln 21 1
Q k k Dos

d qn V d qN

ln 2 1.3 0.51MeV1
Q 7eV k

2 e 4 135pm 1240eV nm

Q 0.048 V K 5 V K 5.048 V K

   
       

   

 
 
    

     

  (4.11) 

This is in close agreement with the measured value for copper that was given earlier in the 

chapter. □  

Discussion  

We have been introduced to the classical and semi-quantum theory for the Seebeck coefficient.  

The full quantum discussion has been presented and the shortcomings of the classical 

expressions have been addressed.  We have calculated the Seebeck coefficient for a well-known 

metal.   
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Chapter 5 

Research and the Future of HTS 

High temperature superconductivity discovered in copper oxide perovskite  2 x x 4L a B a C u O  

ushered in a tremendous growth in high temperature superconductivity [5].  A historical graphic 

of HTS is also given in the same Nature review article. 

 

The highest confirmed temperature reached for a HTS is about 135 K.  As new materials are 

explored and critical temperatures are increased, new applications continue to develop.  Current 

applications include: MRI, NMR, high energy accelerators, and plasma fusion reactors.  A major 

application is in the medical field particularly with superconducting quantum interference 

devices (SQUIDs) that are able to measure weak magnetic fields from the human brain.  The 

primary emerging technology available from HTS is power generation systems.  These include 

fusion technology, motors, and energy storage. 

Discussion  

We have briefly introduced a variety of applications in HTS in an effort to motivate the study of 

basic electron transport properties in HTS.  High temperature superconductors will play a 

significant role in future technological applications as the higher critical temperatures of new 

materials are discovered. 
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